Application of BLUP-GGE in Growth Variation Analysis in Southern-Type Populus deltoides Seedlings in Different Climatic Regions
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Sites and Design
2.2. Test Method and Analysis
3. Results
3.1. Survival Rate
3.2. Growth Variation
3.3. G × E and Its Visualization
3.3.1. G × E
3.3.2. Ground Diameter and Height Visualization
3.4. Genotype Selection
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, J.J.; Jiao, W.X.; Wang, Q.; Wang, T.L.; Yang, H.Q.; Jin, J.X.; Feng, H.L.; Guo, J.H.; Feng, L.; Xu, X.; et al. Potential habitat and productivity loss of Populus deltoides industrial forest plantations due to global warming. For. Ecol. Manag. 2021, 496, 119474. [Google Scholar] [CrossRef]
- Chen, C.; Ding, C.J.; Huang, Q.J.; Li, Z.H.; Zhang, J.; Liu, N.; Li, B.; Su, X.H. Construction of phenotypic core collection of Populus deltoides. For. Resh. 2021, 34, 1–11. (In Chinese) [Google Scholar]
- Atabani, A.E.; Silitonga, A.S.; Badruddin, I.A.; Mahlia, T.M.I.; Masjuki, H.H.; Mekhilef, S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew. Sust. Energ. Rev. 2012, 16, 2070–2093. [Google Scholar] [CrossRef]
- Norby, R.J.; DeLucia, E.H.; Gielen, B.; Calfapietra, C.; Giardina, C.P.; King, J.S.; Ledford, J.; McCarthy, H.R.; Moore, D.J.P.; Ceulemans, R.; et al. Forest response to elevated CO2 is conserved across a broad range of productivity. Proc. Natl. Acad. Sci. USA 2005, 102, 18052–18056. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.P.; Pei, X.N.; Hu, Y.B.; Chiang, V.L.; Zhao, X.Y. Effects of environment and genotype on growth traits in poplar clones in Northeast China. Euphytica 2021, 217, 169. [Google Scholar] [CrossRef]
- Yan, W.K.; Kang, M.S.; Ma, B.L.; Woods, S.; Cornelius, P.L. GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci. 2007, 47, 643–655. [Google Scholar] [CrossRef]
- Wang, R.; Hu, D.; Zheng, H.; Shu, Y. Genotype × environmental interaction by AMMI and GGE biplot analysis for the provenances of Michelia chapensis in South China. J. For. Res. 2016, 27, 659–664. [Google Scholar] [CrossRef]
- Liu, N.; Ding, C.J.; Li, B.; Ding, M.; Su, X.H.; Huang, Q.J. Analysis of the Genotype Interaction of Four-Year-Old Populus euramericana Using the BLUP-GGE Technique. Forests 2021, 12, 1759. [Google Scholar] [CrossRef]
- Yan, W.K. Analysis and Handling of G x E in a Practical Breeding Program. Crop Sci. 2016, 56, 2106–2118. [Google Scholar] [CrossRef]
- Yan, W.K.; Holland, J.B. A heritability-adjusted GGE biplot for test environment evaluation. Euphytica 2010, 171, 355–369. [Google Scholar] [CrossRef]
- Gilmour, A.R. Average information residual maximum likelihood in practice. J. Anim. Breed. Genet. 2019, 136, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Tinker, N.A. Biplot analysis of multi-environment trial data: Principles and applications. Can. J. Plant Sci. 2006, 86, 623–645. [Google Scholar] [CrossRef]
- Giri, K.; Chia, K.; Chandra, S.; Smith, K.F.; Leddin, C.M.; Ho, C.K.M.; Jacobs, J.L. Modelling and prediction of dry matter yield of perennial ryegrass cultivars sown in multi-environment multi-harvest trials in south-eastern Australia. Field Crops Res. 2019, 243, 107614. [Google Scholar] [CrossRef]
