Potential Utility of a Climate-Sensitive Structural Stand Density Management Model for Red Pine Crop Planning
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Red Pine SSDMM: Structure and Formulation
2.2. The Red Pine SSDMM: Evaluation of Predictive Ability
2.3. The Red Pine SSDMM: Exemplifications in Crop Planning Decision-Making
3. Results and Discussion
3.1. Synopsis of the Climate-Sensitive Modular-Based SSDMM and Algorithmic Analogue Deployed: Hierarchical Structure, Computational Pathway, Software Design and Performance Indices Produced
3.2. Predictive Performance of Temporal Stand Dynamic Determinates
3.3. Applicability of a Principal Ecological Axiom Shared among SDMD Model Variants: The Self-Thinning Rule
3.4. Exemplification of the Red Pine SSDMM in Crop Planning
3.5. SDMD-Based Crop Planning for Red Pine: Past, Present and Future
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Synopsis of the Validation Data Set, Yield Variates Assessed and Overall Analytical Approach Used to Evaluate the Empirical Prediction Performance of the Principal Drivers of the SSDMM Variant Developed for Red Pine
Variate | Observational Data Set a | Mean Prediction Error c | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Statistic b | OAF Setting d | |||||||||
Mean | SD | Min | Max | 0.005 | 0.010 | 0.015 | ||||
Absolute | % | Absolute | % | Absolute | % | |||||
Mean dominant height (m) | 23.7 | 7.7 | 4.2 | 33.3 | 0.1 | 0.2 | 0.1 | 0.2 | 0.1 | 0.2 |
Density (stems/ha) | 1761 | 806.9 | 380 | 4071 | 97 | 5.5 | 141 | 8.0 | 182 | 10.4 |
Mean volume (dm3/tree) | 437.3 | 289.3 | 4.0 | 1994.5 | 17.6 | 4.0 | 9.9 | 2.3 | 1.7 | 0.4 |
Total volume (m3/ha) | 640.4 | 316.5 | 2.4 | 1273.8 | 63.6 | 9.9 | 69.7 | 10.9 | 75.5 | 11.8 |
Merchantable volume (m3/ha) | 594.2 | 298.8 | 0.2 | 1194.3 | 30.7 | 4.5 | 36.8 | 5.4 | 43.4 | 6.4 |
Quadratic mean diameter (cm) | 21.7 | 6.6 | 4.8 | 51.3 | 1.1 | 5.3 | 1.0 | 4.6 | 0.8 | 3.8 |
Basal area (m2/ha) | 59.3 | 22.4 | 1.1 | 112.3 | 7.6 | 12.8 | 8.1 | 13.7 | 8.6 | 14.6 |
Relative density index (%/100) | 0.57 | 0.25 | 0.01 | 1.21 | 0.1 | 10.2 | 0.1 | 11.4 | 0.1 | 12.5 |
Live crown ratio (%) | 34.8 | 7.0 | 25.7 | 62.8 | −2.1 | −6.2 | −2.3 | −6.5 | −2.4 | −6.8 |
References
- Zhang, S.Y.; Koubaa, A. Softwoods of Eastern Canada: Their Silvics, Characteristics, Manufacturing and End-Uses; Special Publication SP-526E; FP Innovations: St. Foy, QC, Canada, 2008. [Google Scholar]
- Gilmore, D.W.; Palik, B.J. A Revised Manager’s Handbook for Red Pine in North Central Region; General Technical Report NC-264; U.S. Department of Agriculture, Forest Service, North Central Research Station: St. Paul, MN, USA, 2006. [CrossRef] [Green Version]
- OMNRF (Ontario Ministry of Natural Resources and Forestry). Forest Management Guide to Silviculture in the Great Lakes-St. Lawrence and Boreal Forests of Ontario. 2015. Available online: https://www.ontario.ca/page/forest-management-guide-silviculture-great-lakes-st-lawrence-and-boreal-forests-ontario#section-12 (accessed on 1 February 2020).
- Langsaeter, A. Om tynning i enaldret gran-og furuskog (About thinning in even-aged stands of spruce, fir and pine). Meddel. F. Nor. Skogforsoksves. 1941, 8, 131–216. [Google Scholar]
- Möller, C.M. The influence of thinning on volume increment. I. Results of investigations. In Thinning Problems and Practices in Demark; Technical Publication, 76; Möller, C., Abell, J., Jagd, T., Juncker, F., Eds.; State University of New York, College of Forestry: Syracuse, NY, USA, 1954; pp. 5–32. [Google Scholar]
- Assmann, E. The Principles of Forest Yield Study, 1st ed.; Pergamon Press Ltd.: Oxford, UK, 1970. [Google Scholar] [CrossRef]
- Wilson, F.G. Numerical expression of stocking in terms of height. J. For. 1946, 44, 758–761. [Google Scholar]
- Wilson, F.G. Thinning as an orderly discipline: A graphic spacing schedule for red pine. J. For. 1979, 77, 483–486. [Google Scholar]
- Smith, D.J.; Woods, M.E. Red Pine and White Pine Density Management Diagrams for Ontario; Technical Report, No. 48; Ontario Ministry of Natural Resources Southcentral Sciences Section: North Bay, ON, Canada, 1997. [Google Scholar]
- Newton, P.F. Development of a Climate-sensitive Structural Stand Density Management Model for Red Pine. Forests 2022, 13, 1010. [Google Scholar] [CrossRef]
- Ando, T. Growth Analysis on the Natural Stands of Japanese Red Pine (Pinus densiflora Sieb. et. Zucc.). II. Analysis of Stand Density and Growth; No. 147; Government of Japan, Bulletin of the Government Forest Experiment Station: Tokyo, Japan, 1962; (in Japanese, English Summary).
