Chamomile and Anise Cultivation in Olive Agroforestry Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design, Plant Material and Sampling Methods
2.3. Isolation of Essential Oils
2.4. Gas Chromatography–Mass Spectrometry (GC–MS) Analysis
2.5. Data Analysis
3. Results
3.1. Cultivation of Chamomile
3.2. Cultivation of Anise
4. Discussion
4.1. Chamomile
4.2. Anise
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
RI | Components | Relative Percentage Concentration | ||||
---|---|---|---|---|---|---|
SnFCEO | SFCEO | nSnFCEO | nSFCEO | |||
1 | 999 | yomogi alcohol | - | - | - | 0.2 ± 0.1 |
2 | 1058 | artemisia ketone | - | - | - | 0.5 ± 0.2 |
3 | 1179 | naphthalene | - | - | - | 0.2 ± 0.1 |
4 | 1235 | (3Z)-hexenyl 3-methyl butanoate | - | - | - | 0.2 ± 0.1 |
5 | 1272 | 4,8-dimethyl-nona-3,8-dien-2-one | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.1 ± 0.0 | 0.2 ± 0.0 |
6 | 1284 | trans anethole | 1.1 ± 0.3 | 0.8 ± 0.2 | 0.8 ± 0.2 | 1.0 ± 0.2 |
7 | 1336 | δ-elemene | - | 0.2 ± 0.1 | 0.1 ± 0.0 | 0.2 ± 0.1 |
8 | 1356 | eugenol | - | - | - | 0.1 ± 0.0 |
9 | 1391 | β-elemene | - | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 |
10 | 1447 | methyl naphthol | 0.1 ± 0.0 | 0.3 ± 0.1 | 0.2 ± 0.1 | 0.1 ± 0.0 |
11 | 1458 | (E)-β-farnesene | 1.7 ± 0.4 | 2.2 ± 0.3 | 3.1 ± 0.3 | 7.6 ± 1.2 |
12 | 1479 | γ-muurolene | - | 0.2 ± 0.1 | 0.3 ± 0.1 | 0.6 ± 0.2 |
13 | 1495 | bicyclogermacrene | - | 0.2 ± 0.1 | 0.3 ± 0.1 | 0.5 ± 0.1 |
14 | 1507 | (Ε, Ε)-α-farnesene | - | - | - | 0.3 ± 0.2 |
15 | 1522 | δ-cadinene | - | - | - | 0.2 ± 0.1 |
16 | 1565 | (Ε)-nerolidol | - | 0.7 ± 0.2 | 1.1 ± 0.2 | 1.1 ± 0.3 |
17 | 1578 | spathulenol | 3.8 ± 0.4 | 3.4 ± 0.5 | 3.6 ± 0.3 | 4.4 ± 0.6 |
18 | 1591 | salvial-4(14)-en-1-one | - | - | - | 0.2 ± 0.1 |
19 | 1630 | nerolidol oxide | - | - | - | 0.6 ± 0.2 |
20 | 1639 | epi-α-cadinol | 0.3 ± 0.1 | 0.5 ± 0.2 | 0.3 ± 0.2 | 0.6 ± 0.1 |
21 | 1660 | α-bisabolol oxide B | 37.1 ± 0.8 | 30.9 ± 0.9 | 29.9 ± 1.6 | 29.9 ± 1.1 |
22 | 1686 | α-bisabοlone oxide A | 15.9 ± 0.8 | 11.2 ± 1.2 | 17.3 ± 0.3 | 17.3 ± 0.6 |
23 | 1730 | chamazulene | 11.9 ± 0.8 | 8.6 ± 0.8 | 14,0 ± 0.7 | 9.2 ± 0.4 |
24 | 1751 | α-bisabolol oxide A | 16.0 ± 0.9 | 22.3 ± 1.4 | 18.2 ± 0.6 | 16.6 ± 0.7 |
25 | 1773 | dimethyl biphenyl | 0.2 ± 0.1 | 0.3 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 |
26 | 1880 | (Z)-spiroether | 8.3 ± 0.9 | 15.3 ± 0.6 | 6.9 ± 0.6 | 5.2 ± 0.3 |
27 | 1891 | (E)-spiroether | 0.6 ± 0.2 | 0.2 ± 0.1 | 0.3 ± 0.1 | 0.5 ± 0.1 |
28 | 1948 | 1,4-dimethyl-7-(1-methylethyl)-azulene-2-ol | 0.3 ± 0.1 | 0.4 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 |
Total | 97.5 | 98.1 | 97.1 | 98.1 |
RI | Components | Relative Percentage Concentration | ||||
---|---|---|---|---|---|---|
SnFAEO | SFAEO | nSnFAEO | nSFAEO | |||
1 | 932 | α-pinene | 0.4 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.2 | 0.2 ± 0.1 |
