Structure and Stability of Agroforestry Ecosystems: Insights into the Improvement of Service Supply Capacity of Agroforestry Ecosystems under the Karst Rocky Desertification Control
Abstract
:1. Introduction
2. Methods
2.1. Literature Acquisition Sources
2.2. Literature Selection Criteria
3. Results
3.1. Annual Distribution of Literature
3.2. Classification of Literature Research Content
3.3. Research Progress and Landmark Results
3.3.1. Structural Characteristics
3.3.2. Structural Optimization
3.3.3. Structural Design
3.3.4. Stability Study
3.3.5. Influencing Factors
4. Discussion
4.1. Structure and Stability of the Variability of the Annual Volume of Articles Issued
4.2. Differences in the Distribution of Study Areas
4.3. Key Scientific Questions That Need to Be Addressed Urgently
4.4. Implications for the Improvement of Supply Capacity of Agroforestry Ecosystem Services under the Rocky Desertification Control
4.5. Comparison with Other Reviews and Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garibaldi, L.A.; Gemmill-Herren, B.; D’Annolfo, R.; Graeub, B.E.; Cunningham, S.A.; Breeze, T.D. Farming Approaches for Greater Biodiversity, Livelihoods, and Food Security. Trends Ecol. Evol. 2017, 32, 68–80. [Google Scholar] [CrossRef]
- Pretty, J.; Benton, T.G.; Bharucha, Z.P.; Dicks, L.V.; Flora, C.B.; Godfray, H.C.; Goulson, D.; Hartley, S.; Lampkin, N.; Morris, C.; et al. Global assessment of agricultural system redesign for sustainable intensification. Nat Sustain. 2018, 1, 441–446. [Google Scholar] [CrossRef]
- King, K.F.S. Agri-Silviculture (the Taungya System)-Bulletin; University of Ibadan: Ibadan, Nigeria, 1968; p. 1. [Google Scholar]
- Nair, P.K.R. Classification of agroforestry system. Agrofor. Syst. 1985, 3, 97–182. [Google Scholar] [CrossRef]
- Li, W.H.; Lai, S.D. Agroforestry Complex Management in China; Science Press: Beijing, China, 1994; pp. 20–21. [Google Scholar]
- Jose, S.; Udawatta, R.P. Agroforestry for Ecosystem Services: An Introduction. In Agroforestry and Ecosystem Services; Udawatta, R.P., Jose, S., Eds.; Springer: Cham, Switzerland, 2021; p. 17. [Google Scholar] [CrossRef]
- Ripoche, A.; Autfray, P.; Rabary, B.; Randriamanantsoa, R.; Blanchart, E.; Trap, J.; Sauvadet, M.; Becquer, T.; Letourmy, P. Increasing plant diversity promotes ecosystem functions in rainfed rice-based short rotations in Malagasy highlands. Agric. Ecosyst. Environ. 2021, 320, 107576. [Google Scholar] [CrossRef]
- Dury, S.; Aulong, S.T.; Temple, L. Dynamiqueet structure floristique des agroforêts à agrumes au centre du Cameroun. Fruits 2000, 55, 103–114. [Google Scholar]
- Sonwa, D.J. Biomass Management and Diversification within Cocoa Agroforest in the Humid Forest Zone of Southern Cameroon. Ph.D. Thesis, The University of Bonn, Faculty of Agriculture, Bonn, Germany, 2004. [Google Scholar]
- Smith Dumont, E.; Gnahoua, G.M.; Ohouo, L.; Sinclair, F.L.; Vaast, P. Farmers in Côte d’Ivoire value integrating tree diversity in cocoa for the provision of ecosystem services. Agrofor. Syst. 2014, 88, 1047–1066. [Google Scholar] [CrossRef] [Green Version]
- Varah, A.; Jones, H.; Smith, J.; Potts, S.G. Temperate Agroforestry systems provide greater pollination service than monoculture. Agric. Ecosyst. Environ. 2020, 301, 107031. [Google Scholar] [CrossRef]
- Hu, Y.H.; Chen, Q.B.; Zhou, Z.D. Ecological Engineering of Tropical Agroforestry Complexes; China Forestry Press: Beijing, China, 2006. [Google Scholar]
- Mthembu, B.E.; Everson, C.S.; Everson, T.M. Tree legumes-temperate grass agroforestry system effects on inorganic soil nitrogen as ecosystem services provision for smallholder farming systems in South Africa. J. Crop Improv. 2018, 32, 141–155. [Google Scholar] [CrossRef]
- Marais, Z.E.; Baker, T.P.; Hunt, M.A.; Mendham, D. Shelterbelt species composition and age determine structure: Consequences for ecosystem services. Agric. Ecosyst. Environ. 2022, 329, 107884. [Google Scholar] [CrossRef]
- King, K.F.S. Agroforestry, and the utilization of fragile ecosystems. For. Ecol. Manag. 1979, 2, 161–168. [Google Scholar] [CrossRef]
- Wu, Q.; Liang, H.; Xiong, K.; Li, R. Eco-benefits coupling of agroforestry and soil and water conservation under KRD environment: Frontier theories and outlook. Agrofor. Syst. 2019, 93, 1927–1938. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I.; Henao, A.; Lana, M.A. Agroecology and the design of climate change-resilient farming systems. Agron Sustain. Dev. 2015, 35, 869–890. [Google Scholar] [CrossRef] [Green Version]
- Lin, B. Resilience in agriculture through crop diversification: Adaptive management for environmental change. Bioscience 2011, 61, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Ford, D.C.; Williams, P.W. Karst Hydrogeology and Geomorphology; Wiley: Hoboken, NJ, USA, 2007; p. 1. [Google Scholar]
