Roosting Behavior of Northern Long-Eared Bats (Myotis septentrionalis) in an Urban-Adjacent Forest Fragment
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Data Analysis
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bagan, H.; Yamagata, Y. Land-cover change analysis in 50 global cities by using a combination of Landsat data and analysis of grid cells. Environ. Res. Lett. 2014, 9, 064015. [Google Scholar] [CrossRef]
- Brown, D.G.; Johnson, K.M.; Loveland, T.R.; Theobald, D.M. Rural land-use trends in the conterminous United States, 1950–2000. Ecol. Appl. 2005, 15, 1851–1863. [Google Scholar] [CrossRef]
- Shifley, S.R.; Moser, W.K.; Nowak, D.J.; Miles, P.D.; Butler, B.J.; Aguilar, F.X.; DeSantis, R.D.; Greenfield, E.J. Five anthropogenic factors that will radically alter forest conditions and management needs in the northern United States. For. Sci. 2014, 60, 914–925. [Google Scholar] [CrossRef]
- Petit, S.; Firbank, L.; Wyatt, B.; Howard, D. MIRABEL: Models for integrated review and assessment of biodiversity in European landscapes. Ambio 2001, 30, 81–88. [Google Scholar] [CrossRef]
- Billeter, R.; Liira, J.; Bailey, D.; Bugter, R.; Arens, P.; Augenstein, I.; Aviron, S.; Baudry, J.; Bukacek, R.; Burel, F.; et al. Indicators for biodiversity in agricultural landscapes: A pan-European study. J. Appl. Ecol. 2007, 45, 141–150. [Google Scholar] [CrossRef]
- Foley, J.A.; Defries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Matson, P.A.; Parton, W.J.; Power, A.G.; Swift, M.J. Agricultural intensification and ecosystem properties. Science 1997, 277, 504–509. [Google Scholar] [CrossRef]
- Martin, B.; Shao, G.; Swihart, R.; Parker, G.; Tang, L. Implications of shared edge length between land cover types for landscape quality: The case of Midwestern US, 1940–1998. Landsc. Ecol. 2008, 23, 391–402. [Google Scholar] [CrossRef]
- Smith, W.B.; Darr, D.U.S. Forest Resource Facts and Historical Trends; FS-801; United States Department of Agriculture Forest Service: Washington, DC, USA, 2004; pp. 7–10.
- Goring, S.J.; Mladenoff, D.J.; Cogbill, C.V.; Record, S.; Paciorek, C.J.; Jackson, S.T.; Dietze, M.C.; Dawson, A.; Matthes, J.H.; McLachlan, J.S.; et al. Novel and lost forests in the upper Midwestern United States, from new estimates of settlement-era composition, stem density, and biomass. PLoS ONE 2016, 11, e0151935. [Google Scholar] [CrossRef]
- Riitters, K.H.; Wickham, J.D.; O’Neill, R.V.; Jones, K.B.; Smith, E.R.; Coulston, J.W.; Wade, T.G.; Smith, J.H. Fragmentation of continental United States forests. Ecosystems 2002, 5, 815–822. [Google Scholar] [CrossRef]
- Thompson, J.R.; Carpenter, D.N.; Cogbill, C.V.; Foster, D.R. Four centuries of change in northeastern United States forests. PLoS ONE 2013, 8, e72540. [Google Scholar] [CrossRef] [PubMed]
- Betts, M.G.; Phalan, B.; Frey, S.J.K.; Rousseau, J.S.; Yang, Z. Old-growth forests buffer climate-sensitive bird populations from warming. Divers. Distrib. 2018, 24, 439–447. [Google Scholar] [CrossRef]