- Newton, P.F.; Weetman, G.F. Stand density management diagrams and their utility in black spruce management. For. Chron. 1993, 69, 421–430. [Google Scholar] [CrossRef] [Green Version]
- Newton, P.F.; Weetman, G.F. Stand density management diagram for managed black spruce stands. For. Chron. 1994, 70, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Newton, P.F. Development of an integrated decision-support model for density management within jack pine stand-types. Ecol. Model. 2009, 220, 3301–3324. [Google Scholar] [CrossRef]
- Newton, P.F. A decision-support system for density management within upland black spruce stand-types. Environ. Mod. Soft. 2012, 35, 171–187. [Google Scholar] [CrossRef] [Green Version]
- Newton, P.F. Genetic worth effect models for boreal conifers and their utility when integrated into density management decision-support systems. Open J. For. 2015, 5, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Newton, P.F. Quantifying growth responses of black spruce and jack pine to thinning within the context of density management decision-support systems. Open J. For. 2015, 5, 409–421. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.; Parton, J. Climatic effects on site productivity of red pine plantations. For. Sci. 2018, 64, 544–554. [Google Scholar] [CrossRef]
- Newton, P.F. Wood quality attribute models and their utility when integrated into density management decision-support systems for boreal conifers. For. Ecol. Manag. 2019, 438, 267–284. [Google Scholar] [CrossRef]
- Yoda, K.; Kira, T.; Ogawa, H.; Hozumi, K. Self-thinning in overcrowded pure stands under cultivated and natural conditions. J. Biol. 1963, 14, 107–129. [Google Scholar]
- IPCC (Intergovernmental Panel on Climate Change). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar] [CrossRef] [Green Version]
- Newton, P.F. Development and utility of an ecological-based decision-support system for managing mixed coniferous forest stands for multiple objectives. In Ecological Modeling; Zhang, W., Ed.; Environmental Science, Engineering and Technology Book Series; Nova Scientific Publishers: Hauppauge, NY, USA, 2012; pp. 115–172. ISBN 978-1-61324-567-5. [Google Scholar]
- Newton, P.F. A silvicultural decision-support algorithm for density regulation within peatland black spruce stands. COMPAG 2012, 80, 115–125. [Google Scholar] [CrossRef]
- Newton, P.F. Stand density management diagrams: Review of their development and utility in stand-level management planning. For. Ecol. Manag. 1997, 98, 251–265. [Google Scholar] [CrossRef]
- Newton, P.F. Simulating the potential effects of a changing climate on black spruce and jack pine plantation productivity by site quality and locale through model adaptation. Forests 2016, 7, 223. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M. Incorporating stand density effects in modeling the taper of red pine plantations. Can. J. For. Res. 2020, 50, 751–759. [Google Scholar] [CrossRef]
- Lambert, M.-C.; Ung, C.-H.; Raulier, F. Canadian national tree aboveground biomass equations. Can. J. For. Res. 2005, 35, 1996–2018. [Google Scholar] [CrossRef]
- Newton, P.F. Species-specific whole-stem equation suites for predicting end-product-based wood attribute determinates for jack pine and red pine and their potential utility in crop planning. 2023; in preparation. [Google Scholar]
- Newton, P.F. Stand density management diagrams: Modelling approaches, variants and exemplification of their potential utility in crop planning. Can. J. For. Res. 2021, 51, 236–256. [Google Scholar] [CrossRef]
- Huang, S.; Yang, Y.; Wang, Y. A critical look at procedures for validating growth and yield models. In Modelling Forest Systems; Amaro, A., Reed, D., Soares, P., Eds.; CAB International: Wallingford, UK, 2003; pp. 271–294. [Google Scholar] [CrossRef]
- Environment and Climate Change Canada. Second Generation Canadian Earth System Model. 2020. Available online: https://www.ec.gc.ca/ccmac-ccma/default.asp?lang=En&n=1A3B7DF1-1&wbdisable=true (accessed on 4 June 2020).
- McKenney, D.; Hutchinson, M.F.; Papadopol, P.; Lawrence, K.; Pedlar, J.; Campbell, K.; Milewska, E.; Hopkinson, R.F.; Price, D.; Owen, T. Customized spatial climate models for North America. Bull. Am. Meteorol. Soc. 2011, 92, 1611–1622. [Google Scholar] [CrossRef] [Green Version]
- Tong, Q.J.; Zhang, S.Y. Development of lumber recovery correction models for plantation-grown Pinus banksiana trees. Scand. J. For. Res. 2009, 24, 417–424. [Google Scholar] [CrossRef]
- Tong, Q.J.; Zhang, S.Y.; Thompson, M. Evaluation of growth response, stand value and financial return for pre-commercially thinned jack pine stands in Northwestern Ontario. For. Ecol. Manag. 2005, 209, 225–235. [Google Scholar] [CrossRef]
- Stankova, T.V.; Diéguez-Aranda, U. Dynamic structural stand density management diagrams for even-aged natural stands and plantations. For. Ecol. Manag. 2020, 458, 117733. [Google Scholar] [CrossRef]
- Weiskittel, A.R.; Hann, D.W.; Kershaw, J.A., Jr.; Vanclay, J.K. Forest Growth and Yield Modeling; Wiley-Blackwell: Hoboken, NJ, USA, 2011. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.; Subedi, N.; Ter Mikaelian, M.; Parton, J. Modeling climatic effects on stand height/site index of plantation-grown jack pine and black spruce trees. For. Sci. 2015, 61, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Drew, T.J.; Flewelling, J.W. Some recent Japanese theories of yield-density relationships and their application to Monterey pine plantations. For. Sci. 1977, 23, 517–534. [Google Scholar]
- Drew, T.J.; Flewelling, J.W. Stand density management: An alternative approach and its application to Douglas-fir plantations. For. Sci. 1979, 25, 518–532. [Google Scholar]
- Mohler, C.L.; Marks, P.L.; Sprugel, D.G. Stand structure and allometry of trees during self-thinning of pure stands. J. Ecol. 1978, 66, 599–614. [Google Scholar] [CrossRef]
- Miyanishi, K.; Hoy, A.R.; Cavers, P.B. A generalized law of self-thinning in plant populations. J. Theor. Biol. 1979, 78, 439–442. [Google Scholar] [CrossRef]
- Weller, D.E. A reevaluation of the −3/2 power rule of self-thinning. Ecol. Monogr. 1987, 57, 23–43. [Google Scholar] [CrossRef] [Green Version]
- Weller, D.E. Self-thinning exponent correlated with allometric measures of plant geometry. Ecology 1987, 68, 813–821. [Google Scholar] [CrossRef] [Green Version]
- Enquist, B.J.; Brown, J.H.; West, G.B. Allometric scaling of plant energetics and population density. Nature 1998, 395, 163–165. [Google Scholar] [CrossRef]
- Newton, P.F. Asymptotic size-density relationships within self-thinning black spruce and jack pine stand-types: Parameter estimation and model reformulations. For. Ecol. Manag. 2006, 226, 49–59. [Google Scholar] [CrossRef]
- West, G.W.; Brown, J.H.; Enquist, B.J. A general model for the origin of allometric scaling laws in biology. Science 1997, 276, 122–126. [Google Scholar] [CrossRef]
- White, J. The allometric interpretation of the self-thinning rule. J. Theor. Biol. 1981, 89, 475–500. [Google Scholar] [CrossRef]
- Pretzsch, H. Species-specific allometric scaling under self-thinning: Evidence from long-term plots in forest stands. Oecologia 2006, 146, 572–583. [Google Scholar] [CrossRef]
- Robertson, A. The centroid of tree crowns as an indicator of abiotic processes in a balsam fir wave forest. Can. J. For. Res. 1987, 17, 746–755. [Google Scholar] [CrossRef]
- Rudnicki, M.; Silins, U.; Lieffers, V.J.; Josi, G. Measure of simultaneous tree sways and estimation of crown interactions among a group of trees. Trees 2001, 15, 83–90. [Google Scholar] [CrossRef]
- Newton, P.F.; Joliffe, P.A. Aboveground dry matter partitioning responses of black spruce to directional-specific indices of local competition. Can. J. For. Res. 2003, 33, 1832–1845. [Google Scholar] [CrossRef]
- Niklas, K.J. The allometry of safety-factors for plant height. Am. J. Bot. 1994, 81, 345–351. [Google Scholar] [CrossRef]
- Harper, J.L. Population Biology of Plants; Academic Press: London, UK, 1977. [Google Scholar]
- Pretzsch, H.; Biber, P. Fertilization modifies forest stand growth but not stand density: Consequences for modelling stand dynamics in a changing climate. Forestry 2022, 95, 187–200. [Google Scholar] [CrossRef]
- Kayahara, G.J.; McKinnon, L.M.; White, R.G. Commercial thinning Specifications and Exceptions Monitoring Protocol for Jack Pine, White Spruce and Black Spruce in Ontario’s Boreal Forest. 2006. Available online: https://collections.ola.org/mon/28005/268087.pdf (accessed on 15 March 2021).