2 | 971 | sabinene | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 |
3 | 990 | myrcene | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 |
4 | 1004 | α-phelladrene | 0.1 ± 0.0 | - | 0.1 ± 0.0 | - |
5 | 1022 | p-cymene | 0.2 ± 0.1 | - | - | 0.1 ± 0.0 |
6 | 1029 | limonene | 6.5 ± 0.4 | 4.6 ± 0.6 | 6.1 ± 0.2 | 4.7 ± 1.0 |
7 | 1036 | (Z)-β-ocimene | 1.1 ± 0.2 | 0.9 ± 0.1 | 1.2 ± 0.2 | 0.9 ± 0.1 |
8 | 1057 | γ-terpinene | 0.6 ± 0.1 | 0.6 ± 0.2 | 0.6 ± 0.2 | 0.6 ± 0.1 |
9 | 1087 | fenchone | 0.2 ± 0.1 | 0.2 ± 0.0 | 0.1 ± 0.0 | - |
10 | 1129 | allo-ocimene | 0.2 ± 0.1 | 0.3 ± 0.0 | 0.2 ± 0.1 | 0.1 ± 0.0 |
11 | 1199 | methyl chavicol | 2.2 ± 0.3 | 2.1 ± 0.2 | 2.9 ± 0.2 | 2.1 ± 0.2 |
12 | 1253 | (Z)-anethole | 0.3 ± 0.1 | 0.2 + 0.0 | 0.2 ± 0.1 | 0.2 ± 0.1 |
13 | 1288 | (E)-anethole | 87.2 ± 0.8 | 90.1 ± 0.6 | 87.6 ± 1.0 | 90.2 ± 0.5 |
14 | 1376 | α-copaene | 0.1 ± 0.0 | 0.2 ± 0.1 | 0.1 ± 0.0 | - |
15 | 1458 | (E)-β-farnesene | 0.2 ± 0.1 | - | - | 0.1 ± 0.0 |
16 | 1480 | germacrene D | - | 0.2 ± 0.1 | 0.2 ± 0.0 | 0.3 ± 0.1 |
17 | 1522 | δ-cadinene | 0.2 ± 0.1 | - | - | 0.1 ± 0.0 |
Total | 99.8 | 99.9 | 99.9 | 99.8 |
References
- Current, D.; Lutz, E.; Scherr, S.J. The costs and benefits of agroforestry to farmers. World Bank Res. Obs. 1995, 1, 151–180. [Google Scholar] [CrossRef]
- Leakey, R. Definition of agroforestry revisited. Agrofor. Today 1996, 8, 5–7. [Google Scholar]
- Pardini, A. Agroforestry Systems in Italy: Traditions towards Modern Management. In Agroforestry in Europe: Current Status and Future Prospects; Rigueiro-Rodríguez, A., McAdam, J., Mosquera-Losado, M., Eds.; Springer Science & Business Media B.V.: Dordrecht, The Netherlands, 2009; pp. 255–267. [Google Scholar]
- Espejo–Perez, A.; Rodriguez–Lizana, A.; Ordonez, R.; Giraldez, J.V. Soil loss and runoff reduction in olive–tree dry–farming with cover crops. Soil Sci. Soc. Am. J. 2013, 77, 2140–2148. [Google Scholar] [CrossRef] [Green Version]
- De Stefano, A.; Jacobson, M.G. Soil carbon sequestration in agroforestry systems: A meta-analysis. Agrofor. Syst. 2018, 92, 285–299. [Google Scholar] [CrossRef]
- Nerlich, K.S.; Graeff-Honninger, S.; Claupein, W. Agroforestry in Europe: A review of the disappearance of traditional systems and development of modern agroforestry practices, with emphasis on experiences in Germany. Agrofor. Syst. 2013, 87, 475–492. [Google Scholar] [CrossRef]
- den Herder, M.; Burgess, P.J.; Mosquera-Losada, M.R.; Herzog, F.; Hartel, T.; Upson, M.; Viholainen, I.; Rosati, A. Preliminary Stratification and Quantification of Agroforestry in Europe; Milestone Report 1.1 for EU FP7 AGFORWARD Research Project; 2015; Available online: https://www.agforward.eu/preliminary-stratification-and-quantification-of-agroforestry-in-europe.html (accessed on 28 October 2021).
