Comparative Analysis of Codon Usage Patterns in Chloroplast Genomes of Cherries
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling, DNA Isolation and Sequencing
2.2. Codon Composition
2.3. Neutrality Plot
2.4. Analysis of ENC-Plot
2.5. PR2-Plot
2.6. Correlation Analysis
2.7. Optimal Codons
2.8. Cluster and Phylogenetic Analysis
3. Results
3.1. Base Composition Characteristics
3.2. Neutrality Plot Analysis
3.3. ENC-Plot Analysis, PR2-Plot Analysis and Correlation Analysis
3.4. High-Frequency Codon and Optimal Codon
3.5. Cluster and Phylogenetic Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buhr, F.; Jha, S.; Thommen, M.; Mittelstaet, J.; Kutz, F.; Schwalbe, H.; Rodnina, M.V.; Komar, A.A. Synonymous Codons Direct Cotranslational Folding toward Different Protein Conformations. Mol. Cell 2016, 61, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Dang, Y.; Zhou, M.; Li, L.; Yu, C.-H.; Fu, J.; Chen, S.; Liu, Y. Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proc. Natl. Acad. Sci. USA 2016, 113, E6117–E6125. [Google Scholar] [CrossRef] [PubMed]
- Long, S.; Yao, H.; Wu, Q.; Li, G. Analysis of compositional bias and codon usage pattern of the coding sequence in Banna virus genome. Virus Res. 2018, 258, 68–72. [Google Scholar] [CrossRef]
- Wang, H.; Meng, T.; Wei, W. Analysis of synonymous codon usage bias in helicase gene from Autographa californica multiple nucleopolyhedrovirus. Genes Genom. 2018, 40, 767–780. [Google Scholar] [CrossRef] [PubMed]
- Romero, H.; Zavala, A.; Musto, H. Codon usage in Chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces. Nucleic Acids Res. 2000, 28, 2084–2090. [Google Scholar] [CrossRef]
- Hunt, R.C.; Simhadri, V.L.; Iandoli, M.; Sauna, Z.E.; Kimchi-Sarfaty, C. Exposing synonymous mutations. Trends Genet. 2014, 30, 308–321. [Google Scholar] [CrossRef]
- Pop, C.; Rouskin, S.; Ingolia, N.T.; Han, L.; Phizicky, E.M.; Weissman, J.S.; Koller, D. Causal signals between codon bias, mRNA structure, and the efficiency of translation and elongation. Mol. Syst. Biol. 2014, 10, 770. [Google Scholar] [CrossRef]
- Quax, T.E.F.; Claassens, N.J.; Söll, D.; van der Oost, J. Codon Bias as a Means to Fine-Tune Gene Expression. Mol. Cell 2015, 59, 149–161. [Google Scholar] [CrossRef]
- López, J.L.; Lozano, M.J.; Lagares, A.; Fabre, M.L.; Draghi, W.O.; Del Papa, M.F.; Pistorio, M.; Becker, A.; Wibberg, D.; Schlüter, A.; et al. Codon Usage Heterogeneity in the Multipartite Prokaryote Genome: Selection-Based Coding Bias Associated with Gene Location, Expression Level, and Ancestry. mBio 2019, 10, e00505-19. [Google Scholar] [CrossRef]
- Daniell, H.; Lin, C.-S.; Yu, M.; Chang, W.-J. Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biol. 2016, 17, 134. [Google Scholar] [CrossRef]
- Kwak, S.-Y.; Lew, T.T.S.; Sweeney, C.J.; Koman, V.B.; Wong, M.H.; Bohmert-Tatarev, K.; Snell, K.D.; Seo, J.S.; Chua, N.-H.; Strano, M.S. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nat. Nanotechnol. 2019, 14, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Hishamuddin, M.S.; Lee, S.Y.; Ng, W.L.; Ramlee, S.I.; Lamasudin, D.U.; Mohamed, R. Comparison of eight complete chloroplast genomes of the endangered Aquilaria tree species (Thymelaeaceae) and their phylogenetic relationships. Sci. Rep. 2020, 10, 13034. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, B.; Li, B.; Zhou, Q.; Wang, G.; Jiang, X.; Wang, C.; Xu, Z. Comparative analysis of codon usage patterns in chloroplast genomes of six Euphorbiaceae species. PeerJ 2020, 8, e8251. [Google Scholar] [CrossRef]