- Kranjc, A. Dinaric karst: An example of deforestation and desertification of lime rocky terrain. In Deforestation Around the World; Moutinho, P., Ed.; Intech Open: London, UK, 2012; pp. 73–94. [Google Scholar]
- Sunkar, A. Deforestation and rocky desertification processes in Gunung Sewu karst landscape. Media Konservasi. 2008, 13, 1–7. [Google Scholar]
- Xiong, K.N.; Chi, Y.K. Problems and countermeasures facing karst ecosystems in southern China. Ecol. Econ. 2015, 31, 23–30. [Google Scholar]
- Febles González, J.M.; Febles Díaz, J.M.; Sobrinho, N.M.B.A.; Tolón-Becerra, A.; Lastra-Bravo, X.; Botta, G.F. Resilience of Red Ferralitic soils in the karst regions of Mayabeque Province, Cuba. Land Degrad Dev. 2019, 30, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Xiong, K.N.; Li, P.; Zhou, Z.F.; An, Y.L.; Lv, T.; Lan, A.J. A Typical Study of Remote Sensing-GIS of Karst Desertification: Guizhou Province as an Example; Geological Publishing House: Beijing, China, 2002. [Google Scholar]
- Wang, M.M.; Wang, S.J.; Bai, X.Y.; Li, S.J.; Li, H.W.; Cai, Y.; Xi, H.P. Evolutionary characteristics of karstic desertification in a typical small watershed and its key characterization factors and drivers. J. Ecol. 2019, 39, 6083–6097. [Google Scholar]
- Wang, K.L.; Yue, Y.M.; Chen, H.S.; Wu, X.B.; Xiao, J.; Qi, X.K.; Zhang, W.; Du, H. Integrated management of karst rock desertification and its regional restoration effect. J. Ecol. 2019, 39, 7432–7440. [Google Scholar]
- Zuo, T.A.; Zhang, F.T.; Yu, S.J.; Li, J.; Fan, H.; Ye, D. Progress of research on rocky desertification poverty in karst areas of China. China Karst 2021, 6, 1–13. Available online: http://kns.cnki.net/kcms/detail/45.1157.P.20211130.0926.002.html (accessed on 13 April 2022).
- Chen, H.S.; Yue, Y.M.; Wang, K.K. Comprehensive management of rocky desertification in a southwest karst region: Effectiveness, problems, and countermeasures. China Karst 2018, 37, 37–42. [Google Scholar]
- Zhang, M.Y.; Wang, K.L.; Liu, H.Y.; Wang, J.; Zhang, C.; Yue, Y.; Qi, X. Spatio-temporal variation and impact factors for vegetation carbon sequestration and oxygen production based on rocky desertification control in the karst region of Southwest China. Remote Sens. 2016, 8, 102. [Google Scholar] [CrossRef] [Green Version]
- Su, W.C.; Zhu, W.X. The connotation and concept of sustainable agricultural development in karst ecologically fragile areas of Guizhou. Econ. Geogr. 2000, 5, 75–79. [Google Scholar] [CrossRef]
- Mei, Z.M.; Xiong, K.N. The basic model of ecological reconstruction in the karst mountains of Guizhou and its environmental benefits. J. Guizhou Norm. Univ. (Nat. Sci. Ed.) 2000, 4, 9–17. [Google Scholar]
- Li, X.K.; Lv, S.H.; Jiang, Z.C.; He, C.X.; Lu, S.H.; Xiang, W.S.; Ou, Z.L. Optimization of composite agroforestry systems and vegetation restoration experiments in karst crest areas. J. Nat. Resour. 2005, 1, 92–98. [Google Scholar]
- Zhang, H.Z.; Ma, C.H. Restoration, and reconstruction of agroforestry complex ecosystems in karst mountainous areas of Shuicheng County, Guizhou Province. Guizhou Agric. Sci. 2003, 3, 69–72. [Google Scholar]
- Chen, H.; Zhu, D.Y.; Chen, H.; Wen, Y.Q. Impact of agroforestry on soil environment in rocky desertification areas and its application. World For. Res. 2019, 32, 13–18. [Google Scholar]
- Cui, L. Technology, and Demonstration of Rock Desertification Land Preparation Based on Plant Diversity Restoration and Conservation; Guizhou Normal University: Guiyang, China, 2016. [Google Scholar]
- Liu, Q.S.; Chen, H.; Li, L.Z.; Wang, C.L.; Chen, J.; Yang, Y.W.; Zhang, H.M. Marginal effects of soil mite communities in agroforestry areas of rocky desertification management. J. Appl. Environ. Biol. 2020, 26, 370–377. [Google Scholar]
- Yang, Y.W.; Xiao, H.; Chen, H.; Xiao, N.J. Guo Cheng. Structural characteristics of soil mite communities in different rose agroforestry patterns in karst areas. Zhejiang J. Agric. 2021, 33, 112–121. [Google Scholar]
- He, F.Y.; Xiong, K.N.; Zhu, D.Y. Research progress on moisture effects of agroforestry in karst mountains. China Forage 2020, 7, 22–27. [Google Scholar]
- Zou, Z.; Zeng, F.; Wang, K.; Zeng, Z.; Zhao, L.; Du, H.; Zhang, F.; Zhang, H. Emergy and Economic Evaluation of Seven Typical Agroforestry Planting Patterns in the Karst Region of Southwest China. Forests 2019, 10, 138. [Google Scholar] [CrossRef] [Green Version]
- Abayneh, L.; Mesele, N. Species diversity, composition, structure, and management in Agroforestry systems: The case of Kachabira district, Southern Ethiopia. Heliyon 2021, 7, e06477. [Google Scholar]