- Newton, P.F. Croplanner: A stand density management decision-support software suite for addressing volumetric yield, end-product and ecosystem service objectives when managing boreal conifers. Forests 2021, 12, 448. [Google Scholar] [CrossRef]
- Beckwith, A.F.; Roebbelen, P.; Smith, V.G. Red Pine Plantation Growth and Yield Tables; Ontario Ministry of Natural Resources, Forest Research Report No. 108; Ontario Tree Improvement and Forest Biomass Institute: Maple, ON, Canada, 1983. [Google Scholar]
- Woods, M.E.; Penner, M. Growth and Yield Response of Red Pine Plantations to Thinning; Ontario Ministry of Natural Resources, Southcentral Science Section, Technical Note No. 06; Science Development and Transfer Branch: Peterborough, ON, Canada, 2000. [Google Scholar]
- von Althen, F.W.; Stiell, W.M. A red pine case history: Development of the Rockland plantation from 1914 to 1986. For. Chron. 1990, 66, 606–610. [Google Scholar] [CrossRef] [Green Version]
- Penner, M.; Robinson, C.; Burgess, D. Pinus resonisa product potential following initial spacing and subsequent thinning. For. Chron. 2001, 77, 129–139. [Google Scholar] [CrossRef]
- Buckman, R.E.; Bishaw, B.; Hanson, T.J.; Benford, F.A. Growth and Yield of Red Pine in the Lake States; General Technical Report NC-271; Department of Agriculture, Forest Service, North Central Research Station: St. Paul, MN, USA, 2006; 114p. [CrossRef] [Green Version]
- Wyckoff, G.W.; Lauer, D.K. Stand and tree response to commercial thinning of red pine in Michigan. For. Sci. 2014, 60, 1180–1193. [Google Scholar] [CrossRef]
- Woods, M.E. Density management diagrams tools and uses. In Proceedings of the Improving Forest Productivity for Timber, A Key to Sustainability Conference, Duluth, MN, USA, 1–2 December 1998; Ek, A.R., Zum Bahlen, B., Eds.; Available online: https://forestry.umn.edu/sites/forestry.umn.edu/files/cfans_asset_356668.pdf (accessed on 15 September 2017).
- Emmett, B. Increasing the value of our forest. For. Chron. 2006, 82, 3–4. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, S. Transition of the Canadian forest sector. In The Future Use of Nordic Forests-A Global Perspective; Westholm, E., Lindahl, K.B., Kraxner, F., Eds.; Springer: Cham, Switzerland, 2015; pp. 125–144. [Google Scholar] [CrossRef]
- Sharma, M.; Parton, J.; Woods, M.; Newton, P.; Penner, M.; Wang, J.; Stinson, A.; Bell, F.W. Ontario’s forest growth and yield modelling program: Advances resulting from the Forestry Research Partnership. For. Chron. 2008, 84, 694–703. [Google Scholar] [CrossRef] [Green Version]
- Defo, M.; Duchesne, I.; Stewart, J. A Review of the Current State of Wood Quality Modelling and Decision Support Systems in Canada; Information Report FI-X-012; Natural Resources Canada, Canadian Forest Service: Quebec City, QC, Canada, 2016. [Google Scholar]
- Penner, M.; Pit, D. The Ontario Growth and Yield Program Status and Needs-Report to the Forestry Futures Trust Committee. 2019. Available online: http://www.forestryfutures.ca/upload/464883/documents/3D5D439A749A7C88.pdf (accessed on 1 March 2020).
- Grossman, G.H.; Potter-Witter, K. Economics of red pine management for utility pole timber. NJAF 1991, 8, 22–25. [Google Scholar] [CrossRef]
- Aven, T. The cautionary principle in risk management: Foundation and practical use. Reliab. Eng. Syst. Saf. 2019, 191, 106585. [Google Scholar] [CrossRef]
- Hausfather, Z.; Peters, G.P. Emissions—The ‘business as usual’ story is misleading. Nature 2020, 577, 618–620. [Google Scholar] [CrossRef]
- Walker, W.S.; Gorelik, S.R.; Cook-Patton, S.C.; Baccini, A.; Farina, M.K.; Solvik, K.K.; Ellis, P.W.; Sanderman, J.; Houghton, R.A.; Leavitt, S.M.; et al. The global potential for increased storage of carbon on land. Proc. Natl. Acad. Sci. USA 2022, 119, e2111312119. [Google Scholar] [CrossRef]
- Heffner, J.; Steenberg, J.; Leblon, B. Comparison between empirical models and the CBM-CFS3 Carbon Budget Model to predict carbon stocks and yields in Nova Scotia Forests. Forests 2021, 12, 1235. [Google Scholar] [CrossRef]