- Wu, Z.; Liao, R.; Yang, T.; Dong, X.; Lan, D.; Qin, R.; Liu, H. Analysis of six chloroplast genomes provides insight into the evolution of Chrysosplenium (Saxifragaceae). BMC Genom. 2020, 21, 621. [Google Scholar] [CrossRef] [PubMed]
- Koehne, E. Prunus L. In Plantae Wilsonianae; Sargent, C.R., Ed.; Dioscorides Press: Portland, OR, USA, 1913; Volume 2, pp. 196–282. [Google Scholar]
- Rehder, A. Manual of Cultivated Trees and Shrubs Hardy in North America Exclusive of the Subtropical and Warmer temperate Regions; MacMillan: New York, NY, USA, 1940. [Google Scholar]
- Krüssmann, G. Cultivated broad-leaved trees and shrubs. In Timber Press; Timber Press: Portland, OR, USA, 1986; Volume 3. [Google Scholar]
- Lu, L.T.; Ku, T.C.; Li, C.L.; Chen, S.X. Rosaceae (3) Prunoideae. In Flora Reipublicae Popularis Sinicae, Tomus 38; Yü, T.T., Ed.; Science Press: Beijing, China, 1986; pp. 1–133. [Google Scholar]
- Wang, X.R. An Illustrated Monograph of Cherry Cultivars in China; Science Press: Beijing, China, 2014. [Google Scholar]
- Zhang, Y.; Nie, X.; Jia, X.; Ding, C.; Biradar, S.; Le, W.; Che, X.; Song, W. Analysis of codon usage patterns of the chloroplast genomes in the Poaceae family. Aust. J. Bot. 2012, 60, 461–470. [Google Scholar] [CrossRef]
- Ji, K.; Song, X.; Chen, C.; Li, G.; Xie, S. Codon Usage Profiling of Chloroplast Genome in Magnoliaceae. J. Agric. Sci. Technol. 2020, 22, 52–62. [Google Scholar]
- Nie, X.; Deng, P.; Feng, K.; Liu, P.; Du, X.; You, F.M.; Song, W. Comparative analysis of codon usage patterns in chloroplast genomes of the Asteraceae family. Plant Mol. Biol. Rep. 2014, 32, 828–840. [Google Scholar] [CrossRef]
- Liu, H.; Xiong, R.; Ni, Y.; Wei, L.; Sun, J.; Wang, G.; Zhang, Y.; Gao, Y. Comparative Analysis of Codon Usage Patterns in Chloroplast Genomes of Fragaria Species. Mol. Plant Breed. 2021, 1–23. [Google Scholar]
- Shi, S.; Li, J.; Sun, J.; Yu, J.; Zhou, S. Phylogeny and Classification of Prunus sensu lato (Rosaceae). J. Integr. Plant Biol. 2013, 55, 1069–1079. [Google Scholar] [CrossRef]
- Zhang, S.-D.; Jin, J.J.; Chen, S.Y.; Chase, M.W.; Soltis, D.E.; Li, H.-T.; Yang, J.-B.; Li, D.-Z.; Yi, T.-S. Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics. New Phytol. 2017, 214, 1355–1367. [Google Scholar] [CrossRef]
- Jin, J.-J.; Yu, W.-B.; Yang, J.-B.; Song, Y.; dePamphilis, C.W.; Yi, T.-S.; Li, D.-Z. GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 2020, 21, 241. [Google Scholar] [CrossRef] [PubMed]
- Tillich, M.; Lehwark, P.; Pellizzer, T.; Ulbricht-Jones, E.S.; Fischer, A.; Bock, R.; Greiner, S. GeSeq—Versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 2017, 45, W6–W11. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Gao, F.; Jakovlić, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Sueoka, N. Near Homogeneity of PR2-Bias Fingerprints in the Human Genome and Their Implications in Phylogenetic Analyses. J. Mol. Evol. 2001, 53, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-X.; Liu, H.; Moore, M.J.; Landrein, S.; Liu, B.; Zhu, Z.-X.; Wang, H.-F. Plastid phylogenomic insights into the evolution of the Caprifoliaceae s.l. (Dipsacales). Mol. Phylogenet. Evol. 2020, 142, 106641. [Google Scholar] [CrossRef]
