Land Use and Land Cover in Tropical Forest: Global Research
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods: Data Processing
2.2.1. Stage I: Basis Query
- RQ1: What are the scientific production trends regarding LULC in tropical forests?
- RQ2: What are the most relevant publications and the countries that contributed to the growth of this field of study?
- RQ3: Which authors and journals have the most influence in the progress of LULC research on tropical forests?
- RQ4: What are the themes, topics, authors, and journals associated with the intellectual structure in this area?
2.2.2. Stage II: Data Search and Collection
2.2.3. Stage III Software and Data Selection
2.2.4. Stage IV Data Interpretation
3. Results
3.1. Performance Analysis
3.1.1. Scientific Production Analysis (RQ1)
Period I (1978–1989)
Period II (1990–1999)
Period III (2000–2009)
Period IV (2010–2021)
3.1.2. Top 10 Frequently Cited Documents (RQ2)
3.1.3. Top 10 Countries by Number of Documents (RQ2)
3.1.4. Top 10 Sources by Number of Documents (RQ3)
3.1.5. Top 10 Leading Authors (RQ3)
3.2. Bibliometric Mapping Analysis
3.2.1. Co-Occurrence Author Keyword Network (RQ4)
3.2.2. Co-Citation Analysis (RQ4)
Author Co-Citation Analysis (ACA)
Journal Co-Citation Analysis (JCA)
4. Discussion
- First, the keyword co-occurrence analysis made it possible to analyze the most prominent themes (Figure 4). For this case, the clusters are superimposed, demonstrating their complementarity between the clusters and the various topics (keywords). The issues are closely related to multiple areas of biology, land cover and use, and remote sensing. For example, biodiversity (red cluster) and land use change (green cluster) were among the most-studied topics in tropical forests due to the interest in understanding and analyzing the response of various taxa to cover change, and different land uses [347,348].
- The author co-citation analysis reveals the interconnections between different authors (Figure 5). At the same time, the journal’s co-citation analysis (Figure 6) shows clusters where a specific school of thought is studied. For example, authors such as Daniel Nepstad and Robert Walker (blue cluster) have been pioneers in studies focused on the activity and importance of tropical forests. These topics are studied mainly in the red and green (most significant) clusters of the JCA, which include the most-analyzed general areas in tropical forests, referring to the different aspects of biology and the environment. In the analysis of the author co-citations, cluster 5 (purple cluster) related to clusters 3 (blue cluster) and 4 (yellow cluster), which cover research structures such as sciences and environmental studies, ecology, and agricultural and biological sciences. The studies of these clusters deal with issues related to remote sensing and monitoring and its usefulness in analyzing topics such as fires and deforestation in tropical forests and their impact on carbon and nitrogen values.
- Studies linking compliance with SDGs concerning LULC in tropical forests are required. Few studies address this issue, and the ones that do focus mainly on how deforestation and degradation monitoring can be used to manage these objectives.
- Studies of specific activities such as oil exploitation and mining focus solely on the effects on human health, and there are few publications on its impact on the environment.
- LULC studies in the Andean–Amazonian region should be expanded. A large part of the analyses use optical satellite images, where the presence of cloud cover is a problem that limits the generation of maps regarding land use and land coverage in these regions.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hartshorn, G.S. Tropical Forest Ecosystems. In Encyclopedia of Biodiversity; Levin, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 269–276. ISBN 9780123847195. [Google Scholar]
- Phillips, O.L.; Gentry, A.H. Increasing Turnover Through Time in Tropical Forests. Science 1994, 263, 954–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adler, G.H. Rainforest Ecosystems, Animal Diversity. In Encyclopedia of Biodiversity; Elsevier: Amsterdam, The Netherlands, 2013; pp. 304–312. [Google Scholar]
- Deikumah, J.P.; Mcalpine, C.A.; Maron, M. Biogeographical and Taxonomic Biases in Tropical Forest Fragmentation Research. Conserv. Biol. 2014, 28, 1522–1531. [Google Scholar] [CrossRef] [PubMed]
- Reed, S.C.; Reibold, R.; Cavaleri, M.A.; Alonso-Rodríguez, A.M.; Berberich, M.E.; Wood, T.E. Soil Biogeochemical Responses of a Tropical Forest to Warming and Hurricane Disturbance. In Advances in Ecological Research; Dumbrell, A., Turner, E., Fayle, T., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 225–252. [Google Scholar]
- Ahlheim, M.; Börger, T.; Frör, O. Replacing Rubber Plantations by Rain Forest in Southwest China—Who Would Gain and How Much? Environ. Monit. Assess. 2015, 187, 3. [Google Scholar] [CrossRef] [PubMed]
- Corlett, R.T. Tropical Rainforests and Climate Change. In Encyclopedia of the Anthropocene; Dellasala, D., Goldstein, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 25–29. ISBN 9780128135761. [Google Scholar]
- Funk, J.M.; Aguilar-Amuchastegui, N.; Baldwin-Cantello, W.; Busch, J.; Chuvasov, E.; Evans, T.; Griffin, B.; Harris, N.; Ferreira, M.N.; Petersen, K.; et al. Securing the Climate Benefits of Stable Forests. Clim. Policy 2019, 19, 845–860. [Google Scholar] [CrossRef] [Green Version]
- Meister, K.; Ashton, M.S.; Craven, D.; Griscom, H. Carbon Dynamics of Tropical Forests. In Managing Forest Carbon in a Changing Climate; Springer: Dordrecht, The Netherlands, 2012; pp. 51–75. ISBN 9789400722323. [Google Scholar]
- Underwood, E.C.; Olson, D.; Hollander, A.D.; Quinn, J.F. Ever-Wet Tropical Forests as Biodiversity Refuges. Nat. Clim. Chang. 2014, 4, 740–741. [Google Scholar] [CrossRef]
- Bonal, D.; Burban, B.; Stahl, C.; Wagner, F.; Hérault, B. The Response of Tropical Rainforests to Drought—Lessons from Recent Research and Future Prospects. Ann. For. Sci. 2016, 73, 27–44. [Google Scholar] [CrossRef] [Green Version]
- Primack, R.B.; Morrison, R.A. Causes of Extinction. In Encyclopedia of Biodiversity; Elsevier: Amsterdam, The Netherlands, 2013; pp. 401–412. ISBN 9780123847195. [Google Scholar]
- Ustjuzhanin, P.; Kovtunovich, V.; Maicher, V.; Sáfián, S.; Delabye, S.; Streltzov, A.; Tropek, R. Even Hotter Hotspot: Description of Seven New Species of Many-Plumed Moths (Lepidoptera, Alucitidae) from Mount Cameroon. Zookeys 2020, 935, 103–119. [Google Scholar] [CrossRef] [PubMed]
- Mishra, G.; Das, P.K.; Borah, R.; Dutta, A. Investigation of Phytosociological Parameters and Physico-Chemical Properties of Soil in Tropical Semi-Evergreen Forests of Eastern Himalaya. J. For. Res. 2017, 28, 513–520. [Google Scholar] [CrossRef]
- Neha, S.A.; Khatun, U.H.; Ul Hasan, M.A. Resource Partitioning and Niche Overlap between Hoolock Gibbon (Hoolock Hoolock) and Other Frugivorous Vertebrates in a Tropical Semi-Evergreen Forest. Primates 2021, 62, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Van Bloem, S.J.; Murphy, P.G.; Lugo, A.E. Tropical Forest | Tropical Dry Forests. In Encyclopedia of Forest Sciences; Burley, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2004; pp. 1767–1775. ISBN 9780121451608. [Google Scholar]
- Ishida, A.; Diloksumpun, S.; Ladpala, P.; Staporn, D.; Panuthai, S.; Gamo, M.; Yazaki, K.; Ishizuka, M.; Puangchit, L. Contrasting Seasonal Leaf Habits of Canopy Trees between Tropical Dry-Deciduous and Evergreen Forests in Thailand. Tree Physiol. 2006, 26, 643–656. [Google Scholar] [CrossRef]
- Ray, D.K. Tropical Montane Cloud Forests. In Climate Vulnerability; Elsevier: Amsterdam, The Netherlands, 2013; Vol. 5, pp. 79–85. ISBN 9780123847041. [Google Scholar]
- Salinas, N.; Cosio, E.G.; Silman, M.; Meir, P.; Nottingham, A.T.; Roman-Cuesta, R.M.; Malhi, Y. Editorial: Tropical Montane Forests in a Changing Environment. Front. Plant Sci. 2021, 12. [Google Scholar] [CrossRef]
- Campos Pinto, L.; de Mello, C.R.; Norton, L.D.; Owens, P.R.; Curi, N. Spatial Prediction of Soil-Water Transmissivity Based on Fuzzy Logic in a Brazilian Headwater Watershed. Catena 2016, 143, 26–34. [Google Scholar] [CrossRef]
- Pellikka, P.K.E.; Lötjönen, M.; Siljander, M.; Lens, L. Airborne Remote Sensing of Spatiotemporal Change (1955–2004) in Indigenous and Exotic Forest Cover in the Taita Hills, Kenya. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 221–232. [Google Scholar] [CrossRef]
- Otavo, S.; Echeverría, C. Fragmentación Progresiva y Pérdida de Hábitat de Bosques Naturales En Uno de Los Hotspot Mundiales de Biodiversidad. Rev. Mex. Biodivers. 2017, 88, 924–935. [Google Scholar] [CrossRef] [Green Version]
- Gloor, E. The Fate of Amazonia. Nat. Clim. Chang. 2019, 9, 355–356. [Google Scholar] [CrossRef]
- Saatchi, S.S.; Houghton, R.A.; Dos Santos Alvalá, R.C.; Soares, J.V.; Yu, Y. Distribution of Aboveground Live Biomass in the Amazon Basin. Glob. Chang. Biol. 2007, 13, 816–837. [Google Scholar] [CrossRef]
- Schulman, L.; Ruokolainen, K.; Junikka, L.; Sääksjärvi, I.E.; Salo, M.; Juvonen, S.-K.; Salo, J.; Higgins, M. Amazonian Biodiversity and Protected Areas: Do They Meet? Biodivers. Conserv. 2007, 16, 3011–3051. [Google Scholar] [CrossRef]
- Le Tourneau, F.M. The Sustainability Challenges of Indigenous Territories in Brazil’s Amazonia. Curr. Opin. Environ. Sustain. 2015, 14, 213–220. [Google Scholar] [CrossRef]
- Edwards, D.P.; Tobias, J.A.; Sheil, D.; Meijaard, E.; Laurance, W.F. Maintaining Ecosystem Function and Services in Logged Tropical Forests. Trends Ecol. Evol. 2014, 29, 511–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valle Nunes, A.; Guariento, R.D.; Santos, B.A.; Fischer, E. Wild Meat Sharing among Non-Indigenous People in the Southwestern Amazon. Behav. Ecol. Sociobiol. 2019, 73, 26. [Google Scholar] [CrossRef]
- Holzner, A.; Ruppert, N.; Swat, F.; Schmidt, M.; Weiß, B.M.; Villa, G.; Mansor, A.; Mohd Sah, S.A.; Engelhardt, A.; Kühl, H.; et al. Macaques Can Contribute to Greener Practices in Oil Palm Plantations When Used as Biological Pest Control. Curr. Biol. 2019, 29, R1066–R1067. [Google Scholar] [CrossRef]
- Malhi, Y.; Doughty, C.E.; Goldsmith, G.R.; Metcalfe, D.B.; Girardin, C.A.J.; Marthews, T.R.; del Aguila-Pasquel, J.; Aragão, L.E.O.C.; Araujo-Murakami, A.; Brando, P.; et al. The Linkages between Photosynthesis, Productivity, Growth and Biomass in Lowland Amazonian Forests. Glob. Chang. Biol. 2015, 21, 2283–2295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powers, J.S.; Marín-Spiotta, E. Ecosystem Processes and Biogeochemical Cycles in Secondary Tropical Forest Succession. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 497–519. [Google Scholar] [CrossRef] [Green Version]
- Pawlik, Ł. The Role of Trees in the Geomorphic System of Forested Hillslopes — A Review. Earth-Science Rev. 2013, 126, 250–265. [Google Scholar] [CrossRef]