- Ritchie, L.; Betts, M.; Forbes, G.; Vernes, K. Effects of landscape composition and configuration on northern flying squirrels in a forest mosaic. For. Ecol. Manag. 2009, 257, 1920–1929. [Google Scholar] [CrossRef]
- Carey, A.B. Sciurids in Pacific Northwest managed and old-growth forests. Ecol. Appl. 1995, 5, 648–661. [Google Scholar] [CrossRef]
- Siepielski, A.M.; Benkman, C.W. A seed predator drives the evolution of a seed dispersal mutualism. Proc. R. Soc. B Biol. Sci. 2008, 275, 1917–1925. [Google Scholar] [CrossRef]
- Garibaldi, L.A.; Steffan-Dewenter, I.; Winfree, R.; Aizen, M.A.; Bommarco, R.; Cunningham, S.A.; Kremen, C.; Carvalheiro, L.G.; Harder, L.D.; Afik, O.; et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 2013, 339, 1608–1611. [Google Scholar] [CrossRef]
- Hanula, J.L.; Ulyshen, M.D.; Horn, S. Conserving pollinators in North American forests: A review. Nat. Areas J. 2016, 36, 427–439. [Google Scholar] [CrossRef]
- Boesing, A.L.; Nichols, E.; Metzger, J.P. Effects of landscape structure on avian-mediated insect pest control services: A review. Landsc. Ecol. 2017, 32, 931–944. [Google Scholar] [CrossRef]
- Blažek, J.; Konečný, A.; Bartonička, T. Bat aggregational response to pest caterpillar emergence. Sci. Rep. 2021, 11, 13634. [Google Scholar] [CrossRef]
- Charbonnier, Y.; Barbaro, L.; Theillout, A.; Jactel, H. Numerical and functional responses of forest bats to a major insect pest in pine plantations. PLoS ONE 2014, 9, e109488. [Google Scholar] [CrossRef] [PubMed]
- Reiskind, M.H.; Wund, M.A. Experimental assessment of the impacts of northern long-eared bats on ovipositing Culex (Diptera: Culicidae) mosquitoes. J. Med. Entomol. 2009, 46, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.; Gehrt, S. Bat response to woodland restoration within urban forest fragments. Restor. Ecol. 2010, 18, 914–923. [Google Scholar] [CrossRef]
- Lacki, M.J.; Hayes, J.P.; Kurta, A. Bats in Forests: Conservation and Management; Johns Hopkins University Press: Baltimore, MD, USA, 2007; pp. 1–329. [Google Scholar]
- Lima, S.L.; O’Keefe, J.M. Do predators influence the behaviour of bats? Biol. Rev. Camb. Philos. Soc. 2013, 88, 626–644. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, E.V.; Laine, T.; Morgan, S.E.; Cole, K.R.; Speakman, J.R. Roost selection in the pipistrelle bat, Pipistrellus pipistrellus (Chiroptera: Vespertilionidae), in northeast Scotland. Anim. Behav. 1998, 56, 909–917. [Google Scholar] [CrossRef]
- Avila-Flores, R.; Fenton, M.B. Use of spatial features by foraging insectivorous bats in a large urban landscape. J. Mammal. 2005, 86, 1193–1204. [Google Scholar] [CrossRef]
- Heim, O.; Treitler, J.T.; Tschapka, M.; Knörnschild, M.; Jung, K. The importance of landscape elements for bat activity and species richness in agricultural areas. PLoS ONE 2015, 10, e0134443. [Google Scholar] [CrossRef]
- Drake, E.C.; Gignoux-Wolfsohn, S.; Maslo, B. Systematic review of the roost-site characteristics of North American forest bats: Implications for conservation. Diversity 2020, 12, 76. [Google Scholar] [CrossRef]