- Liu, Q.; Xue, Q. Comparative studies on codon usage pattern of chloroplasts and their host nuclear genes in four plant species. J. Genet. 2005, 84, 55–62. [Google Scholar] [CrossRef]
- Suzuki, R.; Shimodaira, H. Pvclust: An R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 2006, 22, 1540–1542. [Google Scholar] [CrossRef]
- Nguyen, L.-T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Tuller, T.; Waldman, Y.Y.; Kupiec, M.; Ruppin, E. Translation efficiency is determined by both codon bias and folding energy. Proc. Natl. Acad. Sci. USA 2010, 107, 3645. [Google Scholar] [CrossRef]
- Gu, W.; Zhou, T.; Ma, J.; Sun, X.; Lu, Z. The relationship between synonymous codon usage and protein structure in Escherichia coli and Homo sapiens. Biosystems 2004, 73, 89–97. [Google Scholar] [CrossRef]
- Wang, B.; Yuan, J.; Liu, J.; Jin, L.; Chen, J.-Q. Codon Usage Bias and Determining Forces in Green Plant Mitochondrial Genomes. J. Integr. Plant Biol. 2011, 53, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Wei, F.; Cai, Z.; Wei, Y.; Khan, A.; Miao, J.; Wei, K. Analysis of codon usage bias and evolution in the chloroplast genome of Mesona chinensis Benth. Dev. Genes Evol. 2021, 231, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hershberg, R.; Petrov, D.A. Selection on codon bias. Annu. Rev. Genet. 2008, 42, 287–299. [Google Scholar] [CrossRef] [PubMed]
- Jansen, R.K.; Cai, Z.; Raubeson, L.A.; Daniell, H.; Depamphilis, C.W.; Leebens-Mack, J.; Müller, K.F.; Guisinger-Bellian, M.; Haberle, R.C.; Hansen, A.K.; et al. Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc. Natl. Acad. Sci. USA 2007, 104, 19369–19374. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.S.; Son, O.G.; Park, S. The Chloroplast Genome of Elaeagnus macrophylla and trnH Duplication Event in Elaeagnaceae. PLoS ONE 2015, 10, e0138727. [Google Scholar] [CrossRef]
- Jansen, R.K.; Saski, C.; Lee, S.-B.; Hansen, A.K.; Daniell, H. Complete Plastid Genome Sequences of Three Rosids (Castanea, Prunus, Theobroma): Evidence for At Least Two Independent Transfers of rpl22 to the Nucleus. Mol. Biol. Evol. 2011, 28, 835–847. [Google Scholar] [CrossRef]
Species | Codon No. | CG1 | CG2 | CG3 | GC | ENC | CAI |
---|---|---|---|---|---|---|---|
Prunus apetala | 26158 | 0.4529 | 0.3765 | 0.2982 | 0.3760 | 49.71 | 0.166 |
Prunus avium | 26162 | 0.4541 | 0.3770 | 0.2978 | 0.3770 | 49.66 | 0.166 |
Prunus campanulata | 26157 | 0.4542 | 0.3770 | 0.2984 | 0.3770 | 49.69 | 0.166 |
Prunus cerasoides | 26172 | 0.4542 | 0.3767 | 0.2979 | 0.3770 | 49.68 | 0.166 |
Prunus clarofolia | 26209 | 0.4545 | 0.3768 | 0.2981 | 0.3770 | 49.69 | 0.166 |
Prunus conadenia | 25205 | 0.4560 | 0.3762 | 0.2974 | 0.3770 | 49.67 | 0.167 |
Prunus conradinae | 26490 | 0.4535 | 0.3762 | 0.2988 | 0.3770 | 49.73 | 0.166 |
Prunus dielsiana | 26151 | 0.4543 | 0.3769 | 0.2984 | 0.3770 | 49.70 | 0.166 |
Prunus discoidea | 26525 | 0.4533 | 0.3760 | 0.2991 | 0.3770 | 49.76 | 0.166 |
Prunus emarginata | 26163 | 0.4542 | 0.3769 | 0.2976 | 0.3770 | 49.66 | 0.166 |
Prunus fengyangshanica | 26163 | 0.4542 | 0.3767 | 0.2984 | 0.3770 | 49.71 | 0.166 |