- Sharma, M. Modelling climate effects on diameter growth of red pine trees in boreal Ontario, Canada. Trees For. People 2021, 4, 100064. [Google Scholar] [CrossRef]
- Burkhart, H.E.; Yang, S.-I. A retrospective comparison of carrying capacity of two generations of loblolly pine plantations. For. Ecol. Manag. 2022, 504, 119834. [Google Scholar] [CrossRef]
- Bowditch, E.; Santopuoli, G.; Binder, F.; del Río, M.; La Porta, N.; Kluvankova, T.; Lesinski, J.; Motta, R.; Pach, M.; Panzacchi, P.; et al. What is Climate-Smart Forestry? A definition from a multinational collaborative process focused on mountain regions of Europe. Ecosyst. Serv. 2020, 43, 101113. [Google Scholar] [CrossRef]
Input Parameter (Unit) | NC | RCP4.5 | RCP8.5 | ||||
---|---|---|---|---|---|---|---|
1971–2000 | 2011–2040 | 2041–2070 | 2071–2100 | 2011–2040 | 2041–2070 | 2071–2100 | |
Location a: Thunder Bay, Ontario (north-western) | |||||||
Mean temperature during growing season (°C) | 11.3 | 14.19 | 14.74 | 15.41 | 14.21 | 15.56 | 17.27 |
Total precipitation during growing season (mm) | 455.4 | 485.2 | 549.7 | 544.2 | 545 | 532 | 565.3 |
Location a: Thessalon, Ontario (north-central) | |||||||
Mean temperature during growing season (°C) | 13.5 | 14.36 | 15.05 | 15.73 | 14.49 | 15.85 | 17.76 |
Total precipitation during growing season (mm) | 503.3 | 586.6 | 666.8 | 635.7 | 600 | 634.8 | 620.8 |
Location a: Kirkland Lake, Ontario (north-eastern) | |||||||
Mean temperature during growing season (°C) | 11.2 | 14.14 | 14.67 | 15.38 | 14.29 | 15.9 | 17.78 |
Total precipitation during growing season (mm) | 482.3 | 516.9 | 579 | 576.8 | 537.6 | 566.1 | 579.3 |
Parameter (Units) a | Regime 1 | Regime 2 | Regime 3 |
---|---|---|---|
(IS) | (IS+1CT) | (IS+2CTs) | |
Rotation age (year) | 75 | 75 | 75 |
Planting year | 2022 | 2022 | 2022 |
Simulation years | 2022–2097 | 2022–2097 | 2022–2097 |
Initial planting density (stems/ha) | 2000 | 2000 | 2000 |
Genetic worth (%)/selection age (year) | 8/15 | 8/15 | 8/15 |
1st CT: stand age (year)/basal area removal (%) | - | 55/35 | 40/20 |
2nd CT: stand age (year)/basal area removal (%) | - | - | 55/20 |
Operational adjustment factor (%) | 0.01 | 0.01 | 0.01 |
Merchantable Specifications | |||
Pulp log length (m) | 2.59 | 2.59 | 2.59 |
Pulp log minimum diameter (inside bark; cm) | 10 | 10 | 10 |
Saw log length (m) | 5.03 | 5.03 | 5.03 |
Saw log minimum diameter (inside-bark; cm) | 14 | 14 | 14 |
Merchantable top diameter (inside-bark cm) | 10 | 10 | 10 |
Minimum utility pole length (m) | 12.2 | 12.2 | 12.2 |
Minimum pole upper diameter (inside-bark; cm) | 19.9 | 19.9 | 19.9 |
Minimum pole diameter class (outside-bark; cm) | 34 | 34 | 34 |
Product degrade (%) | 10 | 10 | 10 |
Minimum Operability Targets | |||
Piece-size (merchantable stems/merchantable m3) | 10 | 10 | 10 |
Merchantable volumetric stand yield (m3/ha) | 200 | 200 | 200 |
Economic Parameters | |||
Interest rate (%) | 2 | 2 | 2 |
Discount rate (%) | 4 | 4 | 4 |
Mechanical site preparation (CAD/ha) | 300 | 300 | 300 |
Planting (CAD/seedling) | 0.8 | 0.8 | 0.8 |
1st CT costs: variable (CAD/m3 of merchantable volume removed)/fixed (CADha) | - | 75/300 | 75/300 |
2nd CT costs: variable (CAD/m3 of merchantable volume removed)/fixed (CAD/ha) | - | - | 65/300 |
Rotational harvesting+stumpage+renewal+ transportation+manufacturing variable costs (CAD/m3 of merchantable volume harvested) | 75 | 65 | 55 |
Current net pole value (CAD(K)/pole) | 0.3 | 0.3 | 0.3 |
Index a | Locale b | Crop Plan c | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(Unit) | Regime 1: IS | Regime 2: IS+1 CT | Regime 3: IS+2 CT | |||||||||||||
Climate Change Scenario d | Climate Change Scenario d | Climate Change Scenario d | ||||||||||||||
NC | RCP4.5 | RCP8.5 | NC | RCP4.5 | RCP8.5 | NC | RCP4.5 | RCP8.5 | ||||||||
∆ | ∆ | ∆ | ∆ | ∆ | ∆ | |||||||||||
(m) | C | 28.7 | 28.5 | −0.7 | 27.5 | −4.2 | 28.7 | 28.5 | −0.7 | 27.5 | −4.2 | 28.7 | 28.5 | −0.7 | 27.5 | −4.2 |