- Den Herder, M.; Moreno, G.; Mosquera-Losada, R.M.; Palma, J.H.N.; Sidiropoulou, A.; Santiago Freijanes, J.J.; Crous-Duran, J.; Paulo, J.A.; Tomé, M.; Pantera, A.; et al. Current extent and stratification of agroforestry in the European Union. Agric. Ecosyst. Environ. 2017, 241, 121–132. [Google Scholar] [CrossRef] [Green Version]
- Eichhorn, M.P.; Paris, P.; Herzog, F.; Incoll, L.D.; Liagre, F.; Mantzanas, K.; Mayus, M.; Moreno, G.; Papanastasis, V.P.; Pilbeam, D.J.; et al. Silvoarable systems in europe past, present and future prospects. Agrofor. Syst. 2006, 67, 29–50. [Google Scholar] [CrossRef]
- Mantzanas, K.; Pantera, A.; Koutsoulis, D.; Papadopoulos, A.; Kapsalis, D.; Ispikoudis, S.; Fotiadis, G.; Sidiropoulou, A.; Papanastasis, V.P. Intercrop of olive trees with cereals and legumes in Chalkidiki, Northern Greece. Agrofor. Syst. 2021, 95, 895–905. [Google Scholar] [CrossRef]
- Lelle, M.A.; Gold, M.A. Agroforestry Systems for Temperate Climates: Lessons from Roman Italy. For. Conserv. Hist. 1994, 38, 118–126. [Google Scholar] [CrossRef]
- EUROSTAT. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/DDN-20190301-1 (accessed on 27 July 2021).
- Bogers, R.J.; Craker, L.E.; Lange, D. Medicinal and Aromatic Plants; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Schippmann, U.; Leaman, D.J.; Cunnningham, A.B. Impact of cultivation and gathering of medicinal plants on biodiversity: Global trends and issues. In Biodiversity and the Ecosystem Approach in Agriculture, Forestry and Fisheries, Proceedings of the Ninth Regular Session of the Commission on Genetic Resources for Food and Agriculture, Rome, Italy, 14–18 October 2002; FAO: Rome, Italy, 2002; pp. 1–21. [Google Scholar]
- Bown, D. New Encyclopedia of Herbs and Their Uses; Dorling Kindersley Ltd.: London, UK, 2001. [Google Scholar]
- Dordas, C. Aromatic and Medicinal Plants; Modern Education: Thessaloniki, Greece, 2012. [Google Scholar]
- Elshafie, H.S.; Camele, I. An overview of the biological effects of some Mediterranean essential oils on human health. BioMed Res. Int. 2017, 2017, 9268468. [Google Scholar] [CrossRef]
- Rao, M.R.; Palada, M.C.; Becker, B.N. Medicinal and aromatic plants in agroforestry systems. Agrofor. Syst. 2004, 61, 107–122. [Google Scholar]
- Romero-Franco, R. Medicinal plants: Cultivation possibilities. In Agroforestry Systems as a Technique for Sustainable Territorial Management; Mosquera-Losada, M.R., Fernández-Lorenzo, J.L., Rigueiro-Rodríguez, A., Eds.; Unicopia Editions: Santiago de Compostela, Spain, 2011; pp. 353–363. [Google Scholar]
- Zeven, A.C.; Zhukovsky, P.M. Dictionary of Cultivated Plants and Their Centres of Diversity: Excluding Ornamentals, Forest Trees and Lower Plants; Pudoc: Wageningen, The Netherlands, 1975. [Google Scholar]
