Dehydration Treatment Improves Ulmus glabra Dormant Bud Regeneration from Cryostorage
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brasier, C.M. Ophiostoma Novo-Ulmi Sp. Nov., Causative Agent of Current Dutch Elm Disease Pandemics. Mycopathologia 1991, 115, 151–161. [Google Scholar] [CrossRef]
- Paques, M.; Poissonnier, M.; Dumas, E.; Monod, V. Cryopreservation of Dormant and Non Dormant Broad-Leaved Trees. Acta Hortic. 1997, 447, 491–498. [Google Scholar] [CrossRef]
- Harvengt, L.; Meier-Dinkel, A.; Dumas, E.; Collin, E. Establishment of a Cryopreserved Gene Bank of European Elms. Can. J. For. Res. 2004, 34, 43–55. [Google Scholar] [CrossRef]
- Uchendu, E.E.; Shukla, M.R.; Reed, B.M.; Saxena, P.K. Melatonin Enhances the Recovery of Cryopreserved Shoot Tips of A Merican Elm (Ulmus Americana L.). J. Pineal Res. 2013, 55, 435–442. [Google Scholar] [CrossRef]
- Collin, E.; Rondouin, M.; Joyeau, C.; Matz, S.; Raimbault, P.; Harvengt, L.; Bilger, I.; Guibert, M. Conservation and use of Elm Genetic Resources in France: Results and Perspectives. iForest 2020, 13, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Välimäki, S.; Rusanen, M.; Pečínková, D.; Tikkinen, M.; Aronen, T. Cryopreservation and Micropropagation Methods for Conservation of Genetic Resources of Ulmus Laevis and Ulmus Glabra. Forests 2021, 12, 1121. [Google Scholar] [CrossRef]
- Towill, L.E.; Ellis, D.D. Cryopreservation of dormant buds. In Plant Cryopreservation: A Practical Guide; Reed, B.M., Ed.; Springer: New York, NY, USA, 2008; pp. 421–442. [Google Scholar]
- Seufferheld, M.J.; Stushnoff, C.; Forsline, P.L.; Gonzalez, G.H.T. Cryopreservation of Cold-Tender Apple Germplasm. J. Am. Soc. Hortic. Sci. 1999, 124, 612–618. [Google Scholar] [CrossRef]
- Aronen, T.; Ryynänen, L. Cryopreservation of Dormant in Vivo-Buds of Hybrid Aspen: Timing as Critical Factor. Cryo Lett. 2014, 35, 385–394. [Google Scholar]
- Reed, B.M.; Uchendu, E. Controlled rate cooling. In Plant Cryopreservation: A Practical Guide; Reed, B.M., Ed.; Springer: New York, NY, USA, 2008; pp. 77–92. [Google Scholar]
- Tyler, N.; Stushnoff, C. Dehydration of Dormant Apple Buds at Different Stages of Cold Acclimation to Induce Cryopreservability in Different Cultivars. Can. J. Plant Sci. 1988, 68, 1169–1176. [Google Scholar] [CrossRef] [Green Version]
- Zhumagulova, Z.B.; Kovalchuk, I.Y.; Reed, B.M.; Kampitova, G.A.; Turdiev, T.T. Effect of Pretreatment Methods of Dormant Pear Buds on Viability after Cryopreservation. World Appl. Sci. J. 2014, 30, 330–334. [Google Scholar] [CrossRef]
- Forsline, P.L.; Towill, L.E.; Waddell, J.W.; Stushnoff, C.; Lamboy, W.F.; McFerson, J.R. Recovery and Longevity of Cryopreserved Dormant Apple Buds. J. Am. Soc. Hortic. Sci. 1998, 123, 365–370. [Google Scholar] [CrossRef]
- Volk, G.M.; Bonnart, R.; Waddell, J.; Widrlechner, M.P. Cryopreservation of Dormant Buds from Diverse Fraxinus Species. Cryo Lett. 2009, 30, 262–267. [Google Scholar]
- Tanner, J.D.; Chen, K.Y.; Bonnart, R.M.; Minas, I.S.; Volk, G.M. Considerations for Large-Scale Implementation of Dormant Budwood Cryopreservation. Plant Cell Tissue Org. Cult. 2021, 144, 35–49. [Google Scholar] [CrossRef]