E | 29.3 | 28.5 | −2.7 | 27.2 | −7.2 | 29.3 | 28.5 | −2.7 | 27.2 | −7.2 | 29.3 | 28.5 | −2.7 | 27.2 | −7.2 | |
W | 29.2 | 28.4 | −2.7 | 27.3 | −6.5 | 29.2 | 28.4 | −2.7 | 27.3 | −6.5 | 29.2 | 28.4 | −2.7 | 27.3 | −6.5 | |
(cm) | C | 29.6 | 29.5 | −0.3 | 28.5 | −3.7 | 38.2 | 38.0 | −0.5 | 36.5 | −4.5 | 39.1 | 38.9 | −0.5 | 37.2 | −4.9 |
E | 30.0 | 29.5 | −1.7 | 28.3 | −5.7 | 38.9 | 37.9 | −2.6 | 35.9 | −7.7 | 39.7 | 38.8 | −2.3 | 36.9 | −7.1 | |
W | 29.9 | 29.4 | −1.7 | 28.3 | −5.4 | 38.7 | 37.6 | −2.5 | 36.0 | −6.8 | 39.5 | 38.4 | −2.8 | 36.9 | −6.6 | |
(m2/ha) | C | 47.6 | 47.1 | −1.1 | 45.0 | −5.5 | 33.0 | 32.7 | −0.9 | 31.5 | −4.5 | 31.8 | 31.6 | −0.6 | 30.6 | −3.8 |
E | 49.5 | 47.0 | −5.1 | 44.4 | −10.3 | 33.9 | 32.6 | −3.8 | 31.3 | −7.7 | 32.9 | 31.4 | −4.6 | 30.2 | −8.2 | |
W | 49.0 | 46.6 | −4.9 | 44.6 | −9.0 | 33.6 | 32.6 | −3.0 | 31.4 | −4.7 | 32.7 | 31.6 | −3.4 | 30.3 | −7.3 | |
(dm3) | C | 825.3 | 811.8 | −1.6 | 735.2 | −10.9 | 1386.1 | 1362.5 | −1.7 | 1216.9 | −12.2 | 1456.9 | 1431.8 | −1.7 | 1269.5 | −12.9 |
E | 860.2 | 808.6 | −6.0 | 715.5 | −16.8 | 1468.0 | 1355.6 | −7.7 | 1171.5 | −20.2 | 1528.9 | 1426.0 | −6.7 | 1234.0 | −19.3 | |
W | 848.1 | 801.2 | −5.5 | 719.8 | −15.1 | 1445.0 | 1327.7 | −8.8 | 1180.5 | −18.3 | 1503.5 | 1389.7 | −7.6 | 1240.8 | −17.5 | |
(m3/ha) | C | 569.2 | 560.3 | −1.6 | 517.5 | −9.1 | 566.9 | 558.8 | −1.4 | 524.6 | −7.5 | 528.3 | 521.5 | −1.3 | 493.3 | −6.6 |
E | 602.5 | 557.0 | −7.5 | 505.8 | −16.0 | 588.1 | 557.3 | −5.2 | 517.1 | −12.1 | 546.0 | 520.6 | −4.7 | 485.0 | −11.2 | |
W | 593.4 | 551.0 | −7.1 | 509.1 | −14.2 | 581.6 | 556.1 | −4.4 | 519.5 | −10.7 | 540.8 | 521.9 | −3.5 | 487.0 | −9.9 | |
(m3/ha) | C | 555.6 | 546.7 | −1.6 | 504.6 | −9.2 | 552.8 | 544.7 | −1.5 | 510.9 | −7.6 | 514.8 | 508.1 | −1.3 | 480.2 | −6.7 |
E | 588.5 | 543.6 | −7.6 | 493.0 | −16.2 | 573.7 | 543.3 | −5.3 | 503.4 | −12.3 | 532.2 | 507.2 | −4.7 | 472.0 | −11.3 | |
W | 579.5 | 537.7 | −7.2 | 496.2 | −14.4 | 567.4 | 542.2 | −4.4 | 505.7 | −10.8 | 527.2 | 508.4 | −3.6 | 474.0 | −10.1 | |
(stems/ha) | C | 690.0 | 690.0 | 0.0 | 704.0 | 2.0 | 288.0 | 289.0 | 0.3 | 302.0 | 4.9 | 265.0 | 266.0 | 0.4 | 281.0 | 6.0 |
E | 700.0 | 689.0 | −1.6 | 707.0 | 1.0 | 285.0 | 289.0 | 1.4 | 309.0 | 8.4 | 266.0 | 265.0 | −0.4 | 283.0 | 6.4 | |
W | 700.0 | 688.0 | −1.7 | 707.0 | 1.0 | 286.0 | 294 | 2.8 | 308.0 | 7.7 | 267.0 | 272.0 | 1.9 | 283.0 | 6.0 | |
(%/100) | C | 0.4 | 0.4 | 0.0 | 0.4 | 0.0 | 0.3 | 0.3 | 0.0 | 0.3 | 0.0 | 0.3 | 0.3 | 0.0 | 0.2 | −0.1 |
E | 0.5 | 0.4 | −0.1 | 0.4 | −0.1 | 0.3 | 0.3 | 0.0 | 0.3 | 0.0 | 0.3 | 0.3 | 0.0 | 0.2 | −0.1 | |
W | 0.4 | 0.4 | 0.0 | 0.4 | 0.0 | 0.3 | 0.3 | 0.0 | 0.3 | 0.0 | 0.3 | 0.3 | 0.0 | 0.2 | −1.0 |
Index a | Locale b | Climate Scenario c | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
(Unit) | Climate Normal | RCP4.5 | RCP8.5 | |||||||
Crop Plan Comparison d | Crop Plan Comparison d | Crop Plan Comparison d | ||||||||
IS+1CT vs. IS | IS+2CT vs. IS | IS+2CT vs. IS+1CT | IS+1CT vs. IS | IS+2CT vs. IS | IS+2CT vs. IS+1CT | IS+1CT vs. IS | IS+2CT vs. IS | IS+2CT vs. IS+1CT | ||
∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ||
(cm) | C | 29.1 | 32.1 | 10.3 | 28.8 | 31.9 | 2.4 | 28.1 | 28.1 | 1.9 |
E | 29.7 | 32.3 | 8.9 | 28.5 | 31.5 | 2.4 | 26.9 | 26.9 | 2.8 | |
W | 29.4 | 32.1 | 8.9 | 27.9 | 30.6 | 2.1 | 27.2 | 27.2 | 2.5 | |
(m2/ha) | C | −30.7 | −33.2 | −5.3 | −30.6 | −32.9 | −3.4 | −30.0 | −30.0 | −2.9 |
E | −31.5 | −33.5 | −4.1 | −30.6 | −33.2 | −3.7 | −29.5 | −29.5 | −3.5 | |
W | −31.4 | −33.3 | −3.7 | −30.0 | −32.2 | −3.1 | −20.2 | −20.2 | −3.5 | |
(dm3) | C | 68.0 | 76.5 | 1.0 | 67.8 | 76.4 | 5.1 | 65.5 | 65.5 | 4.3 |
E | 70.7 | 77.7 | 0.8 | 67.6 | 76.4 | 5.2 | 63.7 | 63.7 | 5.3 | |
W | 70.4 | 77.3 | 0.8 | 65.7 | 73.5 | 4.7 | 64.0 | 64.0 | 5.1 | |
(m3/ha) | C | −0.4 | −7.2 | −1.2 | −0.3 | −6.9 | −6.7 | 1.4 | 1.4 | −6.0 |
E | −2.4 | −9.4 | −1.2 | 0.1 | −6.5 | −6.6 | 2.2 | 2.2 | −6.2 | |