- Tadesse, E.; Negash, M.; Asfaw, Z. Impacts of traditional agroforestry practices, altitudinal gradients and households’ wealth status on perennial plants species composition, diversity, and structure in south-central Ethiopia. Agrofor. Syst. 2021, 95, 1533–1561. [Google Scholar] [CrossRef]
- Zaldivar, M.E.; Rocha, O.J.; Castro, E.; Barrantes, R. Species Diversity of Edible Plants Grown in Homegardens of Chibchan Amerindians from Costa Rica. Hum. Ecol. 2002, 30, 301–316. [Google Scholar] [CrossRef]
- Garcia, B.N.R.; Vieira, T.A.; de Assis Oliveira, F. Tree and shrub diversity in agroforestry homegardens in rural community in eastern amazon. Floresta 2017, 47, 543–552. [Google Scholar] [CrossRef] [Green Version]
- Notaro, A.; Notaro, G.; Deheuvels, O.; Gary, C. Participative design of the spatial and temporal development of improved cocoa agroforestry systems for yield and biodiversity. Eur. J. Agron. 2022, 132, 126395. [Google Scholar] [CrossRef]
- Yu, J. Stability, and Sustainability of Agroforestry-Pastoral Complex Ecosystems; Northeastern Forestry University: Harbin, China, 2016. [Google Scholar]
- Zhang, Y.K.; Xiao, Q.L.; Huang, M.B. Temporal stability analysis identifies soil water relations under different land use types in an oasis agroforestry ecosystem. Geoderma 2016, 271, 150–160. [Google Scholar] [CrossRef]
- Querné, A.P.; Battie-laclau, L.; Dufour, J.; Wery, J.; Dupraz, C. Effects of walnut trees on biological nitrogen fixation and yield of intercropped alfalfa in a mediterranean agroforestry system. Eur. J. Agron. 2017, 84, 35–46. [Google Scholar] [CrossRef]
- Abdulai, I.; Vaast, P.; Hoffmann, M.P.; Asare, R.; Jassogne, L.; Asten, P.V.; Rötter, R.P.; Graefe, S. Cocoa agroforestry is less resilient to suboptimal and extreme climate than cocoa in full sun: Reply to Norgrove (2017). Glob. Chang. Biol. 2018, 24, e733–e740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-de-Oña, C.; Merlín-Uribe, Y. New Varieties of Coffee: Compromising the Qualities of Adaptive Agroforestry? A Case Study from Southern Mexico. Front. Sustain. Food Syst. 2021, 5, 123. [Google Scholar] [CrossRef]
- Marsden, C.; Martin-Chave, A.; Cortet, J. How agroforestry systems influence soil fauna and their functions-a review. Plant Soil 2020, 453, 29–44. [Google Scholar] [CrossRef]
- Pullin, A.S.; Stewart, G.B. Guidelines for systematic review in conservation and environmental management. Conserv. Biol. 2006, 20, 1647–1656. [Google Scholar] [CrossRef] [PubMed]
- Pullin, A.S.; Knight, T.M. Effectiveness in conservation practice: Pointers from medicine and public health. Conserv. Biol. 2001, 15, 50–54. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Bernes, C.; Jonsson, B.G.; Hedlund, K. The benefits of systematic mapping to evidence-based environmental management. Ambio 2016, 45, 613–620. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 154, 264–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mortimer, R.; Saj, S.; David, C. Supporting and regulating ecosystem services in cacao agroforestry systems. Agrofor. Syst. 2018, 92, 1639–1657. [Google Scholar] [CrossRef]
- Moreira, C.C.; Celestino, D.; Guerra, S.T.; Cardoso, I.M.; Elliot, S.L. Agroforestry coffee soils increase the insect-suppressive potential offered by entomopathogenic fungi over full-sun soils: A case proposing a “bait survival technique”. Ecol. Evol. 2019, 9, 10777–10787. [Google Scholar] [CrossRef] [Green Version]
- Marais, Z.E.; Baker, T.P.; O’Grady, A.P.; England, J.R.; Tinch, D.; Hunt, M.A. A Natural Capital Approach to Agroforestry Decision-Making at the Farm Scale. Forests 2019, 10, 980. [Google Scholar] [CrossRef] [Green Version]
- Czúcz, B.; Keith, H.; Jackson, B.; Maes, J.; Driver, A.; Nicholson, E.; Bland, L. Discussion Paper 2.3: Proposed Typology of Condition Variables for Ecosystem Accounting and Criteria for Selection of Condition Variables; Paper Submitted to the SEEA EEA Technical Committee as Input to the Revision of the Technical Recommendations in Support of the System on Environmental-Economic Accounting; The Version of 13 March 2019; United Nations: New York, NY, USA, 2019; p. 23. [Google Scholar]
- Deheuvels, O.; Avelino, J.; Somarriba, E.; Malezieux, E. Vegetation structure and productivity in cocoa-based agroforestry systems in Talamanca, Costa Rica. Agric. Ecosyst. Environ. 2012, 149, 181–188. [Google Scholar] [CrossRef]
- Andres, C.; Comoé, H.; Beerli, A.; Schneider, M.; Rist, S.; Jacobi, J. Cocoa in monoculture and dynamic agroforestry. In Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer International Publishing: Cham, Switzerland, 2016; Volume 19, pp. 121–153. [Google Scholar]