- Tanner, J.D.; Chen, K.Y.; Jenderek, M.M.; Wallner, S.J.; Minas, I.S. Determining the Effect of Pretreatments on Freeze Resistance and Survival of Cryopreserved Temperate Fruit Tree Dormant Buds. Cryobiology 2021, 101, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Bilavcik, A.; Faltus, M.; Zamecnik, J. The Survival of Pear Dormant Buds at Ultra-Low Temperatures. Plants 2021, 10, 2502. [Google Scholar] [CrossRef] [PubMed]
- Ryynänen, L. Survival and Regeneration of Dormant Silver Birch Buds Stored at Super-Low Temperatures. Can. J. For. Res. 1996, 26, 617–623. [Google Scholar] [CrossRef]
- Fenning, T.M.; Gartland, K.; Brasier, C.M. Micropropagation and Regeneration of English Elm, Ulmus Procera Salisbury. J. Exp. Bot. 1993, 44, 1211–1217. [Google Scholar] [CrossRef]
- Driver, J.A.; Kuniyuki, A.H. In Vitro Propagation of Paradox Walnut Rootstock. HortScience 1984, 19, 507–509. [Google Scholar] [CrossRef]
- Jenderek, M.M.; Tanner, J.D.; Chao, C.T.; Blackburn, H. How Applicable Are Dormant Buds in Cryopreservation of Horticultural Woody Plant Crops? The Malus Case. Acta Hortic. 2019, 1234, 317–322. [Google Scholar] [CrossRef]
- Volk, G.M.; Henk, A.D.; Jenderek, M.M.; Richards, C.M. Probabilistic Viability Calculations for Cryopreserving Vegetatively Propagated Collections in Genebanks. Genet. Resour. Crop Evol. 2017, 64, 1613–1622. [Google Scholar] [CrossRef]
Model, log(p/1 − p) | Variable | p-Value | Odds Ratio (95% CI) | Donor Tree | % of Cases Predicted Correctly by Model |
---|---|---|---|---|---|
log(p/1 − p) = −1.539 + 2.181d − 0.113t1 − 2.099t2 − 2.722t3 + 0.370t4 | 80.2 | ||||
dehydration status | <0.001 | 8.851 (2.879–27.209) | |||
Tree | 0.004 | Reference | 106 02 | ||
0.88 | 0.893 (0.207–3.852) | 107 01 | |||
0.012 | 0.123 (0.024–0.629) | 208 05 | |||
0.027 | 0.066 (0.006–0.729) | 210 07 | |||
0.654 | 1.447 (0.288–7.285) | 323 03 |
Model, log(p/1 − p) | Variable | p-Value | Odds Ratio (95% CI) | Donor Tree | % of Cases Predicted Correctly by Model |
---|---|---|---|---|---|
log(p/1 − p) = 0.400 − 1.966d − 0.846t1 − 1.738t2 + 0.583t3 − 0.909t4 | 82.0 | ||||
dehydration status | <0.001 | 0.140 (0.047–0.414) | |||
Tree | 0.045 | Reference | 106 02 | ||
0.270 | 0.429 (0.095–1.930) | 107 01 | |||
0.032 | 0.176 (0.036–0.857) | 208 05 | |||
0.475 | 1.791 (0.362–8.856) | 210 07 | |||
0.284 | 0.403 (0.076–2.125) | 323 03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Välimäki, S.; Rusanen, M.; Aronen, T. Dehydration Treatment Improves Ulmus glabra Dormant Bud Regeneration from Cryostorage. Forests 2022, 13, 1923. https://doi.org/10.3390/f13111923
Välimäki S, Rusanen M, Aronen T. Dehydration Treatment Improves Ulmus glabra Dormant Bud Regeneration from Cryostorage. Forests. 2022; 13(11):1923. https://doi.org/10.3390/f13111923
Chicago/Turabian StyleVälimäki, Sakari, Mari Rusanen, and Tuija Aronen. 2022. "Dehydration Treatment Improves Ulmus glabra Dormant Bud Regeneration from Cryostorage" Forests 13, no. 11: 1923. https://doi.org/10.3390/f13111923
APA StyleVälimäki, S., Rusanen, M., & Aronen, T. (2022). Dehydration Treatment Improves Ulmus glabra Dormant Bud Regeneration from Cryostorage. Forests, 13(11), 1923. https://doi.org/10.3390/f13111923