- Dainese, M.; Martin, E.A.; Aizen, M.A.; Albrecht, M.; Bartomeus, I.; Bommarco, R.; Carvalheiro, L.G.; Chaplin-Kramer, R.; Gagic, V.; Garibaldi, L.A.; et al. A Global Synthesis Reveals Biodiversity-Mediated Benefits for Crop Production. Sci. Adv. 2019, 5, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Lhoest, S.; Dufrêne, M.; Vermeulen, C.; Oszwald, J.; Doucet, J.L.; Fayolle, A. Perceptions of Ecosystem Services Provided by Tropical Forests to Local Populations in Cameroon. Ecosyst. Serv. 2019, 38, 100956. [Google Scholar] [CrossRef]
- Pandeya, B.; Buytaert, W.; Zulkafli, Z.; Karpouzoglou, T.; Mao, F.; Hannah, D.M. A Comparative Analysis of Ecosystem Services Valuation Approaches for Application at the Local Scale and in Data Scarce Regions. Ecosyst. Serv. 2016, 22, 250–259. [Google Scholar] [CrossRef] [Green Version]
- Balvanera, P.; Quijas, S.; Karp, D.S.; Ash, N.; Bennett, E.M.; Boumans, R.; Brown, C.; Chan, K.M.A.; Chaplin-Kramer, R.; Halpern, B.S.; et al. Ecosystem Services. In The GEO Handbook on Biodiversity Observation Networks; Walters, M., Scholes, R.J., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 39–78. ISBN 978-3-319-27288-7. [Google Scholar]
- Alamgir, M.; Turton, S.M.; Campbell, M.J.; Macgregor, C.J.; Pert, P.L. Spatial Congruence and Divergence between Ecosystem Services and Biodiversity in a Tropical Forested Landscape. Ecol. Indic. 2018, 93, 173–182. [Google Scholar] [CrossRef]
- Llerena-Montoya, S.; Velastegui-Montoya, A.; Zhirzhan-Azanza, B.; Herrera-Matamoros, V.; Adami, M.; De Lima, A.; Moscoso-Silva, F.; Encalada, L. Multitemporal Analysis of Land Use and Land Cover within an Oil Block in the Ecuadorian Amazon. ISPRS Int. J. Geo-Information 2021, 10, 191. [Google Scholar] [CrossRef]
- Turubanova, S.; Potapov, P.V.; Tyukavina, A.; Hansen, M.C. Ongoing Primary Forest Loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett. 2018, 13, 074028. [Google Scholar] [CrossRef]
- Alvarez-Berríos, N.L.; Mitchell Aide, T. Global Demand for Gold Is Another Threat for Tropical Forests. Environ. Res. Lett. 2015, 10, 014006. [Google Scholar] [CrossRef] [Green Version]
- Laurance, W.F.; Goosem, M.; Laurance, S.G.W. Impacts of Roads and Linear Clearings on Tropical Forests. Trends Ecol. Evol. 2009, 24, 659–669. [Google Scholar] [CrossRef] [PubMed]
- Fearnside, P.M. Greenhouse Gas Emissions from Brazil’s Amazonian Hydroelectric Dams. Environ. Res. Lett. 2016, 11, 7–10. [Google Scholar] [CrossRef]
- Velastegui-Montoya, A.; De Lima, A.; Adami, M. Multitemporal Analysis of Deforestation in Response to the Construction of the Tucuruí Dam. ISPRS Int. J. Geo-Information 2020, 9, 583. [Google Scholar] [CrossRef]
- Montoya, A.D.V.; De Lima, A.M.M.; Adami, M. Analysis of the Land Cover around a Hydroelectric Power Plant in the Brazilian Amazon. Anu. do Inst. Geociencias 2019, 42, 74–86. [Google Scholar] [CrossRef]
- Richards, P.; VanWey, L. Where Deforestation Leads to Urbanization: How Resource Extraction Is Leading to Urban Growth in the Brazilian Amazon. Ann. Assoc. Am. Geogr. 2015, 105, 806–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qaim, M.; Sibhatu, K.T.; Siregar, H.; Grass, I. Environmental, Economic, and Social Consequences of the Oil Palm Boom. Annu. Rev. Resour. Econ. 2020, 12, 321–344. [Google Scholar] [CrossRef]
- Velastegui-Montoya, A.; de Lima, A.; Herrera-Matamoros, V. What Is the Socioeconomic Impact of the Tucuruí Dam on Its Surrounding Municipalities? Sustainability 2022, 14, 1630. [Google Scholar] [CrossRef]
- Wulder, M.A.; Coops, N.C.; Roy, D.P.; White, J.C.; Hermosilla, T. Land Cover 2.0. Int. J. Remote Sens. 2018, 39, 4254–4284. [Google Scholar] [CrossRef] [Green Version]
- Patra, S.; Sahoo, S.; Mishra, P.; Mahapatra, S.C. Impacts of Urbanization on Land Use /Cover Changes and Its Probable Implications on Local Climate and Groundwater Level. J. Urban Manag. 2018, 7, 70–84. [Google Scholar] [CrossRef]
- Sajikumar, N.; Remya, R.S. Impact of Land Cover and Land Use Change on Runoff Characteristics. J. Environ. Manag. 2015, 161, 460–468. [Google Scholar] [CrossRef]
- Newbold, T.; Hudson, L.N.; Phillips, H.R.P.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Blandon, A.; Butchart, S.H.M.; Booth, H.L.; Day, J.; et al. A Global Model of the Response of Tropical and Sub-Tropical Forest Biodiversity to Anthropogenic Pressures. Proc. R. Soc. B Biol. Sci. 2014, 281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, K.M.; McCleery, R.A.; Binford, M.W.; Zweig, C. Land-Cover Change within and around Protected Areas in a Biodiversity Hotspot. J. Land Use Sci. 2016, 11, 154–176. [Google Scholar] [CrossRef]
- Rodtassana, C.; Unawong, W.; Yaemphum, S.; Chanthorn, W.; Chawchai, S.; Nathalang, A.; Brockelman, W.Y.; Tor-ngern, P. Different Responses of Soil Respiration to Environmental Factors across Forest Stages in a Southeast Asian Forest. Ecol. Evol. 2021, 11, 15430–15443. [Google Scholar] [CrossRef]
- Sharma, R.; Rimal, B.; Baral, H.; Nehren, U.; Paudyal, K.; Sharma, S.; Rijal, S.; Ranpal, S.; Acharya, R.; Alenazy, A.; et al. Impact of Land Cover Change on Ecosystem Services in a Tropical Forested Landscape. Resources 2019, 8, 18. [Google Scholar] [CrossRef] [Green Version]
- Bonilla-Bedoya, S.; Estrella-Bastidas, A.; Molina, J.R.; Herrera, M.Á. Socioecological System and Potential Deforestation in Western Amazon Forest Landscapes. Sci. Total Environ. 2018, 644, 1044–1055. [Google Scholar] [CrossRef] [PubMed]
- Schielein, J.; Ponzoni Frey, G.; Miranda, J.; de Souza, R.A.; Boerner, J.; Henderson, J. The Role of Accessibility for Land Use and Land Cover Change in the Brazilian Amazon. Appl. Geogr. 2021, 132, 102419. [Google Scholar] [CrossRef]
- Anandkumar, A.; Vijith, H.; Nagarajan, R.; Jonathan, M.P. Evaluation of Decadal Shoreline Changes in the Coastal Region of Miri, Sarawak, Malaysia. In Coastal Management; Elsevier: Amsterdam, The Netherlands, 2019; pp. 95–119. [Google Scholar]
- Rousta, I.; Sarif, M.O.; Gupta, R.D.; Olafsson, H.; Ranagalage, M.; Murayama, Y.; Zhang, H.; Mushore, T.D. Spatiotemporal Analysis of Land Use/Land Cover and Its Effects on Surface Urban Heat Island Using Landsat Data: A Case Study of Metropolitan City Tehran (1988-2018). Sustainability 2018, 10, 4433. [Google Scholar] [CrossRef] [Green Version]
- Gogoi, P.P.; Vinoj, V.; Swain, D.; Roberts, G.; Dash, J.; Tripathy, S. Land Use and Land Cover Change Effect on Surface Temperature over Eastern India. Sci. Rep. 2019, 9, 8859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, L.; Wei, J.; Duan, D.H.; Guo, Y.M.; Yang, D.X.; Jia, C.; Mi, X.T. Impact of Land-Use and Land-Cover Change on Urban Air Quality in Representative Cities of China. J. Atmos. Solar-Terrestrial Phys. 2016, 142, 43–54. [Google Scholar] [CrossRef]
- Talukdar, S.; Singha, P.; Shahfahad; Mahato, S.; Praveen, B.; Rahman, A. Dynamics of Ecosystem Services (ESs) in Response to Land Use Land Cover (LU/LC) Changes in the Lower Gangetic Plain of India. Ecol. Indic. 2020, 112, 106121. [Google Scholar] [CrossRef]
- Lai, S.-K. Effects of Land Use Plans on Urban Development: A Property Rights Approach. J. Urban Manag. 2020, 9, 1–5. [Google Scholar] [CrossRef]
- Gibb, R.; Redding, D.W.; Chin, K.Q.; Donnelly, C.A.; Blackburn, T.M.; Newbold, T.; Jones, K.E. Zoonotic Host Diversity Increases in Human-Dominated Ecosystems. Nature 2020, 584, 398–402. [Google Scholar] [CrossRef] [PubMed]
- Turkelboom, F.; Leone, M.; Jacobs, S.; Kelemen, E.; García-Llorente, M.; Baró, F.; Termansen, M.; Barton, D.N.; Berry, P.; Stange, E.; et al. When We Cannot Have It All: Ecosystem Services Trade-Offs in the Context of Spatial Planning. Ecosyst. Serv. 2018, 29, 566–578. [Google Scholar] [CrossRef]
- Marengo, J.A.; Souza, C.M.; Thonicke, K.; Burton, C.; Halladay, K.; Betts, R.A.; Alves, L.M.; Soares, W.R. Changes in Climate and Land Use Over the Amazon Region: Current and Future Variability and Trends. Front. Earth Sci. 2018, 6, 1–21. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote Sensing for Agricultural Applications: A Meta-Review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Anderson, C.B. Biodiversity Monitoring, Earth Observations and the Ecology of Scale. Ecol. Lett. 2018, 21, 1572–1585. [Google Scholar] [CrossRef] [PubMed]
- Chishugi, D.U.; Sonwa, D.J.; Kahindo, J.-M.; Itunda, D.; Chishugi, J.B.; Félix, F.L.; Sahani, M. How Climate Change and Land Use/Land Cover Change Affect Domestic Water Vulnerability in Yangambi Watersheds (D. R. Congo). Land 2021, 10, 165. [Google Scholar] [CrossRef]
- Pang, S.E.H.; De Alban, J.D.T.; Webb, E.L. Effects of Climate Change and Land Cover on the Distributions of a Critical Tree Family in the Philippines. Sci. Rep. 2021, 11, 276. [Google Scholar] [CrossRef] [PubMed]
- Brovelli, M.A.; Sun, Y.; Yordanov, V. Monitoring Forest Change in the Amazon Using Multi-Temporal Remote Sensing Data and Machine Learning Classification on Google Earth Engine. ISPRS Int. J. Geo-Information 2020, 9, 580. [Google Scholar] [CrossRef]
- Bullock, E.L.; Woodcock, C.E.; Olofsson, P. Monitoring Tropical Forest Degradation Using Spectral Unmixing and Landsat Time Series Analysis. Remote Sens. Environ. 2020, 238, 110968. [Google Scholar] [CrossRef]
- Fonseca Morello, T.; Marchetti Ramos, R.; Anderson, L.O.; Owen, N.; Rosan, T.M.; Steil, L. Predicting Fires for Policy Making: Improving Accuracy of Fire Brigade Allocation in the Brazilian Amazon. Ecol. Econ. 2020, 169, 106501. [Google Scholar] [CrossRef]
- Rudke, A.P.; Sikora de Souza, V.A.; dos Santos, A.M.; Freitas Xavier, A.C.; Rotunno Filho, O.C.; Martins, J.A. Impact of Mining Activities on Areas of Environmental Protection in the Southwest of the Amazon: A GIS- and Remote Sensing-Based Assessment. J. Environ. Manag. 2020, 263, 110392. [Google Scholar] [CrossRef]
- Arantes, C.C.; Winemiller, K.O.; Petrere, M.; Castello, L.; Hess, L.L.; Freitas, C.E.C. Relationships between Forest Cover and Fish Diversity in the Amazon River Floodplain. J. Appl. Ecol. 2018, 55, 386–395. [Google Scholar] [CrossRef]
- Chapman, P.M.; Tobias, J.A.; Edwards, D.P.; Davies, R.G. Contrasting Impacts of Land-Use Change on Phylogenetic and Functional Diversity of Tropical Forest Birds. J. Appl. Ecol. 2018, 55, 1604–1614. [Google Scholar] [CrossRef] [Green Version]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to Conduct a Bibliometric Analysis: An Overview and Guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Mortazavi, S.; Eslami, M.H.; Hajikhani, A.; Väätänen, J. Mapping Inclusive Innovation: A Bibliometric Study and Literature Review. J. Bus. Res. 2021, 122, 736–750. [Google Scholar] [CrossRef]
- Zupic, I.; Čater, T. Bibliometric Methods in Management and Organization. Organ. Res. Methods 2015, 18, 429–472. [Google Scholar] [CrossRef]
- Juárez-Orozco, S.M.; Siebe, C.; Fernández y Fernández, D. Causes and Effects of Forest Fires in Tropical Rainforests: A Bibliometric Approach. Trop. Conserv. Sci. 2017, 10, 1–4. [Google Scholar] [CrossRef]