- Wang, L. Productivity of Agroforestry Systems and Their Soil-Root Response in Weibel; Northwest Agriculture and Forestry University: Xianyang, China, 2016. [Google Scholar]
- Koko, L.K.; Snoeck, D.; Lekadou, T.T.; Assiri, A.A. Cacao-fruit tree intercropping effects on cocoa yield, plant vigour and light interception in Côte d’Ivoire. Agrofor. Syst. 2013, 87, 1043–1052. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, P.; Zhang, L.; Wang, J.; Yu, M.; Zhou, X.; Wang, G.G. Relationships between shelter effects and optical porosity: A meta-analysis for tree windbreaks. Agric. For. Meteorol. 2018, 259, 75–81. [Google Scholar] [CrossRef]
- Jarvis, D.I.C.; Padoch, H.D. Cooper Managing Biodiversity in Agricultural Ecosystems; Bioversity International Columbia University Press: New York, NY, USA, 2007. [Google Scholar]
- Ernesto, G.C.; Guillaume, X.R.; Danielle, C.; Fariñas Salazar, H.; Gehring, C. Effect of species richness and vegetation structure on carbon storage in Agroforestry systems in southern Amazon of Bolivia. Rev. De Biol. Trop. 2018, 66, 1481–1495. [Google Scholar]
- Anglaaere, L.C.N.; Cobbina, J.; Sinclair, F.L.; McDonald, M.A. The effect of land-use systems on tree diversity: Farmer preference and species composition of cocoa-based agroecosystems in Ghana. Agrofor. Syst. 2011, 81, 249–265. [Google Scholar] [CrossRef]
- Prates, P.; Moreira, S.L.S.; Jordão, T.C.; Ngolo, A.O.; Moreira, B.C.; Santos, R.H.; Fernandes, R.B.; Kasuya, M.C. Structure of AMF Community in an Agroforestry System of Coffee and Macauba Palm. Floresta E Ambiente 2021. [Google Scholar] [CrossRef]
- Valencia, V.; García-Barrios, L.; West, P.; Sterling, E.J.; Naeem, S. The role of coffee agroforestry in the conservation of tree diversity and community composition of native forests in a Biosphere Reserve. Agric. Ecosyst. Environ. 2014, 189, 154–163. [Google Scholar] [CrossRef]
- Gómez-Pompa, A.; Salvador-Flores, J.; Aliphat-Fernández, M. The sacred groves of the Maya. Lat. Am. Antiq. 1990, 1, 247–257. [Google Scholar] [CrossRef]
- Braga, D.P.P.; Domene, F.; Gandara, F.B. Shade trees composition and diversity in cacao Agroforestry systems of southern Pará, Brazilian Amazon. Agrofor. Syst. 2019, 93, 1409–1421. [Google Scholar] [CrossRef]
- Zequeira-Larios, C.; Santiago-Alarcon, D.; MacGregor-Fors, I.; Castillo-Acosta, O. Tree diversity, and composition in Mexican traditional smallholder cocoa Agroforestry systems. Agrofor. Syst. 2021, 95, 1589–1602. [Google Scholar] [CrossRef]
- Sonwa, D.J.; Weise, S.F.; Schroth, G.; Janssens, M.J.; Shapiro, H.Y. Plant diversity management in cocoa Agroforestry systems in West and Central Africa—effects of markets and household needs. Agrofor. Syst. 2014, 88, 1021–1034. [Google Scholar] [CrossRef]
- Sonwa, D.J.; Weise, S.F.; Nkongmeneck, B.A.; Tchatat, M.; Janssens, M.J. Structure and composition of cocoa Agroforestry in the humid forest zone of Southern Cameroon. Agrofor. Syst. 2017, 91, 451–470. [Google Scholar] [CrossRef]
- Yao, A.J.; Zhu, Q.K.; Zhang, Y.Q.; Ji, W.L. Status, and prospects of forest stand structure research. For. Surv. Plan. 2005, 2, 70–76. [Google Scholar]
- Yao, A.J. Vegetation structure analysis of artificial acacia forests in the loess region of western Jin. Int. Seabuckthorn Res. Dev. 2014, 12, 39–45. [Google Scholar]
- Schroth, G.; Harvey, C. Biodiversity conservation in cocoa production landscapes: An overview. Biodivers. Conserv. 2007, 16, 2237–2244. [Google Scholar] [CrossRef]
- Sonké, B. Etudes floristiques et structurales de la réserve de faune du Dja (Cameroon). Ph.D. Thesis, Université Libre de Bruxelles, Brussels, Belgium, 1998. [Google Scholar]
- Gao, L.B.; Bi, H.X.; Yun, L.; Liu, L.X.; Zhu, Y. Research progress on optimal configuration and structural control of forest and grass complexes in semi-arid loess areas. Soil Water Conserv. Res. 2011, 18, 260–266. [Google Scholar]
- Riedel, J.; Kägi, N.; Armengot, L.; Schneider, M. Effects of rehabilitation pruning and agroforestry on cacao tree development and yield in an older full-sun plantation. Exp. Agric. 2019, 55, 849–865. [Google Scholar] [CrossRef]
- López-Cruz, A.; Soto-Pinto, L.; Salgado-Mora, M.G.; Huerta-Palacios, G. Simplification of the structure and diversity of cocoa agroforests does not increase yield nor influence frosty pod rot in El Soconusco, Chiapas, Mexico. Agrofor. Syst. 2021, 95, 201–214. [Google Scholar] [CrossRef]
- Fan, W. Structure, Function and Optimization Model of Agroforestry Complex Ecosystem in the Yellow Huaihai Agricultural Region; Institute of Forestry, China Academy of Forestry Science: Beijing, China, 2005. [Google Scholar]