- Kunz, T.H. Roosting ecology of bats. In Ecology of Bats; Kunz, T.H., Ed.; Springer US: Boston, MA, USA, 1982; pp. 1–55. [Google Scholar]
- Mager, K.J.; Nelson, T.A. Roost-Site Selection by Eastern Red Bats (Lasiurus borealis). Am. Midl. Nat. 2001, 145, 120–126. [Google Scholar] [CrossRef]
- Kerth, G.; Almasi, B.; Ribi, N.; Thiel, D.; Lüpold, S. Social interactions among wild female Bechstein’s bats (Myotis bechsteinii) living in a maternity colony. Acta Ethologica 2003, 5, 107–114. [Google Scholar] [CrossRef]
- Safi, K.; Kerth, G. Comparative analyses suggest that information transfer promoted sociality in male bats in the temperate zone. Am. Nat. 2007, 170, 465–472. [Google Scholar] [CrossRef]
- Wilkinson, G.S. Information transfer at evening bat colonies. Anim. Behav. 1992, 44, 501–518. [Google Scholar] [CrossRef]
- Sedgeley, J.A. Quality of cavity microclimate as a factor influencing selection of maternity roosts by a tree-dwelling bat, Chalinolobus tuberculatus, in New Zealand. J. Appl. Ecol. 2001, 38, 425–438. [Google Scholar] [CrossRef]
- Turbill, C. Roosting and thermoregulatory behaviour of male Gould’s long-eared bats, Nyctophilus gouldi: Energetic benefits of thermally unstable tree roosts. Aust. J. Zool. 2006, 54, 57–60. [Google Scholar] [CrossRef]
- Bergeson, S.B. Multi-Scale Analysis of Roost Characteristics and Behavior of the Endangered Indiana Bat (Myotis sodalis). Ph.D. Dissertation, Indiana State University, Terre Haute, IN, USA, 2017. [Google Scholar]
- Wilcox, A.; Willis, C.K.R. Energetic benefits of enhanced summer roosting habitat for little brown bats (Myotis lucifugus) recovering from white-nose syndrome. Conserv. Physiol. 2016, 4, cov070. [Google Scholar] [CrossRef]
- Besler, N.K.; Broders, H.G. Combinations of reproductive, individual, and weather effects best explain torpor patterns among female little brown bats (Myotis lucifugus). Ecol. Evol. 2019, 9, 5158–5171. [Google Scholar] [CrossRef]
- Wilde, C.J.; Knight, C.H.; Racey, P.A. Influence of torpor on milk protein composition and secretion in lactating bats. J. Exp. Zool. 1999, 284, 35–41. [Google Scholar] [CrossRef]
- Bergeson, S.M.; Brigham, R.M.; O’Keefe, J.M. Free-ranging bats alter thermoregulatory behavior in response to reproductive stage, roost type, and weather. J. Mammal. 2021, 102, 705–717. [Google Scholar] [CrossRef]
- Dzal, Y.A.; Brigham, R.M. The tradeoff between torpor use and reproduction in little brown bats (Myotis lucifugus). J. Comp. Physiol. B 2013, 183, 279–288. [Google Scholar] [CrossRef]
- Johnson, J.S.; Lacki, M.J. Effects of reproductive condition, roost microclimate, and weather patterns on summer torpor use by a vespertilionid bat. Ecol. Evol. 2014, 4, 157–166. [Google Scholar] [CrossRef]
- Frick, W.F.; Kingston, T.; Flanders, J. A review of the major threats and challenges to global bat conservation. Ann. New York Acad. Sci. 2020, 1469, 5–25. [Google Scholar] [CrossRef]