- Kandus, P.; Minotti, P.G.; Morandeira, N.S.; Grimson, R.; González Trilla, G.; González, E.B.; San Martín, L.; Gayol, M.P. Remote Sensing of Wetlands in South America: Status and Challenges. Int. J. Remote Sens. 2018, 39, 993–1016. [Google Scholar] [CrossRef]
- Aleixandre-Benavent, R.; Aleixandre-Tudó, J.L.; Castelló-Cogollos, L.; Aleixandre, J.L. Trends in Global Research in Deforestation. A Bibliometric Analysis. Land use policy 2018, 72, 293–302. [Google Scholar] [CrossRef]
- Montalván-Burbano, N.; Velastegui-Montoya, A.; Gurumendi-Noriega, M.; Morante-Carballo, F.; Adami, M. Worldwide Research on Land Use and Land Cover in the Amazon Region. Sustainability 2021, 13, 6039. [Google Scholar] [CrossRef]
- Sasmito, S.D.; Taillardat, P.; Fong, L.S.; Ren, J.W.F.; Sundahl, H.; Wijedasa, L.; Bandla, A.; Arifin-Wong, N.; Sudarshan, A.S.; Tarigan, S.; et al. Terrestrial and Aquatic Carbon Dynamics in Tropical Peatlands under Different Land Use Types: A Systematic Review Protocol. Forests 2021, 12, 1298. [Google Scholar] [CrossRef]
- Corlett, R.T. Tropical Forests. In eLS; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Hansen, A.J.; Burns, P.; Ervin, J.; Goetz, S.J.; Hansen, M.; Venter, O.; Watson, J.E.M.; Jantz, P.A.; Virnig, A.L.S.; Barnett, K.; et al. A Policy-Driven Framework for Conserving the Best of Earth’s Remaining Moist Tropical Forests. Nat. Ecol. Evol. 2020, 4, 1377–1384. [Google Scholar] [CrossRef] [PubMed]
- FAO. Global Forest Resources Assessment 2020; FAO: Rome, Italy, 2020; ISBN 978-92-5-132974-0. [Google Scholar]
- Linnenluecke, M.K.; Marrone, M.; Singh, A.K. Conducting Systematic Literature Reviews and Bibliometric Analyses. Aust. J. Manag. 2020, 45, 175–194. [Google Scholar] [CrossRef]
- Tranfield, D.; Denyer, D.; Smart, P. Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Szomszor, M.; Adams, J.; Fry, R.; Gebert, C.; Pendlebury, D.A.; Potter, R.W.K.; Rogers, G. Interpreting Bibliometric Data. Front. Res. Metrics Anal. 2021, 5. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Y.; Wang, Y.; Pan, C. Hot Topics and Emerging Trends in Tourism Forecasting Research: A Scientometric Review. Tour. Econ. 2019, 25, 448–468. [Google Scholar] [CrossRef]
- Moral-Muñoz, J.A.; Herrera-Viedma, E.; Santisteban-Espejo, A.; Cobo, M.J. Software Tools for Conducting Bibliometric Analysis in Science: An up-to-Date Review. El Prof. la Inf. 2020, 29, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.P.; Hultink, E.J. The Circular Economy – A New Sustainability Paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef]
- Payán-Sánchez, B.; Belmonte-Ureña, L.J.; Plaza-úbeda, J.A.; Vazquez-Brust, D.; Yakovleva, N.; Pérez-Valls, M. Open Innovation for Sustainability or Not: Literature Reviews of Global Research Trends. Sustainability 2021, 13, 1136. [Google Scholar] [CrossRef]
- Su, X.; Li, X.; Kang, Y. A Bibliometric Analysis of Research on Intangible Cultural Heritage Using CiteSpace. SAGE Open 2019, 9, 215824401984011. [Google Scholar] [CrossRef] [Green Version]
- Álvarez-García, J.; Maldonado-Erazo, C.P.; Río-Rama, M. de la C. Del; Castellano-Álvarez, F.J. Cultural Heritage and Tourism Basis for Regional Development: Mapping of Scientific Coverage. Sustainability 2019, 11, 6034. [Google Scholar] [CrossRef] [Green Version]
- Pinos, J.; Quesada-Román, A. Flood Risk-Related Research Trends in Latin America and the Caribbean. Water 2022, 14, 10. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Montalván-Burbano, N.; Carrión-Mero, P.; Jaya-Montalvo, M.; Gurumendi-Noriega, M. Worldwide Research on Geoparks through Bibliometric Analysis. Sustainability 2021, 13, 1175. [Google Scholar] [CrossRef]
- Blettler, M.C.M.; Abrial, E.; Khan, F.R.; Sivri, N.; Espinola, L.A. Freshwater Plastic Pollution: Recognizing Research Biases and Identifying Knowledge Gaps. Water Res. 2018, 143, 416–424. [Google Scholar] [CrossRef] [Green Version]
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; López-Serrano, M.J. Advances in Water Use Efficiency in Agriculture: A Bibliometric Analysis. Water 2018, 10, 377. [Google Scholar] [CrossRef] [Green Version]
- Punnakitikashem, P.; Hallinger, P. Bibliometric Review of the Knowledge Base on Healthcare Management for Sustainability, 1994-2018. Sustainability 2020, 12, 205. [Google Scholar] [CrossRef] [Green Version]
- Newell, J.P.; Cousins, J.J. The Boundaries of Urban Metabolism. Prog. Hum. Geogr. 2015, 39, 702–728. [Google Scholar] [CrossRef] [Green Version]
- Van der Meer, F. Remote-Sensing Image Analysis and Geostatistics. Int. J. Remote Sens. 2012, 33, 5644–5676. [Google Scholar] [CrossRef]
- Guerra, A.; Reis, L.K.; Borges, F.L.G.; Ojeda, P.T.A.; Pineda, D.A.M.; Miranda, C.O.; de Maidana, D.P.F.L.; dos Santos, T.M.R.; Shibuya, P.S.; Marques, M.C.M.; et al. Ecological Restoration in Brazilian Biomes: Identifying Advances and Gaps. For. Ecol. Manag. 2020, 458, 117802. [Google Scholar] [CrossRef]
- Huang, L.; Zhou, M.; Lv, J.; Chen, K. Trends in Global Research in Forest Carbon Sequestration: A Bibliometric Analysis. J. Clean. Prod. 2020, 252, 119908. [Google Scholar] [CrossRef]
- Malhado, A.C.M.; de Azevedo, R.S.D.; Todd, P.A.; Santos, A.M.C.; Fabré, N.N.; Batista, V.S.; Aguiar, L.J.G.; Ladle, R.J. Geographic and Temporal Trends in Amazonian Knowledge Production. Biotropica 2014, 46, 6–13. [Google Scholar] [CrossRef]
- Andrés, A. Introduction. In Measuring Academic Research; Elsevier: Amsterdam, The Netherlands, 2009; pp. 1–12. [Google Scholar]
- Baminiwatta, A.; Solangaarachchi, I. Trends and Developments in Mindfulness Research over 55 Years: A Bibliometric Analysis of Publications Indexed in Web of Science. Mindfulness (N. Y). 2021, 12, 2099–2116. [Google Scholar] [CrossRef] [PubMed]
- Caputo, A.; Kargina, M. A User-Friendly Method to Merge Scopus and Web of Science Data during Bibliometric Analysis. J. Mark. Anal. 2021. [Google Scholar] [CrossRef]
- Vera-Baceta, M.-A.; Thelwall, M.; Kousha, K. Web of Science and Scopus Language Coverage. Scientometrics 2019, 121, 1803–1813. [Google Scholar] [CrossRef]
- Baas, J.; Schotten, M.; Plume, A.; Côté, G.; Karimi, R. Scopus as a Curated, High-Quality Bibliometric Data Source for Academic Research in Quantitative Science Studies. Quant. Sci. Stud. 2020, 1, 377–386. [Google Scholar] [CrossRef]
- Bozkurt, A.; Koseoglu, S.; Singh, L. An Analysis of Peer Reviewed Publications on Openness in Education in Half a Century: Trends and Patterns in the Open Hemisphere. Australas. J. Educ. Technol. 2019, 35, 78–97. [Google Scholar] [CrossRef]
- Pranckutė, R. Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World. Publications 2021, 9, 12. [Google Scholar] [CrossRef]
- Carrión-Mero, P.; Montalván-Burbano, N.; Herrera-Narváez, G.; Morante-Carballo, F. Geodiversity and Mining towards the Development of Geotourism: A Global Perspective. Int. J. Des. Nat. Ecodynamics 2021, 16, 191–201. [Google Scholar] [CrossRef]
- Si, H.; Shi, J.; Tang, D.; Wen, S.; Miao, W.; Duan, K. Application of the Theory of Planned Behavior in Environmental Science: A Comprehensive Bibliometric Analysis. Int. J. Environ. Res. Public Health 2019, 16, 2788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, R.; Gao, S.; Cheshmehzangi, A.; Aboagye-Nimo, E. A Holistic Review of Off-Site Construction Literature Published between 2008 and 2018. J. Clean. Prod. 2018, 202, 1202–1219. [Google Scholar] [CrossRef] [Green Version]
- Oraee, M.; Hosseini, M.R.; Papadonikolaki, E.; Palliyaguru, R.; Arashpour, M. Collaboration in BIM-Based Construction Networks: A Bibliometric-Qualitative Literature Review. Int. J. Proj. Manag. 2017, 35, 1288–1301. [Google Scholar] [CrossRef]
- Martín-Martín, A.; Orduna-Malea, E.; Thelwall, M.; Delgado López-Cózar, E. Google Scholar, Web of Science, and Scopus: A Systematic Comparison of Citations in 252 Subject Categories. J. Informetr. 2018, 12, 1160–1177. [Google Scholar] [CrossRef] [Green Version]
- Calma, A.; Davies, M. Academy of Management Journal, 1958–2014: A Citation Analysis. Scientometrics 2016, 108, 959–975. [Google Scholar] [CrossRef]
- Muhuri, P.K.; Shukla, A.K.; Abraham, A. Industry 4.0: A Bibliometric Analysis and Detailed Overview. Eng. Appl. Artif. Intell. 2019, 78, 218–235. [Google Scholar] [CrossRef]
- Najmi, A.; Rashidi, T.H.; Abbasi, A.; Travis Waller, S. Reviewing the Transport Domain: An Evolutionary Bibliometrics and Network Analysis. Scientometrics 2017, 110, 843–865. [Google Scholar] [CrossRef]
- Hallinger, P.; Kovačević, J. A Bibliometric Review of Research on Educational Administration: Science Mapping the Literature, 1960 to 2018. Rev. Educ. Res. 2019, 89, 335–369. [Google Scholar] [CrossRef]
- Sweileh, W.M.; Al-Jabi, S.W.; AbuTaha, A.S.; Zyoud, S.H.; Anayah, F.M.A.; Sawalha, A.F. Bibliometric Analysis of Worldwide Scientific Literature in Mobile - Health: 2006–2016. BMC Med. Inform. Decis. Mak. 2017, 17, 72. [Google Scholar] [CrossRef] [Green Version]
- Carrión-Mero, P.; Montalván-Burbano, N.; Morante-Carballo, F.; Quesada-Román, A.; Apolo-Masache, B. Worldwide Research Trends in Landslide Science. Int. J. Environ. Res. Public Health 2021, 18, 9445. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Visualizing Bibliometric Networks BT - Measuring Scholarly Impact: Methods and Practice; Ding, Y., Rousseau, R., Wolfram, D., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 285–320. ISBN 978-3-319-10377-8. [Google Scholar]
- Waltman, L.; van Eck, N.J.; Noyons, E.C.M. A Unified Approach to Mapping and Clustering of Bibliometric Networks. J. Informetr. 2010, 4, 629–635. [Google Scholar] [CrossRef] [Green Version]
- van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duque-Acevedo, M.; Belmonte-Ureña, L.J.; Cortés-García, F.J.; Camacho-Ferre, F. Agricultural Waste: Review of the Evolution, Approaches and Perspectives on Alternative Uses. Glob. Ecol. Conserv. 2020, 22. [Google Scholar] [CrossRef]
- Kavle, R.R.; Pritchard, E.T.M.; Bekhit, A.E.-D.A.; Carne, A.; Agyei, D. Edible Insects: A Bibliometric Analysis and Current Trends of Published Studies (1953–2021). Int. J. Trop. Insect Sci. 2022. [Google Scholar] [CrossRef]
- Mishra, H.G.; Pandita, S.; Bhat, A.A.; Mishra, R.K.; Sharma, S. Tourism and Carbon Emissions: A Bibliometric Review of the Last Three Decades: 1990–2021. Tour. Rev. 2022, 77, 636–658. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. An Approach for Detecting, Quantifying, and Visualizing the Evolution of a Research Field: A Practical Application to the Fuzzy Sets Theory Field. J. Informetr. 2011, 5, 146–166. [Google Scholar] [CrossRef]
- Morante-Carballo, F.; Montalván-Burbano, N.; Carrión-Mero, P.; Jácome-Francis, K. Worldwide Research Analysis on Natural Zeolites as Environmental Remediation Materials. Sustainability 2021, 13, 6378. [Google Scholar] [CrossRef]
- Liu, C.; Li, K. Mapping the Field: A Bibliometric Analysis of Land Use and Carbon Emissions (LUCE) Research from 1987 to 2018. Libr. Hi Tech 2021, 39, 396–411. [Google Scholar] [CrossRef]