- Cai, G.J.; Zhang, R.Z.; Mo, B.O.; Wei, Q.; Chai, C.S.; Yu, H.B. Structure and function of three typical agroforestry complex ecosystems in the Anjiagou watershed. China Association for Science and Technology. In Proceedings of the Annual Meeting of the Chinese Association for Science and Technology, Beijing, China; Energy Conservation, Environmental Protection, and Harmonious Development-2007; China Association for Science and Technology, Academic Department of the Society of China Association for Science and Technology: Beijing, China, 2007; p. 5. [Google Scholar]
- Saint-Laurent, D.; Berthelot, J.S.; Gervais-Beaulac, V. Habitat fragmentation and structure and composition of tree populations in an agroforestry landscape (southern Québec, Canada). Agrofor. Syst. 2018, 92, 1517–1534. [Google Scholar] [CrossRef]
- Perfecto, I.; Vandermeer, J. Spatial pattern and ecological process in the coffee agroforestry system. Ecology 2008, 89, 915–920. [Google Scholar] [CrossRef]
- Yu, B.H. Research on the structure of agroforestry complex management system. For. Surv. Des. 2014, 1, 18–19. [Google Scholar]
- Ouinsavi, C.; Sokpon, N. Traditional agroforestry systems as tools for conservation of genetic resources of Milicia excelsa Welw. C.C. Berg in Benin. Agrofor. Syst. 2008, 74, 17–26. [Google Scholar] [CrossRef]
- Rédei, K.; Melby, H. Effect of thinning on the diameter increment in black locust (Robinia pseudoacacia L.) stands. Silva Gaildavensis 2000, 65, 115–127. [Google Scholar] [CrossRef] [Green Version]
- Rédei, K.; Bakti, B.; Kiss, T.; Takács, M.; Keserű, Z. Yield and crown structure characteristics in a black locust (Robinia pseudoacacia L.) stand: A case study—short communication. J. Sci. 2018, 64, 96–100. [Google Scholar]
- Pang, K.; Van Sambeek, J.W.; Navarrete-Tindall, N.E.; Lin, C.H.; Jose, S.; Garrett, H.E. Responses of legumes and grasses to non-, moderate, and dense shade in Missouri, USA. II. Forage quality and its species-level plasticity. Agrofor. Syst. 2019, 93, 25–38. [Google Scholar] [CrossRef]
- Macdonald, E.; Gardiner, B.; Mason, W. The effects of transformation of even-aged stands to continuous cover forestry on conifer log quality and wood properties in the UK. Forestry 2010, 83, 1–16. [Google Scholar] [CrossRef]
- Malézieux, E.; Crozat2, Y.; Dupraz, C.; Laurans, M.; Makowski, D.; Ozier-Lafontaine, H.; Rapidel, B.; Tourdonnet, S.; Valantin-Morison, M. Mixing plant species in cropping systems: Concepts, tools and models: A review. Agron. Sustain Dev. 2009, 29, 43–62. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.J. Preliminary analysis of light conditions in intercropped fields of pond fir and rice and wheat. J. Nanjing For. Univ. (Nat. Sci. Ed.) 1984, 1, 147–156. [Google Scholar]
- Liu, N.Z.; Liu, C.M.; Song, Z.M. Small-scale climatic effects of farmland protection forest systems. For. Sci. 1989, 3, 193–200. [Google Scholar]
- Feng, Z.W.; Wang, X.K.; Wu, G. Structure and Function of Agroforestry Systems: A Study of the Northern Part of Henan and Huaihai Plain; China Science and Technology Press: Beijing, China, 1992. [Google Scholar]
- Jose, D.; Shanmugaratnam, N. Traditional homegardens of Kerala: A sustainable human ecosystem. Agrofor. Syst. 1993, 24, 203–213. [Google Scholar] [CrossRef]
- Tscharntke, T.; Clough, Y.; Wanger, T.C.; Jackson, L.; Motzke, I.; Perfecto, I.; Vandermeer, J.; Whitbread, A. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv. 2012, 151, 53–59. [Google Scholar] [CrossRef]
- Jagoret, P.; Snoeck, D.; Bouambi, E.; Ngnogue, H.T.; Nyassé, S.; Saj, S. Rehabilitation practices that shape cocoa agroforestry systems in Central Cameroon: Key management strategies for long-term exploitation. Agrofor. Syst. 2018, 92, 1185–1199. [Google Scholar] [CrossRef]
- Beer, J. Advantages, disadvantages, and desirable characteristics of shade trees for coffee, cacao, and tea. Agrofor. Syst. 1987, 5, 3–13. [Google Scholar] [CrossRef]
- Xiong, W.Y.; Xue, J.F. Agroforestry: An effective way to develop forestry. World For. Res. 1991, 2, 27–31. [Google Scholar]
- Faure, G.; Gasselin, P.; Triomphe, B.; Temple, L.; Hocdé, H. Innover Avec les Acteurs du Monde Rural: La Recherche-Action en Partenariat Agricultures Tropicales en Poche; Quae-CTA: Yaounde, Cameroon, 2009. [Google Scholar]
- Valdivia, C.; Barbieri, C.; Gold, M. Between Forestry and Farming: Policy and Environmental Implications of the Barriers to Agroforestry Adoption. Can. J. Agric. Econ. Rev. Can. D’agroeconomie 2012, 60, 155–175. [Google Scholar] [CrossRef]
- Iiyama, M.; Derero, A.; Kelemu, K.; Muthuri, C.; Kinuthia, R.; Ayenkulu, E. Understanding patterns of tree adoption on farms in semi-arid and sub-humid Ethiopia. Agrofor. Syst. 2017, 91, 271–293. [Google Scholar] [CrossRef] [Green Version]