- Park, K.J. Mitigating the impacts of agriculture on biodiversity: Bats and their potential role as bioindicators. Mamm. Biol. 2015, 80, 191–204. [Google Scholar] [CrossRef]
- Russo, D.; Ancillotto, L. Sensitivity of bats to urbanization: A review. Mamm. Biol. 2015, 80, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.L.; Reichard, J.D.; Coleman, J.T.H.; Weller, T.J.; Thogmartin, W.E.; Reichert, B.E.; Bennett, A.B.; Broders, H.G.; Campbell, J.; Etchison, K.; et al. The scope and severity of white-nose syndrome on hibernating bats in North America. Conserv. Biol. 2021, 35, 1586–1597. [Google Scholar] [CrossRef]
- Frick, W.F.; Pollock, J.F.; Hicks, A.C.; Langwig, K.E.; Reynolds, D.S.; Turner, G.G.; Butchkoski, C.M.; Kunz, T.H. An emerging disease causes regional population collapse of a common North American bat species. Science 2010, 329, 679–682. [Google Scholar] [CrossRef] [PubMed]
- Fuller, N.W.; McGuire, L.P.; Pannkuk, E.L.; Blute, T.; Haase, C.G.; Mayberry, H.W.; Risch, T.S.; Willis, C.K.R. Disease recovery in bats affected by white-nose syndrome. J. Exp. Biol. 2020, 223, jeb211912. [Google Scholar] [CrossRef]
- Hyzy, B.; Russell, R.; Silvis, A.; Ford, W.; Riddle, J.; Russell, K. Investigating maternity roost selection by northern long-eared bats at three sites in Wisconsin. Endanger. Species Res. 2020, 41, 55–65. [Google Scholar] [CrossRef]
- Pettit, J.L.; O’Keefe, J.M. Impacts of white-nose syndrome observed during long-term monitoring of a Midwestern bat community. J. Fish Wildl. Manag. 2017, 8, 69–78. [Google Scholar] [CrossRef]
- Reynolds, R.J.; Powers, K.E.; Orndorff, W.; Ford, W.M.; Hobson, C.S. Changes in rates of capture and demographics of Myotis septentrionalis (northern long-eared bat) in western Virginia before and after onset of white-nose syndrome. Northeast. Nat. 2016, 23, 195–204. [Google Scholar] [CrossRef]
- Thalken, M.M.; Lacki, M.J. Tree roosts of northern long-eared bats following white-nose syndrome. J. Wildl. Manag. 2018, 82, 629–638. [Google Scholar] [CrossRef]
- Endangered and Threatened Wildlife and Plants; Endangered Species Status for Northern Long-Eared Bat; 87 Fed. Reg. 16442 (proposed March 23, 2022); Office of the Federal Register, National Archives and Records Administration: Washington, DC, USA, 2022.
- Westrich, B.J. (Indiana Department of Natural Resources, Indianapolis, IN, USA). Personal communication, 2022.
- Barton, A.P.; Miller, E.L.; Bergeson, S.M. Bat diversity survey of a nature preserve complex near Fort Wayne, Indiana. In Proceedings of the Indiana Academy of Science; Ruch, D.G., Rothrock, P., Eds.; IAS Publications: Indianapolis, IN, USA, 2020; Volume 129, pp. 115–123. [Google Scholar]
- Carter, T.C.; Feldhamer, G.A. Roost tree use by maternity colonies of Indiana bats and northern long-eared bats in southern Illinois. For. Ecol. Manag. 2005, 219, 259–268. [Google Scholar] [CrossRef]
- Bergeson, S.M.; Holmes, J.B.; O’Keefe, J.M. Indiana bat roosting behavior differs between urban and rural landscapes. Urban Ecosyst. 2020, 23, 79–91. [Google Scholar] [CrossRef]