- Ye, C. Bibliometrical Analysis of International Big Data Research: Based on Citespace and VOSviewer. In Proceedings of the 2018 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Huangshan, China, 28–30 July 2018; pp. 927–932. [Google Scholar]
- Morante-Carballo, F.; Montalván-Burbano, N.; Carrión-Mero, P.; Espinoza-Santos, N. Cation Exchange of Natural Zeolites: Worldwide Research. Sustainability 2021, 13, 7751. [Google Scholar] [CrossRef]
- Batistič, S.; Kaše, R. The Organizational Socialization Field Fragmentation: A Bibliometric Review. Scientometrics 2015, 104, 121–146. [Google Scholar] [CrossRef]
- Denevan, W. The Causes and Consequences of Shifting Cultivation in Relation to Tropical Forest Survival. Publ. Ser. Conf. Lat. Am. Geogr. 1978, 7, 67–82. [Google Scholar]
- Grenzebach, K. Population Pressure and Areas of Potential Rural Development in Southern Nigeria. Geo J. 1978, 2, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Roche, l. Forestry and the Conservation of Plants and Animals in the Tropics. For. Ecol. Manag. 1979, 2, 103–122. [Google Scholar] [CrossRef]
- Steinlin, H. Development of New Agro- Forestry Land Use Systems in the Humid Tropics. Plant Res. Dev. 1979, 10, 7–17. [Google Scholar]
- Matthews, E. Global Vegetation and Land Use: New High-Resolution Data Bases for Climate Studies. J. Clim. Appl. Meteorol. 1983, 22, 474–487. [Google Scholar] [CrossRef]
- Detwiler, R.P.; Hall, C.A.S. Tropical Forests and the Global Carbon Cycle. Science 1988, 239, 42–47. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Melack, J.M.; Dobson, M.C. The Use of Imaging Radars for Applications A Review Ecological; ©Elsevier Science Inc.: New York, NY, USA, 1996; Volume 59. [Google Scholar]
- Moran, E.F.; Brondizio, E.; Mausel, P.; Wu, Y. Integrating Amazonian Vegetation, Land-Use, and Satellite Data. Bioscience 1994, 44, 329–338. [Google Scholar] [CrossRef]
- Pfaff, A.S.P. What Drives Deforestation in the Brazilian Amazon? J. Environ. Econ. Manag. 1999, 37, 26–43. [Google Scholar] [CrossRef]
- Aide, T.M.; Zimmerman, J.K.; Herrera, L.; Rosario, M.; Serrano, M. Forest Recovery in Abandoned Tropical Pastures in Puerto Rico. For. Ecol. Manag. 1995, 77, 77–86. [Google Scholar] [CrossRef]
- Brown, K. Diversity, Disturbance, and Sustainable Use of Neotropical Forests: Insects as Indicators for Conservation Monitoring. J. Insect Conserv. 1997, 1, 25–42. [Google Scholar] [CrossRef]
- Brown, S.; Lugo, A.E. Tropical Secondary Forests. J. Trop. Ecol. 1990, 6, 1–32. [Google Scholar] [CrossRef]
- Hughes, R.F.; Kauffman, J.B.; Jaramillo, V.J. Biomass, Carbon, and Nutrient Dynamics of Secondary Forests in a Humid Tropical Region of Mexico. Ecology 1999, 80, 1892–1907. [Google Scholar]
- Nepstad, D.C.; de Carvalho, C.R.; Davidson, E.A.; Jipp, P.H.; Lefebvre, P.A.; Negreiros, G.H.; da Silva, E.D.; Stone, T.A.; Trumbore, S.E.; Vieira, S. The Role of Deep Roots in the Hydrological and Carbon Cycles of Amazonian Forests and Pastures. Nature 1994, 372, 666–669. [Google Scholar] [CrossRef]
- Fearnside, P.M.; Imbrozio Barbosa, R. Soil Carbon Changes from Conversion of Forest to Pasture in Brazilian Amazonia. For. Ecol. Manag. 1998, 108, 147–166. [Google Scholar] [CrossRef]
- Houghton, R.A. The Annual Net Flux of Carbon to the Atmosphere from Changes in Land Use 1850–1990. Tellus B Chem. Phys. Meteorol. 1999, 51, 298–313. [Google Scholar] [CrossRef] [Green Version]
- Neill, C.; Melillo, J.M.; Steudler, P.A.; Cerri, C.C.; de Moraes, J.F.L.; Piccolo, M.C.; Brito, M. Soil Carbon and Nitrogen Stocks Following Forest Clearing for Pasture in the Southwestern Brazilian Amazon. Ecol. Appl. 1997, 7, 1216. [Google Scholar] [CrossRef]
- Verchot, L.V.; Davidson, E.A.; Cattânio, H.; Ackerman, I.L.; Erickson, H.E.; Keller, M. Land Use Change and Biogeochemical Controls of Nitrogen Oxide Emissions from Soils in Eastern Amazonia. Global Biogeochem. Cycles 1999, 13, 31–46. [Google Scholar] [CrossRef]
- Cochrane, M.A.; Alencar, A.; Schulze, M.D.; Souza, C.M.; Nepstad, D.C.; Lefebvre, P.; Davidson, E.A. Positive Feedbacks in the Fire Dynamic of Closed Canopy Tropical Forests. Science 1999, 284, 1832–1835. [Google Scholar] [CrossRef]
- De Castro, E.; Kauffman, J. Ecosystem Structure in the Brazilian Cerrado: A Vegetation Gradient of Aboveground Biomass, Root Mass and Consumption by Fire. J. Trop. Ecol. 1998, 14, 263–283. [Google Scholar] [CrossRef]
- Nepstad, D.C.; Verssimo, A.; Alencar, A.; Nobre, C.; Lima, E.; Lefebvre, P.; Schlesinger, P.; Potter, C.; Moutinho, P.; Mendoza, E.; et al. Large-Scale Impoverishment of Amazonian Forests by Logging and Fire. Nature 1999, 398, 505–508. [Google Scholar] [CrossRef]
- Klink, C.A.; Machado, R.B. Conservation of the Brazilian Cerrado. Conserv. Biol. 2005, 19, 707–713. [Google Scholar] [CrossRef]
- Feddema, J.J.; Oleson, K.W.; Bonan, G.B.; Mearns, L.O.; Buja, L.E.; Meehl, G.A.; Washington, W.M. The Importance of Land-Cover Change in Simulating Future Climates. Science 2005, 310, 1674–1678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawton, R.O.; Nair, U.S.; Pielke, R.A.; Welch, R.M. Climatic Impact of Tropical Lowland Deforestation on Nearby Montane Cloud Forests. Science 2001, 294, 584–587. [Google Scholar] [CrossRef] [PubMed]
- Scholze, M.; Knorr, W.; Arnell, N.W.; Prentice, I.C. A Climate-Change Risk Analysis for World Ecosystems. Proc. Natl. Acad. Sci. USA 2006, 103, 13116–13120. [Google Scholar] [CrossRef] [Green Version]
- Chazdon, R.L. Tropical Forest Recovery: Legacies of Human Impact and Natural Disturbances. Perspect. Plant Ecol. Evol. Syst. 2003, 6, 51–71. [Google Scholar] [CrossRef] [Green Version]
- Gardner, T.A.; Barlow, J.; Chazdon, R.; Ewers, R.M.; Harvey, C.A.; Peres, C.A.; Sodhi, N.S. Prospects for Tropical Forest Biodiversity in a Human-Modified World. Ecol. Lett. 2009, 12, 561–582. [Google Scholar] [CrossRef] [Green Version]
- Fearnside, P.M. Soybean Cultivation as a Threat to the Environment in Brazil. Environ. Conserv. 2001, 28, 23–38. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Aide, T.M.; Ma, Y.; Liu, W.; Cao, M. Demand for Rubber Is Causing the Loss of High Diversity Rain Forest in SW China. Biodivers. Conserv. 2007, 16, 1731–1745. [Google Scholar] [CrossRef]
- Martinelli, L.A.; Filoso, S. Expansion of Sugarcane Ethanol Production In Brazil: Environmental and Social Challenges. Ecol. Appl. 2008, 18, 885–898. [Google Scholar] [CrossRef] [Green Version]
- U.S. Geological Survey. Available online: https://www.usgs.gov/ (accessed on 12 July 2022).
- NASA Earth Data. Available online: https://www.earthdata.nasa.gov/ (accessed on 11 July 2022).
- Baccini, A.; Walker, W.; Carvalho, L.; Farina, M.; Sulla-Menashe, D.; Houghton, R.A. Tropical Forests Are a Net Carbon Source Based on Aboveground Measurements of Gain and Loss. Science 2017, 358, 230–234. [Google Scholar] [CrossRef] [Green Version]
- Dargie, G.C.; Lewis, S.L.; Lawson, I.T.; Mitchard, E.T.A.; Page, S.E.; Bocko, Y.E.; Ifo, S.A. Age, Extent and Carbon Storage of the Central Congo Basin Peatland Complex. Nature 2017, 542, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asner, G.P.; Powell, G.V.N.; Mascaro, J.; Knapp, D.E.; Clark, J.K.; Jacobson, J.; Kennedy-Bowdoin, T.; Balaji, A.; Paez-Acosta, G.; Victoria, E.; et al. High-Resolution Forest Carbon Stocks and Emissions in the Amazon. Proc. Natl. Acad. Sci. USA 2010, 107, 16738–16742. [Google Scholar] [CrossRef] [PubMed]
- Baccini, A.; Goetz, S.J.; Walker, W.S.; Laporte, N.T.; Sun, M.; Sulla-Menashe, D.; Hackler, J.; Beck, P.S.A.; Dubayah, R.; Friedl, M.A.; et al. Estimated Carbon Dioxide Emissions from Tropical Deforestation Improved by Carbon-Density Maps. Nat. Clim. Chang. 2012, 2, 182–185. [Google Scholar] [CrossRef]
- Schimel, D.; Stephens, B.B.; Fisher, J.B. Effect of Increasing CO 2 on the Terrestrial Carbon Cycle. Proc. Natl. Acad. Sci. USA 2015, 112, 436–441. [Google Scholar] [CrossRef] [Green Version]
- Gibson, L.; Lee, T.M.; Koh, L.P.; Brook, B.W.; Gardner, T.A.; Barlow, J.; Peres, C.A.; Bradshaw, C.J.A.; Laurance, W.F.; Lovejoy, T.E.; et al. Primary Forests Are Irreplaceable for Sustaining Tropical Biodiversity. Nature 2011, 478, 378–381. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keenan, R.J.; Reams, G.A.; Achard, F.; de Freitas, J.V.; Grainger, A.; Lindquist, E. Dynamics of Global Forest Area: Results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manag. 2015, 352, 9–20. [Google Scholar] [CrossRef]
- Dubayah, R.O.; Sheldon, S.L.; Clark, D.B.; Hofton, M.A.; Blair, J.B.; Hurtt, G.C.; Chazdon, R.L. Estimation of Tropical Forest Height and Biomass Dynamics Using Lidar Remote Sensing at La Selva, Costa Rica. J. Geophys. Res. Biogeosciences 2010, 115, 1–17. [Google Scholar] [CrossRef]
- Mitchard, E.T.A.; Feldpausch, T.R.; Brienen, R.J.W.; Lopez-Gonzalez, G.; Monteagudo, A.; Baker, T.R.; Lewis, S.L.; Lloyd, J.; Quesada, C.A.; Gloor, M.; et al. Markedly Divergent Estimates of Amazon Forest Carbon Density from Ground Plots and Satellites. Glob. Ecol. Biogeogr. 2014, 23, 935–946. [Google Scholar] [CrossRef] [Green Version]
- Yuan, W.; Liu, S.; Yu, G.; Bonnefond, J.-M.; Chen, J.; Davis, K.; Desai, A.R.; Goldstein, A.H.; Gianelle, D.; Rossi, F.; et al. Global Estimates of Evapotranspiration and Gross Primary Production Based on MODIS and Global Meteorology Data. Remote Sens. Environ. 2010, 114, 1416–1431. [Google Scholar] [CrossRef] [Green Version]
- Arima, E.Y.; Barreto, P.; Araújo, E.; Soares-Filho, B. Public Policies Can Reduce Tropical Deforestation: Lessons and Challenges from Brazil. Land use policy 2014, 41, 465–473. [Google Scholar] [CrossRef]
- Holl, K.D.; Aide, T.M. When and Where to Actively Restore Ecosystems? For. Ecol. Manag. 2011, 261, 1558–1563. [Google Scholar] [CrossRef]
- Porter-Bolland, L.; Ellis, E.A.; Guariguata, M.R.; Ruiz-Mallén, I.; Negrete-Yankelevich, S.; Reyes-García, V. Community Managed Forests and Forest Protected Areas: An Assessment of Their Conservation Effectiveness across the Tropics. For. Ecol. Manag. 2012, 268, 6–17. [Google Scholar] [CrossRef]
- Price, D.; de Solla Price, D. Little Science, Big Science-- and Beyond; Columbia University Press: New York, NY, USA, 1986; ISBN 9780231049566. [Google Scholar]
- Shan, W.; Wang, J. Mapping the Landscape and Evolutions of Green Supply Chain Management. Sustainability 2018, 10, 597. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, H.K.; Ruesch, A.S.; Achard, F.; Clayton, M.K.; Holmgren, P.; Ramankutty, N.; Foley, J.A. Tropical Forests Were the Primary Sources of New Agricultural Land in the 1980s and 1990s. Proc. Natl. Acad. Sci. USA 2010, 107, 16732–16737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houghton, R.A. Aboveground Forest Biomass and the Global Carbon Balance. Glob. Chang. Biol. 2005, 11, 945–958. [Google Scholar] [CrossRef]
- Gu, Z.; Meng, F.; Farrukh, M. Mapping the Research on Knowledge Transfer: A Scientometrics Approach. IEEE Access 2021, 9, 34647–34659. [Google Scholar] [CrossRef]