- Asigbaase, M.; Sjogersten, S.; Lomax, B.H.; Dawoe, E. Tree diversity and its ecological importance value in organic and conventional cocoa agroforests in Ghana. PLoS ONE 2019, 14, e0210557. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y. Analysis of Economic Benefits of Different Intercropping Patterns in Poplar Fast-Growing Windfarms; Shandong Agricultural University: Tai’an, China, 2009. [Google Scholar]
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, F. Biological diversity ecosystem stability and economic development. Ecol. Econ. 1996, 3, 191–203. [Google Scholar] [CrossRef]
- Li, L.; Fan, Z.H.; Xiong, K.N.; Shen, H.; Guo, Q.; Dan, W.; Li, R. Current situation and prospects of the studies of ecological industries and ecological products in eco-fragile areas. Environ. Res. 2021, 201, 111613. [Google Scholar] [CrossRef] [PubMed]
- Schroth, G.; Fonseca, G.A.B.; Harvey, C.A.; Vasconcelos, H.L.; Gascon, C.; Izar, A.M.N. Agroforestry and Biodiversity Conservation in Tropical Landscapes; Island Press: Washington, DC, USA, 2004. [Google Scholar]
- Yuan, H.L. Development of Logistics Model of modern Agroforestry-Pastoral Complex Ecosystem; Northeast Forestry University: Harbin, China, 2010. [Google Scholar]
- Fu, X.Y. Study on the Basic Characteristics of Artificial Ecosystem and Its Stability in Huangyangtan; Hebei Agricultural University: Baoding, China, 2008. [Google Scholar]
- Wang, L.Y.; Cong, S. A preliminary investigation on the technology of enhancing ecosystem stability of apple orchards in Yantai. Anhui Agron. Bull. 2020, 26, 62–63. [Google Scholar] [CrossRef]
- Dang, C.L.; Li, Y.P.; Peng, M.C.; Liao, Y.Y. Reliability of ecosystems and maintenance of their stability. J. Yunnan Univ. (Nat. Sci. Ed.) 2006, 3, 257–261. [Google Scholar]
- Abebe, T.; Sterck, F.J.; Wiersum, K.F.; Bongers, F. Diversity, composition and density of trees and shrubs in agroforestry homegardens in Southern Ethiopia. Agrofor. Syst. 2013, 87, 1283–1293. [Google Scholar] [CrossRef]
- Chittapur, B.M.; Murthy, M.M. Structural analysis, and mapping of agroforestry systems under irrigated ecosystem in the north-eastern part of Karnataka, India. Agrofor. Syst. 2019, 93, 1701–1716. [Google Scholar]
- Dhakal, A.; Cockfield, G.; Maraseni, T.N. Evolution of agroforestry-based farming systems: A study of Dhanusha District, Nepal. Agrofor. Syst. 2012, 86, 17–33. [Google Scholar] [CrossRef]
- Jose, S.; Gillespie, A.R.; Seifert, J.R.; Mengel, D.B.; Pope, P.E. Defining competition vectors in a temperate alley cropping system in the midwestern USA: 3. Competition for nitrogen and litter decomposition dynamics. Agrofor. Syst. 2000, 48, 61–77. [Google Scholar] [CrossRef]
- Zhu, Q.K.; Shen, Y.B.; Zhu, J.Z. Study on the Classification System of Agroforestry Composite System in Loess Area. J. Beijing For. Univ. 1999, 3, 39–43. [Google Scholar]
- Qin, S.G.; Wu, B.; Zhang, Y.Q. Progress of interspecific interactions in the upper part of forest-grass complex systems. J. Ecol. 2010, 30, 3616–3627. [Google Scholar]
- Qi, D.L.; Wu, Z.X.; Yang, C.; Xie, G.; Li, Z.; Yang, X.; Li, D. Can intercrop with native trees enhance structural stability in young rubber (Hevea brasiliensis) Agroforestry systems. Eur. J. Agron. 2021, 130, 126353. [Google Scholar] [CrossRef]
- Sun, Y.; Liang, Z.Y.; Wang, G.B.; Jia, W.G.; Zheng, W.J.; Lu, X.A.; Guo, Q.R.; Cao, F.L. Hot spots and frontier analysis of research in the field of agroforestry complex management engineering. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2020, 44, 228–235. [Google Scholar]
- Li, Z.Y.; Ye, X.Z.; Wang, S.P. Ecosystem stability and its relationship with biodiversity. J. Plant Ecol. 2021, 12, 1127. [Google Scholar] [CrossRef]
- Reidsma, P.; Feng, S.; van Loon, M.; Luo, X.; Kang, C.; Lubbers, M.; Kanellopoulos, A.; Wolf, J.; Van, I.M.K.; Qu, F. Integrated assessment of agricultural land use policies on nutrient pollution and sustainable development in Taihu Basin, China. Environ. Sci. Policy 2012, 18, 66–76. [Google Scholar] [CrossRef]
- Guan, Y.Z.; He, X.G. Complex agroforestry initiatives in achieving sustainable agricultural development in China. Priv. Sci. Technol. 2010, 6, 106. [Google Scholar]
- Kumar, B.M.; Singh, A.K.; Dhyani, S.K. South Asian Agroforestry: Traditions, Transformations, and Prospects. In Agroforestry—The Future of Global Land Use; Springer: Dordrecht, The Netherlands, 2012; pp. 359–389. [Google Scholar]
- Jordanka, S.; Sonja, B.; Krasimira, P.; Vladimir, P. Possibilities for agroforestry development in Bulgaria: Outlooks and limitations. Ecol. Eng. 2007, 29, 382–387. [Google Scholar]