- Zhang, W.H.; Hu, J.L.; Yang, Y.M.; Lin, Y.Z. One compound approach combining factor-analytic model with AMMI and GGE biplot to improve multi-environment trials analysis. J. For. Res. 2020, 31, 123–130. [Google Scholar] [CrossRef]
- Uriarte, M.; Muscarella, R.; Zimmerman, J.K. Environmental heterogeneity and biotic interactions mediate climate impacts on tropical forest regeneration. Glob. Change Biol. 2018, 24, e692–e704. [Google Scholar] [CrossRef]
- Huang, W.; Ding, Y.; Wang, S.; Song, C.; Wang, F. Growth and development responses of the rhizome-root system in Pleioblastus pygmaeus to light intensity. Plants 2022, 11, 2204. [Google Scholar] [CrossRef]
- Lett, S.; Dorrepaal, E. Global drivers of tree seedling establishment at alpine treelines in a changing climate. Funct. Ecol. 2018, 32, 1666–1680. [Google Scholar] [CrossRef]
- Gibson, A.; Bachelard, E.P.; Hubick, K.T. Relationship Between Climate and Provenance Variation in Eucalyptus Camaldulensis Dehnh. Funct. Plant Biol. 1995, 22, 453–460. [Google Scholar] [CrossRef]
- Lu, P.X.; Parker, W.H.; Cherry, M.; Colombo, S.; Parker, W.C.; Man, R.Z.; Roubal, N. Survival and growth patterns of white spruce (Picea glauca [Moench] Voss) rangewide provenances and their implications for climate change adaptation. Ecol. Evol. 2014, 4, 2360–2374. [Google Scholar] [CrossRef]
- Yan, W.K.; Fregeau-Reid, J.; Martin, R.; Pageau, D.; Mitchell-Fetch, J. How many test locations and replications are needed in crop variety trials for a target region? Euphytica 2015, 202, 361–372. [Google Scholar] [CrossRef]
- Liu, X.T.; Zhao, Q.S.; Yin, P.; Li, H.X.; Li, X.S.; Wu, L.G.; Li, Y.J.; Hu, Y.B.; Zhao, X.Y. Variation and stability analysis of growth traits of poplar clones in the seedling stage in northeast China. J. For. Res. 2022. [Google Scholar] [CrossRef]
- Sixto, H.; Gil, P.M.; Ciria, P.; Camps, F.; Canellas, I.; Voltas, J. Interpreting genotype-by-environment interaction for biomass production in hybrid poplars under short-rotation coppice in Mediterranean environments. Glob. Change Biol. Bioenergy 2016, 8, 1124–1135. [Google Scholar] [CrossRef][Green Version]
- Viana, J.M.S.; de Almeida, I.F.; de Resende, M.D.V.; Faria, V.R.; Silva, F.F.E. BLUP for genetic evaluation of plants in non-inbred families of annual crops. Euphytica 2010, 174, 31–39. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Ai, F.D.; Zhang, J.L.; Ma, X.Z.; Yang, W.L.; Wang, W.W.; Su, Y.T.; Wang, M.C.; Yang, Y.Z.; Mao, K.S.; et al. Survival in the Tropics despite isolation, inbreeding and asexual reproduction: Insights from the genome of the world’s southernmost poplar (Populus ilicifolia). Plant J. 2020, 103, 430–442. [Google Scholar] [CrossRef] [PubMed]
Environmental Factors | HN | NY |
---|---|---|
Longitude | E: 110°32 | E: 116°80 |
Latitude | N: 19°69 | N: 35°76 |
Annual temperature range (°C) | 11.4~38.9 | −18.1~38.1 |
Annual average temperature (°C) | 25.9 | 15.8 |
Annual average minimum temperature (°C) | 23.1 | 11.6 |
Annual daily precipitation ≥ 0.1 mm days | 124 | 106 |
Annual daily precipitation ≥ 10.0 mm days | 39 | 21 |
Number of days with a daily minimum temperature ≤ 2.0 °C | 0 | 146 |
Average number of days with an annual maximum temperature ≥ 30.0 °C | 202 | 102 |
Average monthly daylight duration (h) | 166.6 | 202.1 |