- Garroway, C.J.; Broders, H.G. Day roost characteristics of northern long-eared bats (Myotis septentrionalis) in relation to female reproductive status. Écoscience 2008, 15, 89–93. [Google Scholar] [CrossRef]
- Silvis, A.; Ford, W.M.; Britzke, E.R.; Beane, N.R.; Johnson, J.B. Forest succession and maternity day roost selection by Myotis septentrionalis in a mesophytic hardwood forest. Int. J. For. Res. 2012, 2012, 1–8. [Google Scholar] [CrossRef]
- Kaupas, L. Roosting Behaviour and Thermoregulation of the Northern Long-Eared Bat (Myotis septentrionalis) near the Northern Extent of Its Range. M.S. Thesis, University of Calgary, Calgary, AB, Canada, 2016. [Google Scholar]
- Sichmeller, T.J. Determining energy conservation during torpor for three Myotis species and response of Myotis species to human disturbance while day roosting. M.S. Thesis, Ball State University, Muncie, IN, USA, 2010. [Google Scholar]
- Owen, S.F.; Menzel, M.A.; Ford, W.M.; Chapman, B.R.; Miller, K.V.; Edwards, J.W.; Wood, P.B. Home-range size and habitat used by the northern myotis (Myotis septentrionalis). Am. Midl. Nat. 2003, 150, 352–359. [Google Scholar] [CrossRef]
- Johnson, J.; Gates, J.; Ford, W. Distribution and activity of bats at local and landscape scales within a rural–urban gradient. Urban Ecosyst. 2008, 11, 227–242. [Google Scholar] [CrossRef]
- Thorne, T.J.; Matczak, E.; Donnelly, M.; Franke, M.C.; Kerr, K.C.R. Occurrence of a forest-dwelling bat, northern myotis (Myotis septentrionalis), within Canada’s largest conurbation. J. Urban Ecol. 2021, 7, juab029. [Google Scholar] [CrossRef]
- Gorman, K.M.; Barr, E.L.; Nocera, T.; Ford, W.M. Characteristics of day-roosts used by northern long-eared bats (Myotis septentrionalis) in Coastal New York. Northeast. Nat. 2022, 29, 153–170. [Google Scholar] [CrossRef]
- Bergeson, S.M.; Confortin, K.A.; Carter, T.C.; Karsk, J.R.; Haulton, S.; Burnett, H. Northern long-eared bats roosting in a managed forest in south-central Indiana. For. Ecol. Manag. 2021, 483, 118928. [Google Scholar] [CrossRef]
- Silvis, A.; Ford, W.M.; Britzke, E.R. Day-roost tree selection by northern long-eared bats—What do non-roost tree comparisons and one year of data really tell us? Glob. Ecol. Conserv. 2015, 3, 756–763. [Google Scholar] [CrossRef]
- Solick, D.; Barclay, R. Thermoregulation and roosting behaviour of reproductive and nonreproductive female western long-eared bats (Myotis evotis) in the Rocky Mountains of Alberta. Can. J. Zool. 2006, 84, 589–599. [Google Scholar] [CrossRef]
- Ruch, D.G.; Nelsen, J.; Carlson, R.; Fisher, B.; Fleming, A.H.; Gorney, D.; Holland, J.D.; Jordan, M.; Kingsbury, B.; Murphy, B.; et al. Results of the 2014 Eagle Marsh biodiversity survey, Allen County, Indiana. In Proceedings of the Indiana Academy of Science; Ruch, D.G., Rothrock, P., Eds.; IAS Publications: Indianapolis, IN, USA, 2016; Volume 125, pp. 40–49. [Google Scholar]
- Cli-MATE Daily Data between Two Dates. Available online: https://mrcc.purdue.edu/CLIMATE/Station/Daily/StnDyBTD.jsp (accessed on 18 December 2021).