W | −2.0 | −8.9 | −1.2 | 0.9 | −5.3 | −6.1 | 2.0 | 2.0 | −6.3 | |
(m3/ha) | C | −0.5 | −7.3 | −1.2 | −0.4 | −7.1 | −6.7 | 1.2 | 1.2 | −6.0 |
E | −2.5 | −9.6 | −1.2 | −0.1 | −6.7 | −6.6 | 2.1 | 2.1 | −6.2 | |
W | −2.1 | −9.0 | −1.2 | 0.8 | −5.4 | −6.2 | 1.9 | 1.9 | −6.3 | |
(stems/ha) | C | −58.3 | −61.6 | −0.5 | −58.1 | −61.4 | −8.0 | −57.1 | −57.1 | −7.0 |
E | −59.3 | −62.0 | −0.4 | −58.1 | −61.5 | −8.3 | −56.3 | −56.3 | −8.4 | |
W | −59.1 | −61.9 | −0.4 | −57.3 | −60.5 | −7.5 | −56.4 | −56.4 | −8.1 | |
(%/100) | C | −0.1 | −0.1 | 0.0 | −0.1 | −0.1 | 0.0 | −0.1 | −0.2 | −0.1 |
E | −0.2 | −0.2 | 0.0 | −0.1 | −0.1 | 0.0 | −0.1 | −0.2 | −0.1 | |
W | −0.1 | −0.1 | 0.0 | −0.1 | −0.1 | 0.0 | −0.1 | −0.2 | −0.1 |
Index a | Locale b | Crop plan c | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(Unit) | Regime 1: IS | Regime 2: IS+1CT | Regime 3: IS+2CT | |||||||||||||
Climate Change Scenario d | Climate Change Scenario d | Climate Change Scenario d | ||||||||||||||
NC | RCP4.5 | RCP8.5 | NC | RCP4.5 | RCP8.5 | NC | RCP4.5 | RCP8.5 | ||||||||
∆ | ∆ | ∆ | ∆ | ∆ | ∆ | |||||||||||
RMAI (m3/ha/year) | C | 7.4 | 7.3 | −1.4 | 6.7 | −9.5 | 7.4 | 7.3 | −1.4 | 6.8 | −8.1 | 6.9 | 6.8 | −1.4 | 6.4 | −7.2 |
E | 7.8 | 7.2 | −7.7 | 6.6 | −15.4 | 7.6 | 7.2 | −5.3 | 6.7 | −11.8 | 7.1 | 6.8 | −4.2 | 6.3 | −11.3 | |
W | 7.7 | 7.2 | −6.5 | 6.6 | −14.3 | 7.6 | 7.2 | −5.3 | 6.7 | −11.8 | 7 | 6.8 | −2.9 | 6.3 | −10.0 | |
RBAI (m3/ha/year) | C | 3.8 | 3.8 | 0.0 | 3.5 | −7.9 | 4.6 | 4.6 | 0.0 | 4.4 | −4.3 | 4.6 | 4.5 | −2.2 | 4.4 | −4.3 |
E | 4.1 | 3.8 | −7.3 | 3.5 | −14.6 | 4.8 | 4.6 | −4.2 | 4.3 | −10.4 | 4.6 | 4.5 | −2.2 | 4.3 | −6.5 | |
W | 4 | 3.7 | −7.5 | 3.5 | −12.5 | 4.8 | 4.6 | −4.2 | 4.3 | −10.4 | 4.8 | 4.5 | −6.2 | 4.3 | −10.4 | |
RCAI (m3/ha/year) | C | 1.9 | 1.9 | 0.0 | 1.8 | −5.3 | 2.3 | 2.3 | 0.0 | 2.2 | −4.3 | 2.3 | 2.3 | 0.0 | 2.2 | −4.3 |
E | 2 | 1.9 | −5.0 | 1.7 | −15.0 | 2.4 | 2.3 | −4.2 | 2.1 | −12.5 | 2.3 | 2.3 | 0.0 | 2.1 | −8.7 | |
W | 2 | 1.9 | −5.0 | 1.7 | −15.0 | 2.4 | 2.3 | −4.2 | 2.2 | −8.3 | 2.3 | 2.3 | 0.0 | 2.1 | −8.7 | |
RSL (%) | C | 72 | 71.6 | −0.4 | 68.5 | −3.5 | 50 | 49.7 | −0.3 | 49.6 | −0.4 | 34.3 | 34.3 | 0 | 32.2 | −2.1 |
E | 76 | 71.6 | −4.4 | 67.5 | −8.5 | 49.5 | 49.9 | 0.4 | 49.6 | 0.1 | 36.3 | 34.8 | −1.5 | 31.9 | −4.4 | |
W | 80.3 | 71.3 | −9 | 67.7 | −12.6 | 49.5 | 50.1 | 0.6 | 49.6 | 0.1 | 34.9 | 35 | 0.1 | 31.7 | −3.2 | |
RLV(s) (%) | C | 89.6 | 89.4 | −0.2 | 87.9 | −1.7 | 77.4 | 77.2 | −0.2 | 76.2 | −1.2 | 73.8 | 73.7 | −0.1 | 72.8 | −1 |
E | 90.2 | 89.4 | −0.8 | 87.5 | −2.7 | 77.3 | 77.3 | 0 | 75.9 | −1.4 | 73.4 | 73.8 | 0.4 | 72.6 | −0.8 | |
W | 90 | 89.2 | −0.8 | 87.6 | −2.4 | 77.3 | 77.3 | 0 | 75.9 | −1.4 | 73.5 | 73.9 | 0.4 | 72.6 | −0.9 | |
Nup (poles/ha) | C | 44 | 35 | −20.5 | 0 | [−44] | 286 | 287 | 0.3 | 300 | 4.9 | 263 | 263 | 0.0 | 279 | 6.1 |
E | 73 | 0 | [−73] | 0 | [−73] | 282 | 287 | 1.8 | 308 | 9.2 | 264 | 264 | 0.0 | 281 | 6.4 | |
W | 63 | 0 | [−63] | 0 | [−63] | 283 | 292 | 3.2 | 305 | 7.8 | 264 | 270 | 2.3 | 282 | 6.8 | |
E(s) ($k/ha) | C | 11.1 | 10.8 | −2.7 | 10.2 | −8.1 | 21 | 21.1 | 0.5 | 22.4 | 6.7 | 21.8 | 21.8 | 0.0 | 23.4 | 7.3 |
E | 11.5 | 9.8 | −14.8 | 10.1 | −12.2 | 20.4 | 21.2 | 3.9 | 23.1 | 13.2 | 21.4 | 21.9 | 2.3 | 23.6 | 10.3 | |
W | 11.6 | 9.8 | −15.5 | 10.1 | −12.9 | 20.5 | 21.5 | 4.9 | 22.9 | 11.7 | 21.5 | 22.4 | 4.2 | 23.6 | 9.8 | |
(%) | C | 48 | 46.7 | −1.3 | 46.7 | −1.3 | 21.3 | 20 | −1.3 | 20 | −1.3 | 1.3 | 0 | −1.3 | 0 | −1.3 |
E | 45.3 | 48 | 2.7 | 46.7 | 1.4 | 18.7 | 21.3 | 2.6 | 20 | 1.3 | 0 | 1.3 | 1.3 | 0 | 0 | |
W | 45.3 | 48 | 2.7 | 46.7 | 1.4 | 18.7 | 21.3 | 2.6 | 20 | 1.3 | 0 | 1.3 | 1.3 | 0 | 0 | |
SS (m/m) | C | 99.6 | 99.4 | −0.2 | 100 | 0.4 | 76.7 | 76.4 | −0.3 | 76.5 | −0.2 | 82.4 | 82.3 | −0.1 | 82.4 | 0 |
E | 100.3 | 99.6 | −0.7 | 99.5 | −0.8 | 76.8 | 76.4 | −0.4 | 76.5 | −0.3 | 82.5 | 82.2 | −0.3 | 82.2 | −0.3 | |
W | 101.2 | 99.6 | −1.6 | 100.5 | −0.7 | 76.8 | 76.6 | −0.2 | 76.6 | −0.2 | 82.4 | 82.5 | 0.1 | 82.2 | −0.2 | |