- Vieira, I.C.G.; De Almeida, A.S.; Davidson, E.A.; Stone, T.A.; Reis De Carvalho, C.J.; Guerrero, J.B. Classifying Successional Forests Using Landsat Spectral Properties and Ecological Characteristics in Eastern Amazônia. Remote Sens. Environ. 2003, 87, 470–481. [Google Scholar] [CrossRef]
- Neill, C.; Deegan, L.A.; Thomas, S.M.; Cerri, C.C. Deforestation for Pasture Alters Nitrogen and Phosphorus in Small Amazonian Streams. Ecol. Appl. 2001, 11, 1817–1828. [Google Scholar] [CrossRef]
- Nepstad, D.; McGrath, D.; Stickler, C.; Alencar, A.; Azevedo, A.; Swette, B.; Bezerra, T.; DiGiano, M.; Shimada, J.; Da Motta, R.S.; et al. Slowing Amazon Deforestation through Public Policy and Interventions in Beef and Soy Supply Chains. Science 2014, 344, 1118–1123. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.; Sabol, D.; Kapos, V.; Almeida, R.; Roberts, D.; Smith, M.; Gillespie, A. Classification of Multispectral Images Based on Fractions of Endmembers: Application to Land-Cover Change in the Brazilian Amazon. Remote Sens. Environ. 1995, 52, 137–154. [Google Scholar] [CrossRef]
- Souza, C.M.; Siqueira, J.V.; Sales, M.H.; Fonseca, A.V.; Ribeiro, J.G.; Numata, I.; Cochrane, M.A.; Barber, C.P.; Roberts, D.A.; Barlow, J. Ten-Year Landsat Classification of Deforestation and Forest Degradation in the Brazilian Amazon. Remote Sens. 2013, 5, 5493–5513. [Google Scholar] [CrossRef]
- Dawson, N.; Martin, A. Assessing the Contribution of Ecosystem Services to Human Wellbeing: A Disaggregated Study in Western Rwanda. Ecol. Econ. 2015, 117, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Scales, B.R.; Marsden, S.J. Biodiversity in Small-Scale Tropical Agroforests: A Review of Species Richness and Abundance Shifts and the Factors Influencing Them. Environ. Conserv. 2008, 35, 160–172. [Google Scholar] [CrossRef]
- Mayle, F.E.; Langstroth, R.P.; Fisher, R.A.; Meir, P. Long-Term Forest-Savannah Dynamics in the Bolivian Amazon: Implications for Conservation. Philos. Trans. R. Soc. B Biol. Sci. 2007, 362, 291–307. [Google Scholar] [CrossRef] [Green Version]
- Pellier, A.S.; Wells, J.A.; Abram, N.K.; Gaveau, D.; Meijaard, E. Through the Eyes of Children: Perceptions of Environmental Change in Tropical Forests. PLoS ONE 2014, 9, e22722. [Google Scholar] [CrossRef]
- Nelson, A.; Chomitz, K.M. Effectiveness of Strict vs. Multiple Use Protected Areas in Reducing Tropical Forest Fires: A Global Analysis Using Matching Methods. PLoS ONE 2011, 6, e103005. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Pattnaik, D. Forty-Five Years of Journal of Business Research: A Bibliometric Analysis. J. Bus. Res. 2020, 109, 1–14. [Google Scholar] [CrossRef]
- Morton, D.C.; DeFries, R.S.; Shimabukuro, Y.E.; Anderson, L.O.; Arai, E.; Del Bon Espirito-Santo, F.; Freitas, R.; Morisette, J. Cropland Expansion Changes Deforestation Dynamics in the Southern Brazilian Amazon. Proc. Natl. Acad. Sci. USA 2006, 103, 14637–14641. [Google Scholar] [CrossRef] [Green Version]
- Beuchle, R.; Grecchi, R.C.; Shimabukuro, Y.E.; Seliger, R.; Eva, H.D.; Sano, E.; Achard, F. Land Cover Changes in the Brazilian Cerrado and Caatinga Biomes from 1990 to 2010 Based on a Systematic Remote Sensing Sampling Approach. Appl. Geogr. 2015, 58, 116–127. [Google Scholar] [CrossRef]
- Macedo, M.N.; DeFries, R.S.; Morton, D.C.; Stickler, C.M.; Galford, G.L.; Shimabukuro, Y.E. Decoupling of Deforestation and Soy Production in the Southern Amazon during the Late 2000s. Proc. Natl. Acad. Sci. USA 2012, 109, 1341–1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimabukuro, Y.E.; Duarte, V.; Arai, E.; Freitas, R.M.; Martini, P.R.; Lima, A. Monitoring Land Cover in Acre State, Western Brazilian Amazonia, Using Multitemporal Remote Sensing Data. Int. J. Image Data Fusion 2010, 1, 325–335. [Google Scholar] [CrossRef]
- Almeida-Filho, R.; Shimabukuro, Y.E. Digital Processing of a Landsat-TM Time Series for Mapping and Monitoring Degraded Areas Caused by Independent Gold Miners, Roraima State, Brazilian Amazon. Remote Sens. Environ. 2002, 79, 42–50. [Google Scholar] [CrossRef]
- Anderson, L.O.; Malhi, Y.; Ladle, R.J.; Aragão, L.E.O.C.; Shimabukuro, Y.; Phillips, O.L.; Baker, T.; Costa, A.C.L.; Espejo, J.S.; Higuchi, N.; et al. Influence of Landscape Heterogeneity on Spatial Patterns of Wood Productivity, Wood Specific Density and above Ground Biomass in Amazonia. Biogeosciences 2009, 6, 1883–1902. [Google Scholar] [CrossRef] [Green Version]
- Mataveli, G.A.V.; Pereira, G.; Chaves, M.E.D.; Cardozo, F. da S.; Stark, S.C.; Shimabukuro, Y.E.; Aragão, L.E.O.C.; de Oliveira, G.; Chen, J.M. Deforestation and Land Use and Land Cover Changes in Protected Areas of the Brazilian Cerrado: Impacts on the Fire-Driven Emissions of Fine Particulate Aerosols Pollutants. Remote Sens. Lett. 2021, 12, 79–92. [Google Scholar] [CrossRef]
- Maeda, E.E.; Formaggio, A.R.; Shimabukuro, Y.E. Impacts of Land Use and Land Cover Changes on Sediment Yield in a Brazilian Amazon Drainage Basin. GIScience Remote Sens. 2008, 45, 443–453. [Google Scholar] [CrossRef]
- Davidson, E.A.; Vitousek, P.M.; Matson, P.A.; Riley, R.; Garcia- Mendez, G.; Maass, J.M. Soil Emissions of Nitric Oxide in a Seasonally Dry Tropical Forest of Mexico. J. Geophys. Res. 1991, 96, 439–445. [Google Scholar] [CrossRef]
- Davidson, E.A.; Bustamante, M.M.; de Siqueira Pinto, A. Emissions of Nitrous Oxide and Nitric Oxide from Soils of Native and Exotic Ecosystems of the Amazon and Cerrado Regions of Brazil. Sci. World J. 2001, 1, 312–319. [Google Scholar] [CrossRef] [Green Version]
- Verchot, L.V.; Davidson, E.A.; Cattânio, J.H.; Ackerman, I.L. Land-Use Change and Biogeochemical Controls of Methane Fluxes in Soils of Eastern Amazonia. Ecosystems 2000, 3, 41–56. [Google Scholar] [CrossRef]
- Erickson, H.; Keller, M.; Davidson, E.A. Nitrogen Oxide Fluxes and Nitrogen Cycling during Postagricultural Succession and Forest Fertilization in the Humid Tropics. Ecosystems 2001, 4, 67–84. [Google Scholar] [CrossRef]
- Davidson, E.A.; De Carvalho, C.J.R.; Figueira, A.M.; Ishida, F.Y.; Ometto, J.P.H.B.; Nardoto, G.B.; Sabá, R.T.; Hayashi, S.N.; Leal, E.C.; Vieira, I.C.G.; et al. Recuperation of Nitrogen Cycling in Amazonian Forests Following Agricultural Abandonment. Nature 2007, 447, 995–998. [Google Scholar] [CrossRef] [PubMed]
- Aragão, L.E.O.C.; Shimabukuro, Y.E.; Espírito Santo, F.D.B.; Williams, M. Landscape Pattern and Spatial Variability of Leaf Area Index in Eastern Amazonia. For. Ecol. Manag. 2005, 211, 240–256. [Google Scholar] [CrossRef]
- Anderson, L.O.; Aragão, L.E.O.C.; Gloor, M.; Arai, E.; Adami, M.; Saatchi, S.S.; Malhi, Y.; Shimabukuro, Y.E.; Barlow, J.; Berenguer, E.; et al. Disentangling the Contribution of Multiple Land Covers to Fire-Mediated Carbon Emissions in Amazonia during the 2010 Drought. Global Biogeochem. Cycles 2015, 29, 1739–1753. [Google Scholar] [CrossRef] [Green Version]
- da Silva, S.S.; Oliveira, I.; Morello, T.F.; Anderson, L.O.; Karlokoski, A.; Brando, P.M.; de Melo, A.W.F.; da Costa, J.G.; de Souza, F.S.C.; da Silva, I.S.; et al. Burning in Southwestern Brazilian Amazonia, 2016–2019. J. Environ. Manag. 2021, 286. [Google Scholar] [CrossRef]
- Fearnside, P.M. Global Warming and Tropical Land-Use Change: Greenhouse Gas Emissions from Biomass Burning, Decomposition and Soils in Forest Conversion, Shifting Cultivation and Secondary Vegetation. Clim. Change 2000, 46, 115–158. [Google Scholar] [CrossRef]
- Fearnside, P.M. Forests and Global Warming Mitigation in Brazil: Opportunities in the Brazilian Forest Sector for Responses to Global Warming under the “Clean Development Mechanism”. Biomass and Bioenergy 1999, 16, 171–189. [Google Scholar] [CrossRef]
- Fearnside, P.M.; Righi, C.A.; Graça, P.M.L. de A.; Keizer, E.W.H.; Cerri, C.C.; Nogueira, E.M.; Barbosa, R.I. Biomass and Greenhouse-Gas Emissions from Land-Use Change in Brazil’s Amazonian “Arc of Deforestation”: The States of Mato Grosso and Rondônia. For. Ecol. Manag. 2009, 258, 1968–1978. [Google Scholar] [CrossRef]
- Barlow, J.; Mestre, L.A.M.; Gardner, T.A.; Peres, C.A. The Value of Primary, Secondary and Plantation Forests for Amazonian Birds. Biol. Conserv. 2007, 136, 212–231. [Google Scholar] [CrossRef]
- Barlow, J.; Gardner, T.A.; Araujo, I.S.; Ávila-Pires, T.C.; Bonaldo, A.B.; Costa, J.E.; Esposito, M.C.; Ferreira, L.V.; Hawes, J.; Hernandez, M.I.M.; et al. Quantifying the Biodiversity Value of Tropical Primary, Secondary, and Plantation Forests. Proc. Natl. Acad. Sci. USA 2007, 104, 18555–18560. [Google Scholar] [CrossRef] [Green Version]
- Zambrano, A.M.A.; Broadbent, E.N.; Schmink, M.; Perz, S.G.; Asner, G.P. Deforestation Drivers in Southwest Amazonia: Comparing Smallholder Farmers in Iñapari, Peru, and Assis Brasil, Brazil. Conserv. Soc. 2010, 8, 157–170. [Google Scholar] [CrossRef]
- Perz Robert, T.; Stephen, G. Household Life Cycles and Secondary Forest Cover among Small Farm Colonists in the Amazon. World Dev. 2002, 30, 1009–1027. [Google Scholar] [CrossRef]
- Batistella, M.; Alves, D.S.; Moran, E.F.; Souza, C.; Walker, R.; Walsh, S.J. People and Environment in Amazonia: The LBA Experience and Other Perspectives. In Amazonia and Global Change; Keller, M., Bustamante, M., Gash, J., Silva, P., Eds.; Geophysical Monograph Series: Washington, DC, USA, 2013; pp. 1–9. ISBN 9781118670347. [Google Scholar]
- McCracken, S.D.; Brondizio, E.S.; Nelson, D.; Moran, E.F.; Siqueira, A.D.; Rodriguez-Pedraza, C. Remote Sensing and GIS at Farm Property Level: Demography and Deforestation in the Brazilian Amazon. Photogramm. Eng. Remote Sensing 1999, 65, 1311–1320. [Google Scholar]
- Moran, E.F.; Brondizio, E.S.; Tucker, J.M.; da Silva-Forsberg, M.C.; McCracken, S.; Falesi, I. Effects of Soil Fertility and Land-Use on Forest Succession in Amazônia. For. Ecol. Manag. 2000, 139, 93–108. [Google Scholar] [CrossRef]
- Brando, P.M.; Balch, J.K.; Nepstad, D.C.; Morton, D.C.; Putz, F.E.; Coe, M.T.; Silvério, D.; Macedo, M.N.; Davidson, E.A.; Nóbrega, C.C.; et al. Abrupt Increases in Amazonian Tree Mortality Due to Drought-Fire Interactions. Proc. Natl. Acad. Sci. USA 2014, 111, 6347–6352. [Google Scholar] [CrossRef] [Green Version]
- Davidson, E.A.; De Araüjo, A.C.; Artaxo, P.; Balch, J.K.; Brown, I.F.; Mercedes, M.M.; Coe, M.T.; Defries, R.S.; Keller, M.; Longo, M.; et al. The Amazon Basin in Transition. Nature 2012, 481, 321–328. [Google Scholar] [CrossRef]
- Kokol, P.; Završnik, J.; Železnik, D.; Vošner, H.B. Creating a Self-Plagiarism Research Topic Typology through Bibliometric Visualisation. J. Acad. Ethics 2016, 14, 221–230. [Google Scholar] [CrossRef]
- Costa, C.; Schurr, U.; Loreto, F.; Menesatti, P.; Carpentier, S. Plant Phenotyping Research Trends, a Science Mapping Approach. Front. Plant Sci. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Garrido-Cardenas, J.A.; Esteban-García, B.; Agüera, A.; Sánchez-Pérez, J.A.; Manzano-Agugliaro, F. Wastewater Treatment by Advanced Oxidation Process and Their Worldwide Research Trends. Int. J. Environ. Res. Public Health 2020, 17, 170. [Google Scholar] [CrossRef] [Green Version]