- Kunz, T.H.; Fenton, M.B. Bat Ecology; The University of Chicago Press: Chicago, IL, USA, 2003. [Google Scholar]
- Kunz, T.H.; Anthony, E.L.P. Age estimation and post-natal growth in the bat Myotis lucifugus. J. Mammal. 1982, 63, 23–32. [Google Scholar] [CrossRef]
- Aldridge, H.D.J.N.; Brigham, R.M. Load carrying and maneuverability in an insectivorous bat: A test of the 5% “rule” of radio-telemetry. J. Mammal. 1988, 69, 379–382. [Google Scholar] [CrossRef]
- Sikes, R.S.; Bryan, J.A., II; Byman, D.; Danielson, B.J.; Eggleston, J.; Gannon, M.R.; Gannon, W.L.; Hale, D.W.; Jesmer, B.R.; Odell, D.K.; et al. 2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J. Mammal. 2016, 97, 663–688. [Google Scholar] [CrossRef] [PubMed]
- Kunz, T.H.; Anthony, E.L.P. Variation in nightly emergence behavior in the little brown bat, Myotis lucifugus (Chiroptera: Vespertilionidae). In Contributions in Mammalogy: A Memorial Volume Honoring J. Knox Jones, Jr.; Genoways, H.H., Baker, R.J., Eds.; Texas Tech University Press: Lubbock, TX, USA, 1996; pp. 225–236. [Google Scholar]
- O’Keefe, J.M.; Loeb, S.C. Indiana bats roost in ephemeral, fire-dependent pine snags in the southern Appalachian Mountains, USA. For. Ecol. Manag. 2017, 391, 264–274. [Google Scholar] [CrossRef]
- Bergeson, S.M.; O’Keefe, J.M.; Haulton, G.S. Managed forests provide roosting opportunities for Indiana bats in south-central Indiana. For. Ecol. Manag. 2018, 427, 305–316. [Google Scholar] [CrossRef]
- Duguay, S.M.; Arii, K.; Hooper, M.; Lechowicz, M.J. Ice storm damage and early recovery in an old-growth forest. Environ. Monit. Assess. 2001, 67, 97–108. [Google Scholar] [CrossRef]
- Barclay, R.M.R.; Kalcounis, M.C.; Crampton, L.H.; Stefan, C.I.; Vonhof, M.J.; Wilkinson, L.; Brigham, R.M. Can external radiotransmitters be used to assess body temperature and torpor in bats? J. Mammal. 1996, 77, 1102–1106. [Google Scholar] [CrossRef]
- Willis, C.K. An energy-based body temperature threshold between torpor and normothermia for small mammals. Physiol. Biochem. Zool. 2007, 80, 643–651. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 9 June 2022).
- Johnson, J.B.; Edwards, J.W.; Ford, W.M.; Gates, J.E. Roost tree selection by northern myotis (Myotis septentrionalis) maternity colonies following prescribed fire in a Central Appalachian Mountains hardwood forest. For. Ecol. Manag. 2009, 258, 233–242. [Google Scholar] [CrossRef]
- Audet, D.; Thomas, D.W. Evaluation of the accuracy of body temperature measurement using external radio transmitters. Can. J. Zool. 1996, 74, 1778–1781. [Google Scholar] [CrossRef]
- Foster, R.W.; Kurta, A. Roosting ecology of the northern bat (Myotis septentrionalis) and comparisons with the endangered Indiana bat (Myotis sodalis). J. Mammal. 1999, 80, 659–672. [Google Scholar] [CrossRef]
- Krynak, T.J. Bat Habitat Use and Roost Tree Selection for Northern Long-Eared Myotis (Myotis septentrionalis) in North-Central Ohio. M.S. Thesis, John Carroll University, University Heights, OH, USA, 2010. [Google Scholar]
- Ford, W.M.; Owen, S.F.; Edwards, J.W.; Jane, L.R. Robinia pseudoacacia (Black Locust) as day-roosts of male Myotis septentrionalis (Northern Bats) on the Fernow Experimental Forest, West Virginia. Northeast. Nat. 2006, 13, 15–24. [Google Scholar] [CrossRef]