Average annual daylight duration (h) | 1999.2 | 2424.8 |
Introduction Site | Genotype Number | Amount | Introduction Site | Genotype Number | Amount |
---|---|---|---|---|---|
LA01 | 1–5 | 5 | TN01 | 51–67 | 17 |
LA04 | 6–10 | 5 | TN02 | 68–76 | 9 |
LA05 | 11–22 | 12 | TN03 | 77–90 | 14 |
LA06 | 23–27 | 5 | TN04 | 91–103 | 13 |
LA07 | 28–33 | 6 | TN05 | 104–119 | 16 |
LA08 | 34–39 | 6 | |||
LA09 | 40–50 | 11 |
Provenance | HN | NY | ||
---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | |
LA01 | 97.78% | 20.00% | 89.74% | 76.92% |
LA04 | 90.74% | 27.78% | 83.78% | 75.68% |
LA05 | 92.47% | 19.35% | 85.59% | 84.68% |
LA06 | 95.92% | 30.61% | 89.13% | 82.61% |
LA07 | 96.61% | 30.51% | 80.49% | 75.61% |
LA08 | 89.55% | 23.88% | 81.36% | 72.88% |
LA09 | 96.61% | 16.95% | 90.14% | 88.73% |
LA | 93.90% | 23.71% | 85.89% | 80.94% |
TN01 | 96.70% | 9.89% | 90.06% | 88.82% |
TN02 | 95.45% | 6.06% | 96.34% | 95.12% |
TN03 | 83.87% | 6.45% | 97.25% | 95.41% |
TN04 | 89.71% | 20.59% | 93.70% | 92.13% |
TN05 | 93.51% | 10.39% | 97.48% | 96.86% |
TN | 93.09% | 11.11% | 94.67% | 93.42% |
Total | 88.58% | 91.27% | 93.54% | 18.18% |
Sites | Traits (cm) | Mean ± SD | CV(%) |
---|---|---|---|
HN | H | 46.01 ± 30.21 | 65.61 |
GD | 0.51 ± 0.31 | 47.91 | |
NY | H | 148.41 ± 72.01 | 48.51 |
GD | 1.21 ± 0.51 | 43.71 | |
Total | H | 97.21 ± 75.31 | 77.41 |
GD | 0.91 ± 0.61 | 62.61 |
Trait | Source | Degree of Freedom | Sum of Squares | F Value | Significance |
---|---|---|---|---|---|
Ground Diameter | Block | 2 | 3.1197 | 75.41 | <0.001 *** |
Site | 1 | 3.9201 | 189.51 | <0.001 *** | |
Residual | - | 0.0207 | |||
Height | Block | 2 | 56235 | 178.21 | <0.001 *** |
Site | 1 | 36836 | 233.47 | <0.001 *** | |
Residual | - | 158 |
Source | GD | Height | ||||
---|---|---|---|---|---|---|
Variance Components | % Variance Components | Significance | Variance Components | % Variance Components | Significance | |
Genotype | 0.0018 | 1% | 0.45 | 207.6891 | 7% | 0.22 |
G × E | 0.1554 | 87% | 0.00 *** | 2620.8155 | 88% | 0.00 *** |
Error | 0.0207 | 12% | - | 157.7734 | 5% | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Liu, N.; Zhang, W.; Dong, Y.; Ding, M.; Huang, Q.; Ding, C.; Su, X. Application of BLUP-GGE in Growth Variation Analysis in Southern-Type Populus deltoides Seedlings in Different Climatic Regions. Forests 2022, 13, 2120. https://doi.org/10.3390/f13122120
Li Z, Liu N, Zhang W, Dong Y, Ding M, Huang Q, Ding C, Su X. Application of BLUP-GGE in Growth Variation Analysis in Southern-Type Populus deltoides Seedlings in Different Climatic Regions. Forests. 2022; 13(12):2120. https://doi.org/10.3390/f13122120
Chicago/Turabian StyleLi, Zhenghong, Ning Liu, Weixi Zhang, Yufeng Dong, Mi Ding, Qinjun Huang, Changjun Ding, and Xiaohua Su. 2022. "Application of BLUP-GGE in Growth Variation Analysis in Southern-Type Populus deltoides Seedlings in Different Climatic Regions" Forests 13, no. 12: 2120. https://doi.org/10.3390/f13122120
APA StyleLi, Z., Liu, N., Zhang, W., Dong, Y., Ding, M., Huang, Q., Ding, C., & Su, X. (2022). Application of BLUP-GGE in Growth Variation Analysis in Southern-Type Populus deltoides Seedlings in Different Climatic Regions. Forests, 13(12), 2120. https://doi.org/10.3390/f13122120