- Nerlich, K.; Graeff-Hönninger, S.; Claupein, W. Erratum to: Agroforestry in Europe: A review of the disappearance of traditional systems and development of modern agroforestry practices, with emphasis on experiences in Germany. Agrofor. Syst. 2013, 87, 1211. [Google Scholar] [CrossRef] [Green Version]
- Reid, W.V.; Mooney, H.A.; Cropper, A. Millennium Ecosystem Assessment, Ecosystems and Human Well-Being; Synthesis Island Press: Washington, DC, USA, 2005; p. 137. [Google Scholar]
- European Union. Regulation (EU) 2013. No. 1307/2013 of the European Parliament and of the Council of 17 December 2013; European Union: Brussels, Belgium, 2013. [Google Scholar]
- Hotelier-Rous, N.; Laroche, G.; Durocher, È.; Rivest, D.; Olivier, A.; Liagre, F.; Cogliastro, A. Temperate Agroforestry Development: The Case of Québec and of France. Sustainability 2020, 12, 7227. [Google Scholar] [CrossRef]
- Wang, Z.H.; Liu, L.L. Ecosystem structure and function: Frontiers and perspectives. J. Plant Ecol. 2021, 45, 1033–1035. [Google Scholar] [CrossRef]
- Sonwa, D.J.; Weise, S.F.; Schroth, G.; Janssens, M.J.; Shapiro, H.Y. Structure of cocoa farming systems in West and Central Africa: A review. Agrofor. Syst. 2019, 93, 2009–2025. [Google Scholar] [CrossRef]
- Fremout, T.; Thomas, E.; Taedoumg, H.; Briers, S.; Gutiérrez-Miranda, C.E.; Alcázar-Caicedo, C.; Lindau, A.; Mounmemi Kpoumie, H.; Vinceti, B.; Kettle, C.; et al. Diversity for Restoration (D4R): Guiding the selection of tree species and seed sources for climate-resilient restoration of tropical forest landscapes. J. Appl. Ecol. 2022, 59, 664–679. [Google Scholar] [CrossRef]
- Wu, G.H.; Wang, N.A.; Hu, S.X. Physical Geography, 4th ed.; Higher Education Press: Beijing, China, 2008. [Google Scholar]
- Chen, L.T.; Jiang, L.; Jing, X.; Wang, J.L.; Shi, Y.; Chu, H.Y.; He, J.S. Above- and belowground biodiversity jointly driver ecosystem stability in natural alpine grasslands on the Tibetan Plateau. Glob. Ecol. Biogeogr. 2021, 30, 1418–1429. [Google Scholar] [CrossRef]
- Jiang, L.; Pu, Z. Different effects of species diversity on temporal stability in single-trophic and multitrophic communities. Am. Nat. 2009, 174, 651–659. [Google Scholar] [CrossRef] [Green Version]
- Bengtsson, J.; Nilsson, S.G.; Franc, A.; Menozzi, P. Biodiversity, disturbances, ecosystem function and management of European forests. For. Ecol. Manag. 2000, 132, 39–50. [Google Scholar] [CrossRef]
- Leary, D.J.; Petchey, O.L. Testing a biological mechanism of the insurance hypothesis in experimental aquatic communities. Anim. Ecol. 2009, 78, 1143–1151. [Google Scholar] [CrossRef]
- Bukomeko, H.; Jassogne, L.; Tumwebaze, S.B.; Eilu, G.; Vaast, P. Integrating local knowledge with tree diversity analyses to optimize on-farm tree species composition for ecosystem service delivery in coffee Agroforestry systems of Uganda. Agrofor. Syst. 2019, 93, 755–770. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Li, S.; Miao, N.; Zeng, Y.L.; Li, Y.Y.; Wang, Y.J.; Ma, R.; Sun, H.L. Evaluation of fir ecosystem stability based on information entropy in the Sichuan basin perimeter mountains. J. Cent. South Univ. For. Sci. Technol. 2020, 40, 79–88. [Google Scholar]
- Sun, C.; Qin, F.C.; Yang, Z.Q.; Dong, X.Y.; Tai, H.; Ren, X.T. Study on the stability of typical plantation forest ecosystem in arsenic sand rocky area based on information entropy. Soil Water Conserv. Res. 2021, 28, 1–8. [Google Scholar]
- Lin, K.H.; Ye, G.F. A review of the stability of planted forest ecosystems. J. Southwest For. Acad. 2010, 30, 88–94. [Google Scholar]
- Donohue, I.; Petchey, O.L.; Montoya, J.M.; Jackson, A.L.; McNally, L.; Viana, M.; Healy, K.; Lurgi, M.; O’Connor, N.E.; Emmerson, M.C. On the dimensionality of ecological stability. Ecol. Lett. 2013, 16, 421–429. [Google Scholar] [CrossRef]
- Zhao, Q.; Van den Brink, P.J.; Carpentier, C.; Wang, Y.X.; Rodríguez-Sánchez, P.; Xu, C.; Vollbrecht, S.; Gillissen, F.; Vollebregt, M.; Wang, S.; et al. Horizontal and vertical diversity jointly shape food web stability against small and large perturbations. Ecol. Lett. 2019, 22, 1152–1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.; Cai, Y.L. A model for remediation of degraded ecosystems in karst areas of southwest China. J. Appl. Ecol. 2010, 21, 1070–1080. [Google Scholar]
- Peng, W.X.; Wang, K.L.; Song, T.Q.; Zeng, F.P.; Wang, J.R. Controlling and restoration models of complex degradation of vulnerable Karst ecosystem. Acta Ecol. Sin. 2008, 28, 811–820. [Google Scholar]
- Yang, S.M.; Xiong, K.N.; Yu, Y.H.; Liu, X.Y.; Dong, X.C. Diagnosis and adjustment of forest and grass vegetation restoration patterns in karst rocky desertification areas in China. World For. Res. 2017, 30, 91–96. [Google Scholar]