- Perea-Moreno, M.A.; Samerón-Manzano, E.; Perea-Moreno, A.J. Biomass as Renewable Energy: Worldwide Research Trends. Sustainability 2019, 11, 863. [Google Scholar] [CrossRef] [Green Version]
- Berry, N.J.; Phillips, O.L.; Lewis, S.L.; Hill, J.K.; Edwards, D.P.; Tawatao, N.B.; Ahmad, N.; Magintan, D.; Khen, C.V.; Maryati, M.; et al. The High Value of Logged Tropical Forests: Lessons from Northern Borneo. Biodivers. Conserv. 2010, 19, 985–997. [Google Scholar] [CrossRef]
- Echeverría, C.; Newton, A.C.; Lara, A.; Benayas, J.M.R.; Coomes, D.A. Impacts of Forest Fragmentation on Species Composition and Forest Structure in the Temperate Landscape of Southern Chile. Glob. Ecol. Biogeogr. 2007, 16, 426–439. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Liu, W.; Cao, M. Impact of Land Use and Land Cover Changes on Ecosystem Services in Menglun, Xishuangbanna, Southwest China. Environ. Monit. Assess. 2008, 146, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Kessler, M.; Abrahamczyk, S.; Bos, M.; Buchori, D.; Putra, D.D.; Gradstein, S.R.; Höhn, P.; Kluge, J.; Orend, F.; Pitopang, R.; et al. Alpha and Beta Diversity of Plants and Animals along a Tropical Land-Use Gradient. Ecol. Appl. 2009, 19, 2142–2156. [Google Scholar] [CrossRef]
- Norris, K.; Asase, A.; Collen, B.; Gockowksi, J.; Mason, J.; Phalan, B.; Wade, A. Biodiversity in a Forest-Agriculture Mosaic—The Changing Face of West African Rainforests. Biol. Conserv. 2010, 143, 2341–2350. [Google Scholar] [CrossRef]
- Gardner, T.A.; Barlow, J.; Sodhi, N.S.; Peres, C.A. A Multi-Region Assessment of Tropical Forest Biodiversity in a Human-Modified World. Biol. Conserv. 2010, 143, 2293–2300. [Google Scholar] [CrossRef]
- Laurance, W.F.; Albernaz, A.K.M.; Schroth, G.; Fearnside, P.M.; Bergen, S.; Venticinque, E.M.; Da Costa, C. Predictors of Deforestation in the Brazilian Amazon. J. Biogeogr. 2002, 29, 737–748. [Google Scholar] [CrossRef] [Green Version]
- Armenteras, D.; Rudas, G.; Rodriguez, N.; Sua, S.; Romero, M. Patterns and Causes of Deforestation in the Colombian Amazon. Ecol. Indic. 2006, 6, 353–368. [Google Scholar] [CrossRef]
- Thompson, J.; Brokaw, N.; Zimmerman, J.K.; Waide, R.B.; Everham, E.M.; Lodge, D.J.; Taylor, C.M.; García-Montiel, D.; Fluet, M. Land Use History, Environment, and Tree Composition in a Tropical Forest. Ecol. Appl. 2002, 12, 1344–1363. [Google Scholar] [CrossRef]
- Pascarella, J.B.; Aide, T.M.; Serrano, M.I.; Zimmerman, J.K. Land-Use History and Forest Regeneration in the Cayey Mountains, Puerto Rico. Ecosystems 2000, 3, 217–228. [Google Scholar] [CrossRef]
- Klanderud, K.; Mbolatiana, H.Z.H.; Vololomboahangy, M.N.; Radimbison, M.A.; Roger, E.; Totland, Ø.; Rajeriarison, C. Recovery of Plant Species Richness and Composition after Slash-and-Burn Agriculture in a Tropical Rainforest in Madagascar. Biodivers. Conserv. 2010, 19, 187–204. [Google Scholar] [CrossRef]
- Van Dam, D.; Veldkamp, E.; Van Breemen, N. Soil Organic Carbon Dynamics: Variability with Depth in Forested and Deforested Soils under Pasture in Costa Rica. Biogeochemistry 1997, 39, 343–375. [Google Scholar] [CrossRef]
- Kaschuk, G.; Alberton, O.; Hungria, M. Quantifying Effects of Different Agricultural Land Uses on Soil Microbial Biomass and Activity in Brazilian Biomes: Inferences to Improve Soil Quality. Plant Soil 2011, 338, 467–481. [Google Scholar] [CrossRef]
- Davidson, E.A.; Verchot, L.V.; Henrique Cattânio, J.; Ackerman, I.L.; Carvalho, J.E.M. Effects of Soil Water Content on Soil Respiration in Forests and Cattle Pastures of Eastern Amazonia. Biogeochemistry 2000, 48, 53–69. [Google Scholar] [CrossRef]
- Cairns, M.A.; Olmsted, I.; Granados, J.; Argaez, J. Composition and Aboveground Tree Biomass of a Dry Semi-Evergreen Forest on Mexico’s Yucatan Peninsula. For. Ecol. Manag. 2003, 186, 125–132. [Google Scholar] [CrossRef]
- Kalacska, M.; Sanchez-Azofeifa, G.A.; Calvo-Alvarado, J.C.; Quesada, M.; Rivard, B.; Janzen, D.H. Species Composition, Similarity and Diversity in Three Successional Stages of a Seasonally Dry Tropical Forest. For. Ecol. Manag. 2004, 200, 227–247. [Google Scholar] [CrossRef]
- Powers, J.S.; Becknell, J.M.; Irving, J.; Pèrez-Aviles, D. Diversity and Structure of Regenerating Tropical Dry Forests in Costa Rica: Geographic Patterns and Environmental Drivers. For. Ecol. Manag. 2009, 258, 959–970. [Google Scholar] [CrossRef]
- Lugo, A.E.; Brown, S. Management of Tropical Soils as Sinks or Sources of Atmospheric Carbon. Plant Soil 1993, 149, 27–41. [Google Scholar] [CrossRef]
- Quesada, M.; Sanchez-Azofeifa, G.A.; Alvarez-Añorve, M.; Stoner, K.E.; Avila-Cabadilla, L.; Calvo-Alvarado, J.; Castillo, A.; Espírito-Santo, M.M.; Fagundes, M.; Fernandes, G.W.; et al. Succession and Management of Tropical Dry Forests in the Americas: Review and New Perspectives. For. Ecol. Manag. 2009, 258, 1014–1024. [Google Scholar] [CrossRef]
- Schroth, G.; D’Angelo, S.A.; Teixeira, W.G.; Haag, D.; Lieberei, R. Conversion of Secondary Forest into Agroforestry and Monoculture Plantations in Amazonia: Consequences for Biomass, Litter and Soil Carbon Stocks after 7 Years. For. Ecol. Manag. 2002, 163, 131–150. [Google Scholar] [CrossRef]
- Zinn, Y.L.; Lal, R.; Resck, D.V.S. Changes in Soil Organic Carbon Stocks under Agriculture in Brazil. Soil Tillage Res. 2005, 84, 28–40. [Google Scholar] [CrossRef]
- Cerri, C.E.P.; Easter, M.; Paustian, K.; Killian, K.; Coleman, K.; Bernoux, M.; Falloon, P.; Powlson, D.S.; Batjes, N.H.; Milne, E.; et al. Predicted Soil Organic Carbon Stocks and Changes in the Brazilian Amazon between 2000 and 2030. Agric. Ecosyst. Environ. 2007, 122, 58–72. [Google Scholar] [CrossRef]
- Baumann, M.; Gasparri, I.; Piquer-Rodríguez, M.; Gavier Pizarro, G.; Griffiths, P.; Hostert, P.; Kuemmerle, T. Carbon Emissions from Agricultural Expansion and Intensification in the Chaco. Glob. Chang. Biol. 2017, 23, 1902–1916. [Google Scholar] [CrossRef] [PubMed]
- Galford, G.L.; Melillo, J.M.; Kicklighter, D.W.; Mustard, J.F.; Cronin, T.W.; Cerri, C.E.P.; Cerri, C.C. Historical Carbon Emissions and Uptake from the Agricultural Frontier of the Brazilian Amazon. Ecol. Appl. 2011, 21, 750–763. [Google Scholar] [CrossRef]
- Muylaert de Araújo, M.S.; Silva, C.; Campos, C.P. de Land Use Change Sector Contribution to the Carbon Historical Emissions and the Sustainability-Case Study of the Brazilian Legal Amazon. Renew. Sustain. Energy Rev. 2009, 13, 696–702. [Google Scholar] [CrossRef]
- Morton, D.C.; Defries, R.S.; Randerson, J.T.; Giglio, L.; Schroeder, W.; van der Werf, G.R. Agricultural Intensification Increases Deforestation Fire Activity in Amazonia. Glob. Chang. Biol. 2008, 14, 2262–2275. [Google Scholar] [CrossRef] [Green Version]
- Foody, G.M.; Cutler, M.E.; Mcmorrow, J.; Pelz, D.; Tangki, H.; Boyd, D.S.; Douglas, I. Mapping the Biomass of Bornean Tropical Rain Forest from Remotely Sensed Data Published by: Blackwell Publishing Stable URL: Http://Www.Jstor.Org/Stable/2665383. Glob. Ecol. anf Biogeogr. 2001, 10, 379–387. [Google Scholar] [CrossRef]
- Lindell, C.A.; Chomentowski, W.H.; Zook, J.R. Characteristics of Bird Species Using Forest and Agricultural Land Covers in Southern Costa Rica. Biodivers. Conserv. 2004, 13, 2419–2441. [Google Scholar] [CrossRef]
- Fajardo, L.; González, V.; Nassar, J.M.; Lacabana, P.; Portillo Q, C.A.; Carrasquel, F.; Rodríguez, J.P. Tropical Dry Forests of Venezuela: Characterization and Current Conservation Status. Biotropica 2005, 37, 531–546. [Google Scholar] [CrossRef]
- Duveiller, G.; Defourny, P.; Desclée, B.; Mayaux, P. Deforestation in Central Africa: Estimates at Regional, National and Landscape Levels by Advanced Processing of Systematically-Distributed Landsat Extracts. Remote Sens. Environ. 2008, 112, 1969–1981. [Google Scholar] [CrossRef]
- Müller, R.; Müller, D.; Schierhorn, F.; Gerold, G.; Pacheco, P. Proximate Causes of Deforestation in the Bolivian Lowlands: An Analysis of Spatial Dynamics. Reg. Environ. Chang. 2012, 12, 445–459. [Google Scholar] [CrossRef] [Green Version]
- Zekeng, J.C.; Sebego, R.; Mphinyane, W.N.; Mpalo, M.; Nayak, D.; Fobane, J.L.; Onana, J.M.; Funwi, F.P.; Mbolo, M.M.A. Land Use and Land Cover Changes in Doume Communal Forest in Eastern Cameroon: Implications for Conservation and Sustainable Management. Model. Earth Syst. Environ. 2019, 5, 1801–1814. [Google Scholar] [CrossRef]
- Jakimow, B.; Griffiths, P.; van der Linden, S.; Hostert, P. Mapping Pasture Management in the Brazilian Amazon from Dense Landsat Time Series. Remote Sens. Environ. 2018, 205, 453–468. [Google Scholar] [CrossRef]
- Gunatilake, H.M.; Senaratne, D.M.A.H.; Abeygunawardena, P. Role of Non-Timber Forest Products in the Economy of Peripheral Communities of Knuckles National Wilderness Area of Sri Lanka: A Farming Systems Approach. Econ. Bot. 1993, 47, 275–281. [Google Scholar] [CrossRef]
- Brandão, D.O.; Barata, L.E.S.; Nobre, I.; Nobre, C.A. The Effects of Amazon Deforestation on Non-Timber Forest Products. Reg. Environ. Chang. 2021, 21, 122. [Google Scholar] [CrossRef]
- McClain, M.E.; Cossío, R.E. The Use of Riparian Environments in the Rural Peruvian Amazon. Environ. Conserv. 2003, 30, 242–248. [Google Scholar] [CrossRef]
- Ohl, J.; Wezel, A.; Shepard, G.H.; Yu, D.W. Swidden Agriculture in a Protected Area: The Matsigenka Native Communities of Manu National Park, Peru. Environ. Dev. Sustain. 2008, 10, 827–843. [Google Scholar] [CrossRef]
- Heredia-R, M.; Torres, B.; Cabrera-Torres, F.; Torres, E.; Díaz-Ambrona, C.G.H.; Pappalardo, S.E. Land Use and Land Cover Changes in the Diversity and Life Zone for Uncontacted Indigenous People: Deforestation Hotspots in the Yasuní Biosphere Reserve, Ecuadorian Amazon. Forests 2021, 12, 1539. [Google Scholar] [CrossRef]
- Harvey, C.A.; González Villalobos, J.A. Agroforestry Systems Conserve Species-Rich but Modified Assemblages of Tropical Birds and Bats. Biodivers. Conserv. 2007, 16, 2257–2292. [Google Scholar] [CrossRef]
- Asase, A.; Tetteh, D.A. The Role of Complex Agroforestry Systems in the Conservation of Forest Tree Diversity and Structure in Southeastern Ghana. Agrofor. Syst. 2010, 79, 355–368. [Google Scholar] [CrossRef]
- Walker, R.; Kingo, A.; Homma, O. Analysis Land Use and Land Cover Dynamics in the Brazilian Amazon: An Overview. Ecol. Econ. 1996, 18, 67–75. [Google Scholar] [CrossRef]
- de Espindola, G.M.; de Aguiar, A.P.D.; Pebesma, E.; Câmara, G.; Fonseca, L. Agricultural Land Use Dynamics in the Brazilian Amazon Based on Remote Sensing and Census Data. Appl. Geogr. 2012, 32, 240–252. [Google Scholar] [CrossRef]
- Rudel, T.K.; Defries, R.; Asner, G.P.; Laurance, W.F. Changing Drivers of Deforestation and New Opportunities for Conservation. Conserv. Biol. 2009, 23, 1396–1405. [Google Scholar] [CrossRef] [PubMed]
- Struhsaker, T.T.; Struhsaker, P.J.; Siex, K.S. Conserving Africa’s Rain Forests: Problems in Protected Areas and Possible Solutions. Biol. Conserv. 2005, 123, 45–54. [Google Scholar] [CrossRef]