- Perry, R.W.; Thill, R.E. Roost selection by male and female northern long-eared bats in a pine-dominated landscape. For. Ecol. Manag. 2007, 247, 220–226. [Google Scholar] [CrossRef]
- Henderson, L.E.; Broders, H.G. Movements and resource selection of the northern long-eared myotis (Myotis septentrionalis) in a forest—Agriculture landscape. J. Mammal. 2008, 89, 952–963. [Google Scholar] [CrossRef]
- Lewis, S.E. Roost fidelity of bats: A review. J. Mammal. 1995, 76, 481–496. [Google Scholar] [CrossRef]
- Fenton, M.B.; Rautenbach, I.L.; Smith, S.E.; Swanepoel, C.M.; Grosell, J.; van Jaarsveld, J. Raptors and bats: Threats and opportunities. Anim. Behav. 1994, 48, 9–18. [Google Scholar] [CrossRef]
- Kerth, G.; Konig, B. Fission, fusion and nonrandom associations in female Bechstein’s bats (Myotis bechsteinii). Behaviour 1999, 136, 1187–1202. [Google Scholar] [CrossRef]
- Ruczyński, I.; Bartoń, K.A. Seasonal changes and the influence of tree species and ambient temperature on the fission-fusion dynamics of tree-roosting bats. Behav. Ecol. Sociobiol. 2020, 74, 63. [Google Scholar] [CrossRef]
- Broders, H.; Forbes, G.; Woodley, S.; Thompson, I. Range extent and stand selection for roosting and foraging in forest-dwelling northern long-eared bats and little brown bats in the Greater Fundy Ecosystem, New Brunswick. J. Wildl. Manag. 2006, 70, 1174–1184. [Google Scholar] [CrossRef]
- Gorman, K.M.; Deeley, S.M.; Barr, E.L.; Freeze, S.R.; Kalen, N.; Muthersbaugh, M.S.; Ford, W.M. Broad-scale geographic and temporal assessment of northern long-eared bat (Myotis septentrionalis) maternity colony-landscape association. Endanger. Species Res. 2022, 47, 119–130. [Google Scholar] [CrossRef]
- Racey, P.A.; Swift, S.M. Variations in gestation length in a colony of pipistrelle bats (Pipistrellus pipistrellus) from year to year. Reproduction 1981, 61, 123–129. [Google Scholar] [CrossRef]
- Hamilton, I.; Barclay, R. Patterns of daily torpor and day-roost selection by male and female big brown bats (Eptesicus fuscus). Can. J. Zool.-Rev. Can. De Zool. 1994, 72, 744–749. [Google Scholar] [CrossRef]
- Menzel, M.A.; Owen, S.F.; Ford, W.M.; Edwards, J.W.; Wood, P.B.; Chapman, B.R.; Miller, K.V. Roost tree selection by northern long-eared bat (Myotis septentrionalis) maternity colonies in an industrial forest of the central Appalachian mountains. For. Ecol. Manag. 2002, 155, 107–114. [Google Scholar] [CrossRef]
- Lacki, M.J.; Schwierjohann, J.H. Day-roost characteristics of northern bats in mixed mesophytic forest. J. Wildl. Manag. 2001, 65, 482. [Google Scholar] [CrossRef]
- Callahan, E.V.; Drobney, R.D.; Clawson, R.L. Selection of summer roosting sites by Indiana bats (Myotis sodalis) in Missouri. J. Mammal. 1997, 78, 818–825. [Google Scholar] [CrossRef]
- Gardner, J.E.; Garner, J.D.; Hofmann, J.E. Summer Roost Selection and Roosting Behavior of Myotis Sodalis (Indiana bat) in Illinois; Illinois Natural History Survey Technical Reports; University of Illinois Press: Champaign, IL, USA, 1991; p. 56. [Google Scholar]
- Lacki, M.J.; Cox, D.R.; Dickinson, M.B. Meta-analysis of summer roosting characteristics of two species of Myotis bats. Am. Midl. Nat. 2009, 162, 318–326. [Google Scholar] [CrossRef]