OT (year) | C | 31 | 30 | −3.2 | 30 | −3.2 | 31 | 30 | −3.2 | 30 | −3.2 | 31 | 30 | −3.2 | 30 | −3.2 |
E | 33 | 30 | −9.1 | 30 | −9.1 | 33 | 30 | −9.1 | 30 | −9.1 | 33 | 30 | −9.1 | 30 | −9.1 | |
W | 33 | 30 | −9.1 | 30 | −9.1 | 33 | 30 | −9.1 | 30 | −9.1 | 33 | 30 | −9.1 | 30 | −9.1 | |
(kg/m3) | C | 458.7 | 458.7 | 0.0 | 458.8 | 0.0 | 461.1 | 461 | −0.0 | 460 | −0.2 | 461.8 | 461.7 | −0.0 | 460.5 | −0.3 |
E | 458.7 | 458.7 | 0.0 | 458.9 | 0.0 | 461.6 | 460.9 | −0.2 | 459.8 | −0.4 | 462.2 | 461.6 | −0.1 | 460.2 | −0.4 | |
W | 458.7 | 458.7 | 0.0 | 458.9 | 0.0 | 461.5 | 460.7 | −0.2 | 459.8 | −0.4 | 462.1 | 461.3 | −0.2 | 460.3 | −0.4 | |
(°) | C | 16.4 | 16.3 | −0.6 | 15.7 | −4.3 | 21.7 | 21.6 | −0.5 | 20.7 | −4.6 | 22.3 | 22.1 | −0.9 | 21.2 | −4.9 |
E | 16.6 | 16.2 | −2.4 | 15.5 | −6.6 | 22.1 | 21.5 | −2.7 | 20.4 | −7.7 | 22.6 | 22.1 | −2.2 | 20.9 | −7.5 | |
W | 16.5 | 16.2 | −1.8 | 15.6 | −5.5 | 22 | 21.4 | −2.7 | 20.5 | −6.8 | 22.5 | 21.8 | −3.1 | 21 | −6.7 | |
(GPa) | C | 10.4 | 10.4 | 0.0 | 10.7 | 2.9 | 8.6 | 8.6 | 0.0 | 8.8 | 2.3 | 8.4 | 8.5 | 1.2 | 8.7 | 3.6 |
E | 10.3 | 10.4 | 1.0 | 10.7 | 3.9 | 8.5 | 8.6 | 1.2 | 8.9 | 4.7 | 8.4 | 8.5 | 1.2 | 8.8 | 4.8 | |
W | 10.3 | 10.5 | 1.9 | 10.7 | 3.9 | 8.5 | 8.6 | 1.2 | 8.9 | 4.7 | 8.4 | 8.5 | 1.2 | 8.7 | 3.6 | |
(µg/m) | C | 502.8 | 502.5 | −0.1 | 500.1 | −0.5 | 527.1 | 526.5 | −0.1 | 522 | −1.0 | 530.3 | 529.6 | −0.1 | 524.5 | −1.1 |
E | 503.6 | 502 | −0.3 | 499.5 | −0.8 | 529.5 | 526.3 | −0.6 | 520.5 | −1.7 | 532 | 529.4 | −0.5 | 523.2 | −1.7 | |
W | 503.3 | 501.8 | −0.3 | 499.6 | −0.7 | 528.9 | 525.4 | −0.7 | 520.8 | −1.5 | 531.5 | 528 | −0.7 | 523.3 | −1.5 | |
(µm) | C | 3 | 3 | 0.0 | 3 | 0.0 | 3 | 3 | 0.0 | 3 | 0.0 | 3 | 3 | 0.0 | 3 | 0.0 |
E | 3 | 3 | 0.0 | 3 | 0.0 | 3 | 3 | 0.0 | 3 | 0.0 | 3 | 3 | 0.0 | 3 | 0.0 | |
W | 3 | 3 | 0.0 | 3 | 0.0 | 3 | 3 | 0.0 | 3 | 0.0 | 3 | 3 | 0.0 | 3 | 0.0 | |
(µm) | C | 34 | 34 | 0.0 | 33.8 | −0.6 | 35.5 | 35.4 | −0.3 | 35.2 | −0.8 | 35.7 | 35.6 | −0.3 | 35.3 | −1.1 |
E | 34.1 | 34 | −0.3 | 33.8 | −0.9 | 35.6 | 35.4 | −0.6 | 35.1 | −1.4 | 35.7 | 35.6 | −0.3 | 35.3 | −1.1 | |
W | 34 | 34 | 0.0 | 33.8 | −0.6 | 35.6 | 35.4 | −0.6 | 35.1 | −1.4 | 35.7 | 35.5 | −0.6 | 35.3 | −1.1 | |
(µm) | C | 31.6 | 31.5 | −0.3 | 31.4 | −0.6 | 32.6 | 32.5 | −0.3 | 32.4 | −0.6 | 32.7 | 32.7 | 0.0 | 32.5 | −0.6 |
E | 31.6 | 31.5 | −0.3 | 31.4 | −0.6 | 32.7 | 32.5 | −0.6 | 32.3 | −1.2 | 32.8 | 32.7 | −0.3 | 32.4 | −1.2 | |
W | 31.6 | 31.5 | −0.3 | 31.4 | −0.6 | 32.6 | 32.5 | −0.3 | 32.3 | −0.9 | 32.7 | 32.6 | −0.3 | 32.4 | −0.9 | |
(m2/kg) | C | 282.1 | 282.1 | 0.0 | 282.5 | 0.1 | 278.9 | 279 | 0.0 | 279.5 | 0.2 | 278.6 | 278.7 | 0.0 | 279.2 | 0.2 |
E | 282 | 282.2 | 0.1 | 282.5 | 0.2 | 278.7 | 279 | 0.1 | 279.7 | 0.4 | 278.4 | 278.7 | 0.1 | 279.4 | 0.4 | |
W | 282 | 282.2 | 0.1 | 282.5 | 0.2 | 278.7 | 279 | 0.1 | 279.7 | 0.4 | 278.4 | 278.8 | 0.1 | 279.4 | 0.4 |
Index a | Locale b | Climate Scenario c | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Climate Normal | RCP4.5 | RCP8.5 | ||||||||
Crop Plan Comparison d | Crop Plan Comparison d | Crop Plan Comparison d | ||||||||
IS+1CT vs. IS | IS+2CT vs. IS | IS+2CT vs. IS+1CT | IS+1CT vs. IS | IS+2CT vs. IS | IS+2CT vs. IS+1CT | IS+1CT vs. IS | IS+2CT vs. IS | IS+2CT vs. IS+1CT | ||
∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ||
RMAI (m3/ha/year) | C | 0.0 | −6.8 | −6.8 | 0.0 | −6.8 | −6.8 | 1.5 | −4.5 | −5.9 |
E | −2.6 | −9.0 | −6.6 | 0.0 | −5.6 | −5.6 | 1.5 | −4.5 | −6.0 | |
W | −1.3 | −9.1 | −7.9 | 0.0 | −5.6 | −5.6 | 1.5 | −4.5 | −6.0 | |
RBAI (m3/ha/year) | C | 21.1 | 21.1 | 0.0 | 21.1 | 18.4 | −2.2 | 25.7 | 25.7 | 0.0 |
E | 17.1 | 12.2 | −4.2 | 21.1 | 18.4 | −2.2 | 22.9 | 22.9 | 0.0 | |
W | 20.0 | 20.0 | 0.0 | 24.3 | 21.6 | −2.2 | 22.9 | 22.9 | 0.0 | |
RCAI (m3/ha/year) | C | 21.1 | 21.1 | 0.0 | 21.1 | 21.1 | 0.0 | 22.2 | 22.2 | 0.0 |
E | 20.0 | 15.0 | −4.2 | 21.1 | 21.1 | 0.0 | 23.5 | 23.5 | 0.0 | |
W | 20.0 | 15.0 | −4.2 | 21.1 | 21.1 | 0.0 | 29.4 | 23.5 | −4.5 | |