- Edwards, D.P.; Magrach, A.; Woodcock, P.; Ji, Y.; Lim, N.T.-L.; Edwards, F.A.; Larsen, T.H.; Hsu, W.W.; Benedick, S.; Khen, C.V.; et al. Selective-Logging and Oil Palm: Multitaxon Impacts, Biodiversity Indicators, and Trade-Offs for Conservation Planning. Ecol. Appl. 2014, 24, 2029–2049. [Google Scholar] [CrossRef]
- Edwards, F.A.; Edwards, D.P.; Larsen, T.H.; Hsu, W.W.; Benedick, S.; Chung, A.; Vun Khen, C.; Wilcove, D.S.; Hamer, K.C. Does Logging and Forest Conversion to Oil Palm Agriculture Alter Functional Diversity in a Biodiversity Hotspot? Anim. Conserv. 2014, 17, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Montoya, A.V.G.; Vizuete, D.D.C.; Toaza, J.M.M.; Marcu, M.V.; Borz, S.A. Importance and Use of Ecosystem Services Provided by the Amazonian Landscapes in Ecuador-Evaluation and Spatial Scaling of a Representative Area. Bull. Transilv. Univ. Brasov, Ser. II For. Wood Ind. Agric. Food Eng. 2019, 12, 1–26. [Google Scholar] [CrossRef]
- Tripathi, B.M.; Edwards, D.P.; Mendes, L.W.; Kim, M.; Dong, K.; Kim, H.; Adams, J.M. The Impact of Tropical Forest Logging and Oil Palm Agriculture on the Soil Microbiome. Mol. Ecol. 2016, 25, 2244–2257. [Google Scholar] [CrossRef]
- Bucini, G.; Lambin, E.F. Fire Impacts on Vegetation in Central Africa: A Remote-Sensing-Based Statistical Analysis. Appl. Geogr. 2002, 22, 27–48. [Google Scholar] [CrossRef]
- Belenguer-Plomer, M.A.; Tanase, M.A.; Fernandez-Carrillo, A.; Chuvieco, E. Burned Area Detection and Mapping Using Sentinel-1 Backscatter Coefficient and Thermal Anomalies. Remote Sens. Environ. 2019, 233, 111345. [Google Scholar] [CrossRef]
- Salazar, A.; Baldi, G.; Hirota, M.; Syktus, J.; McAlpine, C. Land Use and Land Cover Change Impacts on the Regional Climate of Non-Amazonian South America: A Review. Glob. Planet. Change 2015, 128, 103–119. [Google Scholar] [CrossRef]
- Swann, A.L.S.; Longo, M.; Knox, R.G.; Lee, E.; Moorcroft, P.R. Future Deforestation in the Amazon and Consequences for South American Climate. Agric. For. Meteorol. 2015, 214–215, 12–24. [Google Scholar] [CrossRef] [Green Version]
- Gardner, T.A.; Hernández, M.I.M.; Barlow, J.; Peres, C.A. Understanding the Biodiversity Consequences of Habitat Change: The Value of Secondary and Plantation Forests for Neotropical Dung Beetles. J. Appl. Ecol. 2008, 45, 883–893. [Google Scholar] [CrossRef]
- Falloon, P.; Jones, C.D.; Cerri, C.E.; Al-Adamat, R.; Kamoni, P.; Bhattacharyya, T.; Easter, M.; Paustian, K.; Killian, K.; Coleman, K.; et al. Climate Change and Its Impact on Soil and Vegetation Carbon Storage in Kenya, Jordan, India and Brazil. Agric. Ecosyst. Environ. 2007, 122, 114–124. [Google Scholar] [CrossRef]
- Potter, C.S.; Davidson, E.A.; Klooster, S.A.; Nepstad, D.C.; De Negreiros, G.H.; Brooks, V. Regional Application of an Ecosystem Production Model for Studies of Biogeochemistry in Brazilian Amazonia. Glob. Chang. Biol. 1998, 4, 315–333. [Google Scholar] [CrossRef]
- Abe, C.A.; Lobo, F. de L.; Dibike, Y.B.; Costa, M.P. de F.; Dos Santos, V.; Novo, E.M.L.M. Modelling the Effects of Historical and Future Land Cover Changes on the Hydrology of an Amazonian Basin. Water 2018, 10, 932. [Google Scholar] [CrossRef] [Green Version]
- Papeş, M.; Gaubert, P. Modelling Ecological Niches from Low Numbers of Occurrences: Assessment of the Conservation Status of Poorly Known Viverrids (Mammalia, Carnivora) across Two Continents. Divers. Distrib. 2007, 13, 890–902. [Google Scholar] [CrossRef]
- Hilker, T.; Lyapustin, A.I.; Tucker, C.J.; Hall, F.G.; Myneni, R.B.; Wang, Y.; Bi, J.; De Moura, Y.M.; Sellers, P.J. Vegetation Dynamics and Rainfall Sensitivity of the Amazon. Proc. Natl. Acad. Sci. USA 2014, 111, 16041–16046. [Google Scholar] [CrossRef] [Green Version]
- Saynes, V.; Hidalgo, C.; Etchevers, J.D.; Campo, J.E. Soil C and N Dynamics in Primary and Secondary Seasonally Dry Tropical Forests in Mexico. Appl. Soil Ecol. 2005, 29, 282–289. [Google Scholar] [CrossRef]
- Batjes, N.H.; Dijkshoorn, J.A. Carbon and Nitrogen Stocks in the Soils of the Amazon Region. Geoderma 1999, 89, 273–286. [Google Scholar] [CrossRef]
- Jaramillo, V.J.; Kauffman, J.B.; Rentería-Rodríguez, L.; Cummings, D.L.; Ellingson, L.J. Biomass, Carbon, and Nitrogen Pools in Mexican Tropical Dry Forest Landscapes. Ecosystems 2003, 6, 609–629. [Google Scholar] [CrossRef]
- Cleveland, C.C.; Townsend, A.R.; Schmidt, S.K.; Constance, B.C. Soil Microbial Dynamics and Biogeochemistry in Tropical Forests and Pastures, Southwestern Costa Rica. Ecol. Appl. 2003, 13, 314–326. [Google Scholar] [CrossRef]
- Navarrete, A.A.; Cannavan, F.S.; Taketani, R.G.; Tsai, S.M. A Molecular Survey of the Diversity of Microbial Communities in Different Amazonian Agricultural Model Systems. Diversity 2010, 2, 787–809. [Google Scholar] [CrossRef] [Green Version]
- Wadt, L.H.O.; Kainer, K.A.; Staudhammer, C.L.; Serrano, R.O.P. Sustainable Forest Use in Brazilian Extractive Reserves: Natural Regeneration of Brazil Nut in Exploited Populations. Biol. Conserv. 2008, 141, 332–346. [Google Scholar] [CrossRef]
- Schwartzman, S.; Alencar, A.; Zarin, H.; Souza, A.P.S. Social Movements and Large-Scale Tropical Forest Protection on the Amazon Frontier: Conservation from Chaos. J. Environ. Dev. 2010, 19, 274–299. [Google Scholar] [CrossRef]
- Musigmann, B.; Von Der Gracht, H.; Hartmann, E. Blockchain Technology in Logistics and Supply Chain Management—A Bibliometric Literature Review from 2016 to January 2020. IEEE Trans. Eng. Manag. 2020, 67, 988–1007. [Google Scholar] [CrossRef]
- Gao, H.; Ding, X.H.; Wu, S. Exploring the Domain of Open Innovation: Bibliometric and Content Analyses. J. Clean. Prod. 2020, 275, 122580. [Google Scholar] [CrossRef]
- Kovács, A.; Van Looy, B.; Cassiman, B. Exploring the Scope of Open Innovation: A Bibliometric Review of a Decade of Research. Scientometrics 2015, 104, 951–983. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Citation-Based Clustering of Publications Using CitNetExplorer and VOSviewer. Scientometrics 2017, 111, 1053–1070. [Google Scholar] [CrossRef] [Green Version]
- Gaviria-Marin, M.; Merigó, J.M.; Baier-Fuentes, H. Knowledge Management: A Global Examination Based on Bibliometric Analysis. Technol. Forecast. Soc. Change 2019, 140, 194–220. [Google Scholar] [CrossRef]
- Ding, X.; Yang, Z. Knowledge Mapping of Platform Research: A Visual Analysis Using VOSviewer and CiteSpace. Electron. Commer. Res. 2020. [Google Scholar] [CrossRef]
- Liu, Z.; Yin, Y.; Liu, W.; Dunford, M. Visualizing the Intellectual Structure and Evolution of Innovation Systems Research: A Bibliometric Analysis. Scientometrics 2015, 103, 135–158. [Google Scholar] [CrossRef]
- Laurance, W.F. A Crisis in the Making: Responses of Amazonian Forests to Land Use and Climate Change. Trends Ecol. Evol. 1998, 13, 411–415. [Google Scholar] [CrossRef]
- Ter Steege, H.; Pitman, N.C.A.; Killeen, T.J.; Laurance, W.F.; Peres, C.A.; Guevara, J.E.; Salomão, R.P.; Castilho, C.V.; Amaral, I.L.; De Almeida Matos, F.D.; et al. Estimating the Global Conservation Status of More than 15,000 Amazonian Tree Species. Sci. Adv. 2015, 1, 9–11. [Google Scholar] [CrossRef]
- Houghton, R.A.; Lawrence, K.T.; Hackler, J.L.; Brown, S. The Spatial Distribution of Forest Biomass in the Brazilian Amazon: A Comparison of Estimates. Glob. Chang. Biol. 2001, 7, 731–746. [Google Scholar] [CrossRef]
- Lugo, A.E.; Sanchez, M.J.; Brown, S. Land Use and Organic Carbon Content of Some Subtropical Soils. Plant Soil 1986, 96, 185–196. [Google Scholar] [CrossRef]
- De Camargo, P.B.; Trumbore, S.E.; Martinelli, L.A.; Davidson, E.A.; Nepstad, D.C.; Victoria, R.L. Soil Carbon Dynamics in Regrowing Forest of Eastern Amazonia. Glob. Chang. Biol. 1999, 5, 693–702. [Google Scholar] [CrossRef]
- Davidson, E.A.; Markewitz, D.; de, O. Figueiredo, R.; de Camargo, P.B. Nitrogen Fixation Inputs in Pasture and Early Successional Forest in the Brazilian Amazon Region: Evidence From a Claybox Mesocosm Study. J. Geophys. Res. Biogeosciences 2018, 123, 712–721. [Google Scholar] [CrossRef]
- Markewitz, D.; Davidson, E.; Moutinho, P.; Nepstad, D. Nutrient Loss and Redistribution after Forest Clearing on a Highly Weathered Soil in Amazonia. Ecol. Appl. 2004, 14, 177–199. [Google Scholar] [CrossRef] [Green Version]
- Davidson, E.A.; Martinelli, L.A. Nutrient Limitations to Secondary Forest Regrowth. Amaz. Glob. Chang. 2013, 299–309. [Google Scholar] [CrossRef]
- Cardoso, M.; Nobre, C.; Sampaio, G.; Hirota, M.; Valeriano, D.; Câmara, G. Long-Term Potential for Tropical-Forest Degradation Due to Deforestation and Fires in the Brazilian Amazon. Biologia 2009, 64, 433–437. [Google Scholar] [CrossRef]
- Nobre, C.A.; Sampaio, G.; Borma, L.S.; Castilla-Rubio, J.C.; Silva, J.S.; Cardoso, M. Land-Use and Climate Change Risks in the Amazon and the Need of a Novel Sustainable Development Paradigm. Proc. Natl. Acad. Sci. USA 2016, 113, 10759–10768. [Google Scholar] [CrossRef] [Green Version]
- Hirota, M.; Oyama, M.D.; Nobre, C. Concurrent Climate Impacts of Tropical South America Land-Cover Change. Atmos. Sci. Lett. 2011, 12, 261–267. [Google Scholar] [CrossRef]
- Phillips, O.L.; Brienen, R.J.W.; Gloor, E.; Baker, T.R.; Lloyd, J.; Lopez-Gonzalez, G.; Monteagudo-Mendoza, A.; Malhi, Y.; Lewis, S.L.; Vásquez Martinez, R.; et al. Carbon Uptake by Mature Amazon Forests Has Mitigated Amazon Nations’ Carbon Emissions. Carbon Balance Manag. 2017, 12, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Aragão, L.E.O.C.; Poulter, B.; Barlow, J.B.; Anderson, L.O.; Malhi, Y.; Saatchi, S.; Phillips, O.L.; Gloor, E. Environmental Change and the Carbon Balance of Amazonian Forests. Biol. Rev. 2014, 89, 913–931. [Google Scholar] [CrossRef] [PubMed]
- Hughes, R.F.; Asner, G.P.; Baldwin, J.A.; Mascaro, J.; Bufil, L.K.K.; Knapp, D.E. Estimating Aboveground Carbon Density across Forest Landscapes of Hawaii: Combining FIA Plot-Derived Estimates and Airborne LiDAR. For. Ecol. Manag. 2018, 424, 323–337. [Google Scholar] [CrossRef]
- Asner, G.P.; Martin, R.E.; Knapp, D.E.; Tupayachi, R.; Anderson, C.B.; Sinca, F.; Vaughn, N.R.; Llactayo, W. Airborne Laser-Guided Imaging Spectroscopy to Map Forest Trait Diversity and Guide Conservation. Science 2017, 355, 385–389. [Google Scholar] [CrossRef]
- Oliveira, P.J.C.; Asner, G.P.; Knapp, D.E.; Almeyda, A.; Galván-Gildemeister, R.; Keene, S.; Raybin, R.F.; Smith, R.C. Land-Use Allocation Protects the Peruvian Amazon. Science 2007, 317, 1233–1236. [Google Scholar] [CrossRef] [Green Version]
- Saatchi, S.; Longo, M.; Xu, L.; Yang, Y.; Abe, H.; André, M.; Aukema, J.E.; Carvalhais, N.; Cadillo-Quiroz, H.; Cerbu, G.A.; et al. Detecting Vulnerability of Humid Tropical Forests to Multiple Stressors. One Earth 2021, 4, 988–1003. [Google Scholar] [CrossRef]
- Hansen, M.C.; Krylov, A.; Tyukavina, A.; Potapov, P.V.; Turubanova, S.; Zutta, B.; Ifo, S.; Margono, B.; Stolle, F.; Moore, R. Humid Tropical Forest Disturbance Alerts Using Landsat Data. Environ. Res. Lett. 2016, 11, 034008. [Google Scholar] [CrossRef]