- Timpone, J.C.; Boyles, J.G.; Murray, K.L.; Aubrey, D.P.; Robbins, L.W. Overlap in Roosting Habits of Indiana Bats (Myotis sodalis) and Northern Bats (Myotis septentrionalis). Am. Midl. Nat. 2010, 163, 115–123. [Google Scholar] [CrossRef]
- Salinas-Ramos, V.B.; Ancillotto, L.; Bosso, L.; Sánchez-Cordero, V.; Russo, D. Interspecific competition in bats: State of knowledge and research challenges. Mammal Rev. 2020, 50, 68–81. [Google Scholar] [CrossRef]
- Starbuck, C.A.; Amelon, S.K.; Thompson, F.R. Relationships between bat occupancy and habitat and landscape structure along a savanna, woodland, forest gradient in the Missouri Ozarks. Wildl. Soc. Bull. 2014, 39, 20–30. [Google Scholar] [CrossRef]
- Haddock, J.K.; Threlfall, C.G.; Law, B.; Hochuli, D.F. Light pollution at the urban forest edge negatively impacts insectivorous bats. Biol. Conserv. 2019, 236, 17–28. [Google Scholar] [CrossRef]
- Moretto, L.; Francis, C.M. What factors limit bat abundance and diversity in temperate, North American urban environments? J. Urban Ecol. 2017, 3, jux016. [Google Scholar] [CrossRef]
- Oberle, B.; Ogle, K.; Zanne, A.E.; Woodall, C.W. When a tree falls: Controls on wood decay predict standing dead tree fall and new risks in changing forests. PLoS ONE 2018, 13, e0196712. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, M.; Leak, W.B. Snag longevity in managed northern hardwoods. North. J. Appl. For. 2006, 23, 215–217. [Google Scholar] [CrossRef]
Roost Characteristics | Roost Trees (n = 12) | Available Trees (n = 12) | t- or V-Value | p-Value | Adjusted p-Value |
---|---|---|---|---|---|
Tree-Level | |||||
Tree Height (m) | 20.7 ± 2.6 | 15.9 ± 2.2 | t = −1.53 | 0.15 | 0.28 |
Tree Diameter at Breast Height (cm) | 51.4 ± 6.8 | 48.7 ± 6.8 | t = −0.24 | 0.81 | 1.00 |
Bark Remaining (%) | 75.8 ± 7.6 | 61.7 ± 10.4 | t = −1.13 | 0.28 | 0.44 |
Roost Canopy Closure (%) | 28.2 ± 8.6 | 27.6 ± 7.7 | t = −0.06 | 0.96 | 1.00 |
Plot-Level | |||||
Plot Canopy Closure (%) | 20.9 ± 9.0 | 21.9 ± 7.0 | V = 27.5 | 1.00 | 1.00 |
Number of Snags | 22 ± 3 | 6 ± 2 | t = −4.17 | <0.01 | 0.02 |
Number of Live Trees | 4 ± 2 | 16 ± 4 | V = 49.0 | 0.03 | 0.09 |
Landscape-Level | |||||
Distance to Water (m) | 30.4 ± 18.1 | 113.7 ± 37.3 | V = 42.0 | 0.02 | 0.09 |
Distance to Forest Edge (m) | 105.3 ± 13.3 | 106.2 ± 31.2 | t = −0.70 | 0.50 | 0.69 |
Distance to Fox Island Forest (m) | 87.7 ± 17.7 | 430.7 ± 135.2 | V = 55.0 | 0.06 | 0.12 |
Distance to Snag Forest (m) | 27.3 ± 18.4 | 444.8 ± 118.4 | V = 55.0 | 0.01 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burrell, G.E.; Bergeson, S.M. Roosting Behavior of Northern Long-Eared Bats (Myotis septentrionalis) in an Urban-Adjacent Forest Fragment. Forests 2022, 13, 1972. https://doi.org/10.3390/f13121972
Burrell GE, Bergeson SM. Roosting Behavior of Northern Long-Eared Bats (Myotis septentrionalis) in an Urban-Adjacent Forest Fragment. Forests. 2022; 13(12):1972. https://doi.org/10.3390/f13121972
Chicago/Turabian StyleBurrell, Galen E., and Scott M. Bergeson. 2022. "Roosting Behavior of Northern Long-Eared Bats (Myotis septentrionalis) in an Urban-Adjacent Forest Fragment" Forests 13, no. 12: 1972. https://doi.org/10.3390/f13121972
APA StyleBurrell, G. E., & Bergeson, S. M. (2022). Roosting Behavior of Northern Long-Eared Bats (Myotis septentrionalis) in an Urban-Adjacent Forest Fragment. Forests, 13(12), 1972. https://doi.org/10.3390/f13121972