RSL (%) | C | −22 | −37.7 | −15.7 | −21.9 | −37.3 | −15.4 | −18.9 | −36.3 | −17.4 |
E | −26.5 | −39.7 | −13.2 | −21.7 | −36.8 | −15.1 | −17.9 | −35.6 | −17.7 | |
W | −30.8 | −45.4 | −14.6 | −21.2 | −36.3 | −15.1 | −18.1 | −36 | −17.9 | |
RLV(s) (%) | C | −12.2 | −15.8 | −3.6 | −12.2 | −15.7 | −3.5 | −11.7 | −15.1 | −3.4 |
E | −12.9 | −16.8 | −3.9 | −12.1 | −15.6 | −3.5 | −11.6 | −14.9 | −3.3 | |
W | −12.7 | −16.5 | −3.8 | −11.9 | −15.3 | −3.4 | −11.7 | −15 | −3.3 | |
Nup (poles/ha) | C | 550.0 | 497.7 | −8.0 | 720.0 | 651.4 | −8.4 | [300] | [279] | −7.0 |
E | 286.3 | 261.6 | −6.4 | [287] | [264] | −8.0 | [308] | [281] | −8.8 | |
W | 349.2 | 319.0 | −6.7 | [292] | [270] | −7.5 | [305] | [282] | −7.5 | |
E(s) ($k/ha) | C | 89.2 | 96.4 | 3.8 | 95.4 | 101.9 | 3.3 | 119.6 | 129.4 | 4.5 |
E | 77.4 | 86.1 | 4.9 | 116.3 | 123.5 | 3.3 | 128.7 | 133.7 | 2.2 | |
W | 76.7 | 85.3 | 4.9 | 119.4 | 128.6 | 4.2 | 126.7 | 133.7 | 3.1 | |
(%) | C | −26.7 | −46.7 | −20 | −26.7 | −46.7 | −20 | −26.7 | −46.7 | −20 |
E | −26.6 | −45.3 | −18.7 | −26.7 | −46.7 | −20 | −26.7 | −46.7 | −20 | |
W | −26.6 | −45.3 | −18.7 | −26.7 | −46.7 | −20 | −26.7 | −46.7 | −20 | |
SS (m/m) | C | −22.9 | −17.2 | 5.7 | −23 | −17.1 | 5.9 | −23.5 | −17.6 | 5.9 |
E | −23.5 | −17.8 | 5.7 | −23.2 | −17.4 | 5.8 | −23 | −17.3 | 5.7 | |
W | −24.4 | −18.8 | 5.6 | −23 | −17.1 | 5.9 | −23.9 | −18.3 | 5.6 | |
OT (year) | C | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
E | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
W | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
(kg/m3) | C | 0.5 | 0.7 | 0.2 | 0.5 | 0.7 | 0.2 | 0.3 | 0.4 | 0.1 |
E | 0.6 | 0.8 | 0.1 | 0.5 | 0.6 | 0.2 | 0.2 | 0.3 | 0.1 | |
W | 0.6 | 0.7 | 0.1 | 0.4 | 0.6 | 0.1 | 0.2 | 0.3 | 0.1 | |
(°) | C | 32.3 | 36.0 | 2.8 | 32.5 | 35.6 | 2.3 | 31.8 | 35.0 | 2.4 |
E | 33.1 | 36.1 | 2.3 | 32.7 | 36.4 | 2.8 | 31.6 | 34.8 | 2.5 | |
W | 33.3 | 36.4 | 2.3 | 32.1 | 34.6 | 1.9 | 31.4 | 34.6 | 2.4 | |
(GPa) | C | −17.3 | −19.2 | −2.3 | −17.3 | −18.3 | −1.2 | −17.8 | −18.7 | −1.1 |
E | −17.5 | −18.4 | −1.2 | −17.3 | −18.3 | −1.2 | −16.8 | −17.8 | −1.1 | |
W | −17.5 | −18.4 | −1.2 | −18.1 | −19.0 | −1.2 | −16.8 | −18.7 | −2.2 | |
4.8 | 5.5 | 0.6 | 4.8 | 5.4 | 0.6 | 4.4 | 4.9 | 0.5 | ||
(µg/m) | C | 5.1 | 5.6 | 0.5 | 4.8 | 5.5 | 0.6 | 4.2 | 4.7 | 0.5 |
E | 5.1 | 5.6 | 0.5 | 4.7 | 5.2 | 0.5 | 4.2 | 4.7 | 0.5 | |
W | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
(µm) | C | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
E | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
W | 4.4 | 5.0 | 0.6 | 4.1 | 4.7 | 0.6 | 4.1 | 4.4 | 0.3 | |
(µm) | C | 4.4 | 4.7 | 0.3 | 4.1 | 4.7 | 0.6 | 3.8 | 4.4 | 0.6 |
E | 4.7 | 5.0 | 0.3 | 4.1 | 4.4 | 0.3 | 3.8 | 4.4 | 0.6 | |
W | 3.2 | 3.5 | 0.3 | 3.2 | 3.8 | 0.6 | 3.2 | 3.5 | 0.3 | |
(µm) | C | 3.5 | 3.8 | 0.3 | 3.2 | 3.8 | 0.6 | 2.9 | 3.2 | 0.3 |
E | 3.2 | 3.5 | 0.3 | 3.2 | 3.5 | 0.3 | 2.9 | 3.2 | 0.3 | |
W | −1.1 | −1.2 | −0.1 | −1.1 | −1.2 | −0.1 | −1.1 | −1.2 | −0.1 | |
(m2/kg) | C | −1.2 | −1.3 | −0.1 | −1.1 | −1.2 | −0.1 | −1.0 | −1.1 | −0.1 |
E | −1.2 | −1.3 | −0.1 | −1.1 | −1.2 | −0.1 | −1.0 | −1.1 | −0.1 | |
W | −1.0 | −1.1 | −0.1 | −1.0 | −1.1 | −0.0 | −1.0 | −1.1 | −0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Newton, P.F. Potential Utility of a Climate-Sensitive Structural Stand Density Management Model for Red Pine Crop Planning. Forests 2022, 13, 1695. https://doi.org/10.3390/f13101695
Newton PF. Potential Utility of a Climate-Sensitive Structural Stand Density Management Model for Red Pine Crop Planning. Forests. 2022; 13(10):1695. https://doi.org/10.3390/f13101695
Chicago/Turabian StyleNewton, Peter F. 2022. "Potential Utility of a Climate-Sensitive Structural Stand Density Management Model for Red Pine Crop Planning" Forests 13, no. 10: 1695. https://doi.org/10.3390/f13101695
APA StyleNewton, P. F. (2022). Potential Utility of a Climate-Sensitive Structural Stand Density Management Model for Red Pine Crop Planning. Forests, 13(10), 1695. https://doi.org/10.3390/f13101695