- Draper, F.C.; Costa, F.R.C.; Arellano, G.; Phillips, O.L.; Duque, A.; Macía, M.J.; ter Steege, H.; Asner, G.P.; Berenguer, E.; Schietti, J.; et al. Amazon Tree Dominance across Forest Strata. Nat. Ecol. Evol. 2021, 5, 757–767. [Google Scholar] [CrossRef]
- Bush, M.B.; Silman, M.R.; De Toledo, M.B.; Listopad, C.; Gosling, W.D.; Williams, C.; De Oliveira, P.E.; Krisel, C. Holocene Fire and Occupation in Amazonia: Records from Two Lake Districts. Philos. Trans. R. Soc. B Biol. Sci. 2007, 362, 209–218. [Google Scholar] [CrossRef]
- Mcmichael, C.N.H.; Bush, M.B. Spatiotemporal Patterns of Pre-Columbian People in Amazonia. Quat. Res. 2019, 92, 53–69. [Google Scholar] [CrossRef]
- Espejo, J.C.; Messinger, M.; Román-Dañobeytia, F.; Ascorra, C.; Fernandez, L.E.; Silman, M. Deforestation and Forest Degradation Due to Gold Mining in the Peruvian Amazon: A 34-Year Perspective. Remote Sens. 2018, 10, 1903. [Google Scholar] [CrossRef]
- Velásquez Ramírez, M.G.; Vega Ruiz, C.M.; Gomringer, R.C.; Pillaca, M.; Thomas, E.; Stewart, P.M.; Gamarra Miranda, L.A.; Dañobeytia, F.R.; Guerrero Barrantes, J.A.; Gushiken, M.C.; et al. Mercury in Soils Impacted by Alluvial Gold Mining in the Peruvian Amazon. J. Environ. Manag. 2021, 288, 112364. [Google Scholar] [CrossRef] [PubMed]
- Gerwing, J.J. Degradation of Forests through Logging and Fire in the Eastern Brazilian Amazon. For. Ecol. Manag. 2002, 157, 131–141. [Google Scholar] [CrossRef]
- Hölscher, D.; Sá, T.D.D.A.; Bastos, T.X.; Denich, M.; Fölster, H. Evaporation from Young Secondary Vegetation in Eastern Amazonia. J. Hydrol. 1997, 193, 293–305. [Google Scholar] [CrossRef]
- Liu, D.; Che, S.; Zhu, W. Visualizing the Knowledge Domain of Academic Mobility Research from 2010 to 2020: A Bibliometric Analysis Using CiteSpace. SAGE Open 2022, 12, 1–15. [Google Scholar] [CrossRef]
- Carrión-Mero, P.; Montalván-Burbano, N.; Paz-Salas, N.; Morante-Carballo, F. Volcanic Geomorphology: A Review of Worldwide Research. Geosciences 2020, 10, 347. [Google Scholar] [CrossRef]
- Yang, L.; Han, L.; Liu, N. A New Approach to Journal Co-Citation Matrix Construction Based on the Number of Co-Cited Articles in Journals. Scientometrics 2019, 120, 507–517. [Google Scholar] [CrossRef]
- Mahmoud, M.I.; Campbell, M.J.; Sloan, S.; Alamgir, M.; Laurance, W.F. Land-Cover Change Threatens Tropical Forests and Biodiversity in the Littoral Region, Cameroon. Oryx 2020, 54, 882–891. [Google Scholar] [CrossRef]
- Yu, J.; Li, F.; Wang, Y.; Lin, Y.; Peng, Z.; Cheng, K. Spatiotemporal Evolution of Tropical Forest Degradation and Its Impact on Ecological Sensitivity: A Case Study in Jinghong, Xishuangbanna, China. Sci. Total Environ. 2020, 727, 138678. [Google Scholar] [CrossRef] [PubMed]
- Baltaxe, R. The Application of Landsat Data to Tropical Forest Surveys, 1st ed.; FAO: Rome, Italy, 1980. [Google Scholar]
- Kacic, P.; Hirner, A.; Da Ponte, E. Fusing Sentinel-1 and-2 to Model Gedi-Derived Vegetation Structure Characteristics in Gee for the Paraguayan Chaco. Remote Sens. 2021, 13, 5105. [Google Scholar] [CrossRef]
- Padula, R.; Brozoski, F. La Amazonía En El Pensamiento Geopolítico Brasileño. Rev. tempo do mundo 2021, 27, 47–70. [Google Scholar]
- Song, Y.; Zhao, T. A Bibliometric Analysis of Global Forest Ecology Research during 2002-2011. Springerplus 2013, 2, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Taubert, F.; Fischer, R.; Groeneveld, J.; Lehmann, S.; Müller, M.S.; Rödig, E.; Wiegand, T.; Huth, A. Global Patterns of Tropical Forest Fragmentation. Nature 2018, 554, 519–522. [Google Scholar] [CrossRef]
- Hoang, N.T.; Kanemoto, K. Mapping the Deforestation Footprint of Nations Reveals Growing Threat to Tropical Forests. Nat. Ecol. Evol. 2021, 5, 845–853. [Google Scholar] [CrossRef] [PubMed]
- Wan Mahari, W.A.; Azwar, E.; Li, Y.; Wang, Y.; Peng, W.; Ma, N.L.; Yang, H.; Rinklebe, J.; Lam, S.S.; Sonne, C. Deforestation of Rainforests Requires Active Use of UN’s Sustainable Development Goals. Sci. Total Environ. 2020, 742, 140681. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Gong, P.; Wang, J.; Wang, X.; Ning, G.; Xu, B. Production of Global Daily Seamless Data Cubes and Quantification of Global Land Cover Change from 1985 to 2020 - IMap World 1.0. Remote Sens. Environ. 2021, 258, 112364. [Google Scholar] [CrossRef]
- Gutman, G.; Huang, C.; Chander, G.; Noojipady, P.; Masek, J.G. Assessment of the NASA-USGS Global Land Survey (GLS) Datasets. Remote Sens. Environ. 2013, 134, 249–265. [Google Scholar] [CrossRef]
- Sanchez-Azofeifa, A.; Antonio Guzmán, J.; Campos, C.A.; Castro, S.; Garcia-Millan, V.; Nightingale, J.; Rankine, C. Twenty-First Century Remote Sensing Technologies Are Revolutionizing the Study of Tropical Forests. Biotropica 2017, 49, 604–619. [Google Scholar] [CrossRef]
- Velastegui-Montoya, A.; Rivera-Torres, H.; Herrera-Matamoros, V.; Sadeck, L.; Quevedo, R.P. Application of Google Earth Engine for Land Cover Classification in Yasuni National Park, Ecuador. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; IEEE: New York, NY, USA, 2022; pp. 6376–6379. [Google Scholar]
- Dupuis, C.; Lejeune, P.; Michez, A.; Fayolle, A. How Can Remote Sensing Help Monitor Tropical Moist Forest Degradation?—A Systematic Review. Remote Sens. 2020, 12, 1087. [Google Scholar] [CrossRef] [Green Version]
- Jackson, C.M.; Adam, E. Remote Sensing of Selective Logging in Tropical Forests: Current State and Future Directions. IForest 2020, 13, 286–300. [Google Scholar] [CrossRef]
- Seymour, F. Why Are Tropical Forests Being Lost, and How to Protect Them. Available online: https://research.wri.org/gfr/tropical-forests-loss-deforestation-protection (accessed on 21 June 2022).
- Cannon, P.G.; Gilroy, J.J.; Tobias, J.A.; Anderson, A.; Haugaasen, T.; Edwards, D.P. Land-Sparing Agriculture Sustains Higher Levels of Avian Functional Diversity than Land Sharing. Glob. Chang. Biol. 2019, 25, 1576–1590. [Google Scholar] [CrossRef]
- Song, H.; Singh, D.; Tomlinson, K.W.; Yang, X.; Ogwu, M.C.; Slik, J.W.F.; Adams, J.M. Tropical Forest Conversion to Rubber Plantation in Southwest China Results in Lower Fungal Beta Diversity and Reduced Network Complexity. FEMS Microbiol. Ecol. 2019, 95, 1–13. [Google Scholar] [CrossRef]
- da Silva Cruz, J.; Blanco, C.J.C.; de Oliveira Júnior, J.F. Modeling of Land Use and Land Cover Change Dynamics for Future Projection of the Amazon Number Curve. Sci. Total Environ. 2022, 811, 152348. [Google Scholar] [CrossRef]
- Yatoo, S.A.; Sahu, P.; Kalubarme, M.H.; Kansara, B.B. Monitoring Land Use Changes and Its Future Prospects Using Cellular Automata Simulation and Artificial Neural Network for Ahmedabad City, India. GeoJournal 2022, 87, 765–786. [Google Scholar] [CrossRef]
- Boulton, C.A.; Lenton, T.M.; Boers, N. Pronounced Loss of Amazon Rainforest Resilience since the Early 2000s. Nat. Clim. Chang. 2022, 12, 271–278. [Google Scholar] [CrossRef]
- Kleemann, J.; Koo, H.; Hensen, I.; Mendieta-Leiva, G.; Kahnt, B.; Kurze, C.; Inclan, D.J.; Cuenca, P.; Noh, J.K.; Hoffmann, M.H.; et al. Priorities of Action and Research for the Protection of Biodiversity and Ecosystem Services in Continental Ecuador. Biol. Conserv. 2022, 265, 109404. [Google Scholar] [CrossRef]
R | Authors | Title | Year | TC | ACI |
---|---|---|---|---|---|
1 | Hansen et al. [175] | High-resolution global maps of 21st century forest cover change | 2013 | 5372 | 596.9 |
2 | Pan et al. [170] | A large and persistent carbon sink in the world’s forests | 2011 | 3788 | 344.4 |
3 | Gibson et al. [174] | Primary forests are irreplaceable for sustaining tropical biodiversity | 2011 | 1187 | 107.9 |
4 | Gibbs et al. [185] | Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s | 2010 | 1034 | 86.16 |
5 | Nepstad et al. [149] | The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures | 1994 | 1006 | 35.9 |
6 | Baccini et al. [172] | Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps | 2012 | 992 | 99.2 |
7 | Nepstad et al. [156] | Large-scale impoverishment of Amazonian forests by logging and fire | 1999 | 962 | 41.8 |
8 | Klink and Machado [157] | Conservation of the Brazilian Cerrado | 2005 | 961 | 56.5 |
9 | Brown and Lugo [147] | Tropical secondary forests | 1990 | 863 | 27 |
10 | Houghton [186] | Aboveground forest biomass and the global carbon balance | 2005 | 808 | 47.5 |
R | Source | Scopus CY | ND | TC | SJR | CiteScore |
---|---|---|---|---|---|---|
1 | Forest Ecology and Management | 1976 to present | 179 | 11,068 | 1.29 | 5.8 |
2 | PLOS One | 2001 to present | 102 | 3531 | 0.99 | 5.3 |
3 | Global Change Biology | 1995 to present | 93 | 9115 | 4.15 | 15.5 |
4 | Land Use Policy | 1984 to present | 89 | 3285 | 1.67 | 7.5 |
5 | Remote Sensing of Environment | 1969 to present | 82 | 8356 | 3.61 | 17.6 |
6 | International Journal of Remote Sensing | 1980 to present | 81 | 3742 | 0.92 | 5.9 |
7 | Remote Sensing | 1992 to present | 75 | 1431 | 1.29 | 6.6 |
8 | Biotropica | 1979 to present | 75 | 2502 | 0.81 | 3.6 |
9 | Environmental Research Letters | 2006 to present | 74 | 2552 | 2.37 | 8.6 |
10 | Ecological Applications | 1991 to present | 70 | 5278 | 1.86 | 7.8 |
Total top 10 journals | 920 | 50,860 | ||||
Total documents | 4557 | 20,608 |
Author | Country | Affiliations | Intellectual Structure | Global Publication | HI | ||
---|---|---|---|---|---|---|---|
ND | TC | ND | TC | ||||
Shimabukuro Y.E. | Brazil | Instituto Nacional de Pesquisas Espaciais | 50 | 2820 | 251 | 7797 | 41 |
Barlow J. | United Kingdom | Lancaster Environment Centre | 46 | 5386 | 210 | 13,691 | 60 |
Asner G.P. | United States | Arizona State University | 44 | 4970 | 582 | 54,423 | 112 |
Fearnside P.M. | Brazil | Instituto Nacional de Pesquisas da Amazonia | 42 | 3186 | 226 | 16,543 | 67 |
Peres C.A. | United Kingdom | University of East Anglia | 41 | 4468 | 374 | 25,103 | 86 |
Morán E.F. | United States | Indiana University | 39 | 2762 | 166 | 14,732 | 50 |
Aragão L.E. | Brazil | Instituto Nacional de Pesquisas Espaciais | 36 | 1529 | 224 | 13,444 | 54 |
Perz S.G. | United States | University of Florida | 36 | 1554 | 99 | 3101 | 30 |
Davidson E.A. | United States | University of Maryland Center for Environmental Science | 35 | 5730 | 241 | 36,007 | 93 |
Walker R. | United States | University of Florida | 35 | 2464 | 92 | 4025 | 35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velastegui-Montoya, A.; Montalván-Burbano, N.; Peña-Villacreses, G.; de Lima, A.; Herrera-Franco, G. Land Use and Land Cover in Tropical Forest: Global Research. Forests 2022, 13, 1709. https://doi.org/10.3390/f13101709
Velastegui-Montoya A, Montalván-Burbano N, Peña-Villacreses G, de Lima A, Herrera-Franco G. Land Use and Land Cover in Tropical Forest: Global Research. Forests. 2022; 13(10):1709. https://doi.org/10.3390/f13101709
Chicago/Turabian StyleVelastegui-Montoya, Andrés, Néstor Montalván-Burbano, Gina Peña-Villacreses, Aline de Lima, and Gricelda Herrera-Franco. 2022. "Land Use and Land Cover in Tropical Forest: Global Research" Forests 13, no. 10: 1709. https://doi.org/10.3390/f13101709