Prunus fruticosa | 26166 | 0.4537 | 0.3766 | 0.2971 | 0.3760 | 49.61 | 0.166 |
Prunus itosakura | 26152 | 0.4546 | 0.3770 | 0.2982 | 0.3770 | 49.69 | 0.166 |
Prunus jamasakura | 26160 | 0.4541 | 0.3769 | 0.2982 | 0.3770 | 49.68 | 0.166 |
Prunus jingningensis | 26165 | 0.4542 | 0.3770 | 0.2983 | 0.3770 | 49.69 | 0.166 |
Prunus kumanoensis | 26158 | 0.4543 | 0.3770 | 0.2982 | 0.3770 | 49.68 | 0.166 |
Prunus leveilleana | 26158 | 0.4543 | 0.3770 | 0.2983 | 0.3770 | 49.69 | 0.166 |
Prunus mahaleb | 26218 | 0.4547 | 0.3771 | 0.2980 | 0.3770 | 49.67 | 0.166 |
Prunus matuurae | 26156 | 0.4540 | 0.3769 | 0.2986 | 0.3770 | 49.72 | 0.166 |
Prunus maximowiczii | 26158 | 0.4543 | 0.3768 | 0.2984 | 0.3770 | 49.71 | 0.166 |
Prunus mugus | 25990 | 0.4552 | 0.3775 | 0.2977 | 0.3770 | 49.67 | 0.166 |
Prunus pensylvanica | 26162 | 0.4544 | 0.3769 | 0.2980 | 0.3770 | 49.68 | 0.166 |
Prunus polytricha | 26220 | 0.4543 | 0.3769 | 0.2984 | 0.3770 | 49.70 | 0.166 |
Prunus pseudocerasus | 26575 | 0.4535 | 0.3761 | 0.2988 | 0.3770 | 49.73 | 0.166 |
Prunus rufa | 26171 | 0.4541 | 0.3769 | 0.2979 | 0.3770 | 49.67 | 0.166 |
Prunus sargentii | 26153 | 0.4543 | 0.3770 | 0.2981 | 0.3770 | 49.67 | 0.166 |
Prunus schneideriana | 26224 | 0.4543 | 0.3769 | 0.2985 | 0.3770 | 49.70 | 0.166 |
Prunus serrula | 26217 | 0.4544 | 0.3769 | 0.2983 | 0.3770 | 49.69 | 0.166 |
Prunus setulosa | 26227 | 0.4539 | 0.3769 | 0.2980 | 0.3770 | 49.67 | 0.166 |
Prunus speciosa | 26164 | 0.4540 | 0.3769 | 0.2983 | 0.3770 | 49.69 | 0.166 |
Prunus spontanea | 26158 | 0.4543 | 0.3770 | 0.2984 | 0.3770 | 49.70 | 0.166 |
Prunus subhirtella | 26152 | 0.4546 | 0.3770 | 0.2982 | 0.3770 | 49.69 | 0.166 |
Prunus takesimensis | 26158 | 0.4543 | 0.3770 | 0.2983 | 0.3770 | 49.69 | 0.166 |
Prunus verecunda | 26158 | 0.4544 | 0.3770 | 0.2983 | 0.3770 | 49.69 | 0.166 |
Prunus yedoensis | 26152 | 0.4546 | 0.3770 | 0.2982 | 0.3770 | 49.69 | 0.166 |
Prunus yunnanensis | 26003 | 0.4551 | 0.3774 | 0.2977 | 0.3770 | 49.66 | 0.166 |
GC1 | GC2 | GC3 | GC12 | GC | CAI | ENC | |
---|---|---|---|---|---|---|---|
Axis 1 | −0.141 ** | 0.035 | −0.103 ** | −0.066 ** | −0.091 ** | −0.130 ** | −0.071 ** |
Axis 2 | −0.074 ** | 0.026 | −0.030 | −0.030 | −0.037 | 0.147 ** | −0.055 * |
Axis 3 | −0.023 | 0.042 | −0.023 | 0.009 | 0.002 | −0.050 * | −0.107 ** |
Axis 4 | −0.050 * | −0.098 ** | 0.094 ** | −0.084 ** | −0.049 * | 0.077 ** | 0.034 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.-F.; Yang, Q.-H.; Yi, X.-G.; Zhu, Z.-Q.; Wang, X.-R.; Li, M. Comparative Analysis of Codon Usage Patterns in Chloroplast Genomes of Cherries. Forests 2022, 13, 1891. https://doi.org/10.3390/f13111891
Song Y-F, Yang Q-H, Yi X-G, Zhu Z-Q, Wang X-R, Li M. Comparative Analysis of Codon Usage Patterns in Chloroplast Genomes of Cherries. Forests. 2022; 13(11):1891. https://doi.org/10.3390/f13111891
Chicago/Turabian StyleSong, Yan-Feng, Qing-Hua Yang, Xian-Gui Yi, Zhao-Qing Zhu, Xian-Rong Wang, and Meng Li. 2022. "Comparative Analysis of Codon Usage Patterns in Chloroplast Genomes of Cherries" Forests 13, no. 11: 1891. https://doi.org/10.3390/f13111891
APA StyleSong, Y.-F., Yang, Q.-H., Yi, X.-G., Zhu, Z.-Q., Wang, X.-R., & Li, M. (2022). Comparative Analysis of Codon Usage Patterns in Chloroplast Genomes of Cherries. Forests, 13(11), 1891. https://doi.org/10.3390/f13111891