- Zhu, S.Q. Ecological Research on Karst Forest (II); Guizhou Science and Technology Press: Guiyang, China, 1997. (In Chinese) [Google Scholar]
- Zhu, S.Q. Ecological Research on Karst Forest (III); Guizhou Science and Technology Press: Guiyang, China, 2003. (In Chinese) [Google Scholar]
- Guo, K.; Liu, C.C.; Dong, M. Ecological adaptation of karst plants and rock desertification control in southwest China. J. Plant Ecol. 2011, 35, 991–999. [Google Scholar] [CrossRef]
- Song, T.Q.; Peng, L.X.; Du, H.; Wang, K.L.; Zeng, F.P. Spatial and temporal evolution characteristics, occurrence mechanism and regulation measures of karstic desertification in southwest China. J. Ecol. 2014, 34, 5328–5341. [Google Scholar]
- Zhang, J.Y.; Dai, M.H.; Wang, L.H.; Su, W.Z.; Cao, L.G. Plant selection and ecological adaptation for karst desertification management in southwest China. Earth Environ. 2015, 43, 269–278. [Google Scholar]
- Huang, F.Z.; Li, J.X.; Li, D.X.; Chen, T.; Wang, B.; Lu, S.H.; Li, X.K. Physiological and ecological adaptation of karst woody plants to drought. Guangxi Plants 2021, 41, 1644–1653. [Google Scholar]
- Li, S.; Ren, H.D.; Xue, L.; Chang, J.; Yao, X.H. Influence of bare rocks on surrounding soil moisture in the karst rocky desertification regions under drought conditions. Catena 2014, 116, 157–162. [Google Scholar] [CrossRef]
- Li, S.; Xue, L.; Wang, J.; Ren, H.D.; Yao, X.H.; Leng, X.H.; Wu, Z.Y. Surface temperature and air temperature and humidity dynamics of bare rock in rocky desertification areas. J. Ecol. 2019, 38, 436–442. [Google Scholar]
- Xiong, K.N.; Xiao, J.; Zhu, D.Y. Research Progress of Agroforestry Ecosystem Services and its implications for industrial revitalization in karst regions. Acta Ecol. Sin. 2022, 42, 851–861. [Google Scholar]
- Coxon, C. Agriculture, and Karst. In Karst Management; Van Beynen, P., Ed.; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Liu, Y. Household livelihood choices under the different eco-environment in the karst area: A case study of Anshun City, southwest of China. Environ. Res. 2021, 197, 111171. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y.; Zhou, F.; Su, W.C.; Wang, L.C. Study on the development model of agricultural modernization and transformation in the Karst depressions of Southwest China. China Agric. Resour. Zoning 2020, 41, 57–64. [Google Scholar]
- Seruni, A.P.; Aguilar, F.X.; Cai, Z.; Gold, M.A.; Roshetko, J.M. Parcelized cut-and-carry agroforestry systems for confined livestock. Small-Scale For. 2021, 20, 119–143. [Google Scholar] [CrossRef]
- Parikesit, P.; Wtthaningsih, S.; Rozi, F. Socio-ecological dimensions of agroforestry called kebun campuran in tropical karst ecosystem of West Java, Indonesia. Biodiversitas J. Biol. Divers. 2021, 22, 122–131. [Google Scholar] [CrossRef]
Database | Retrieval String | Number | Search Date |
---|---|---|---|
WOS | First search string: “Ecosystem structure”; second search string: “agroforestry” | 825 | 30 December 2021 |
First search string: “Ecosystem stability”; second search string: “agroforestry” | 139 | 30 December 2021 | |
CNKI | “agroforestry structure” | 10 | 30 December 2021 |
“agroforestry complex management structure” | 18 | 30 December 2021 | |
“agroforestry complex system structure” | 18 | 30 December 2021 | |
“agroforestry stability” | 7 | 30 December 2021 | |
“agroforestry complex management stability” | 31 | 30 December 2021 | |
“agroforestry complex system stability” | 3 | 30 December 2021 | |
Total | 1051 | 30 December 2021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, S.; Xiong, K.; Xiao, J. Structure and Stability of Agroforestry Ecosystems: Insights into the Improvement of Service Supply Capacity of Agroforestry Ecosystems under the Karst Rocky Desertification Control. Forests 2022, 13, 878. https://doi.org/10.3390/f13060878
Jiang S, Xiong K, Xiao J. Structure and Stability of Agroforestry Ecosystems: Insights into the Improvement of Service Supply Capacity of Agroforestry Ecosystems under the Karst Rocky Desertification Control. Forests. 2022; 13(6):878. https://doi.org/10.3390/f13060878
Chicago/Turabian StyleJiang, Shilian, Kangning Xiong, and Jie Xiao. 2022. "Structure and Stability of Agroforestry Ecosystems: Insights into the Improvement of Service Supply Capacity of Agroforestry Ecosystems under the Karst Rocky Desertification Control" Forests 13, no. 6: 878. https://doi.org/10.3390/f13060878
APA StyleJiang, S., Xiong, K., & Xiao, J. (2022). Structure and Stability of Agroforestry Ecosystems: Insights into the Improvement of Service Supply Capacity of Agroforestry Ecosystems under the Karst Rocky Desertification Control. Forests, 13(6), 878. https://doi.org/10.3390/f13060878