- Singh, O.; Khanam, Z.; Misra, N.; Srivastava, M.K. Chamomile (Matricaria chamomilla L.): An overview. Pharmacogn. Rev. 2011, 5, 82–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Formisano, C.; Delfine, S.; Oliviero, F.; Tenore, G.C.; Rigano, D.; Senatore, F. Correlation among environmental factors, chemical composition andantioxidative properties of essential oil and extracts of chamomile (Matricaria chamomilla L.) collected in Molise (South-central Italy). Ind. Crops Prod. 2014, 63, 256–263. [Google Scholar] [CrossRef]
- Sashidhara, K.V.; Verma, R.S.; Ram, P. Essential oil composition of Matricaria recutita L. from the lower region of the Himalayas. Flavour Fragr. J. 2006, 21, 274–276. [Google Scholar] [CrossRef]
- Baghalian, K.; Abdoshah, S.; Khalighi-Sigaroodi, F.; Paknejad, F. Physiological and phytochemical response to drought stress of German chamomile (Matricaria recutita L.). Plant Physiol. Biochem. 2011, 49, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Raal, A.; Orav, A.; Pussa, T.; Valner, C.; Malmiste, B.; Arak, E. Content of essential oil, terpenoids and polyphenols in commercial chamomile (Chamomilla recutita L. Rauschert) teas from different countries. Food Chem. 2012, 131, 632–638. [Google Scholar] [CrossRef]
- Ghasemi, N.D.; Asghari, G.; Mostajeran, A.; Najafabadi, A.M. Evaluating the composition of Matricaria recutita L. flowers essential oil in hydroponic culture. J. Chem. Pharm. Sci. 2013, 3, 54–59. [Google Scholar]
- Katsiotis, S.T.; Chatzopoulou, P.S. Aromatic Medicinal Plants and Essential Oils, Production Processing, Conversion, Utilization, International Markets, Aromatherapy, Perfumery, 3rd ed.; Kiriakidis: Athens, Greece, 2016. [Google Scholar]
- Maisonneuve, S.A. European Pharmacopoeia, 8th ed.; Council of Europe: Sainte-Ruffine, France, 2013; pp. 1148–1150, 1314–1315. [Google Scholar]
- Rizzo, R.; Lo Verde, G.; Sinacori, M.; Maggi, F.; Cappellacci, L.; Petrelli, R.; Vittori, S.; Morshedloo, M.R.; N’Guessan Bra Fofie, Y.; Benelli, G. Developing green insecticides to manage olive fruit flies? Ingestion toxicity of four essential oils in protein baits on Bactrocera oleae. Ind. Crops Prod. 2020, 143, 111884. [Google Scholar] [CrossRef]
- Ullah, H. Fruit Yield and Quality of Anise (Pimpinella anisum L.) in Relation to Agronomic and Environmental Factors. Ph.D. Thesis, Justus Liebig University, Giessen, Germany, 2012. [Google Scholar]
- Kara, N. Yield, quality, and growing degree days of anise (Pimpinella anisum L.) under different agronomic practices. Turk. J. Agric. For. 2015, 39, 1014–1022. [Google Scholar] [CrossRef]
- Ullah, H.; Mahmood, A.; Honermeier, B. Essential oil and composition of anise (Pimpinella anisum L.) with varying seed rates and row spacing. Pak. J. Bot. 2014, 46, 1859–1864. [Google Scholar]
- Rocha, L.; Fernandes, C.P. Aniseed (Pimpinella anisum, Apiaceae) Oils. In Essential Oils in Food Preservation, Flavor and Safety; Academic Press: Cambridge, MA, USA, 2016; pp. 209–213. [Google Scholar]
- Khalid Ali, K. Effect of phosphorous fertilization on anise, coriander and sweet fennel plants growing under arid region conditions. Med. Aromat. Plant Sci. Biotechnol. 2012, 6, 127–131. [Google Scholar]
- Khalid Ali, K. Effect of nitrogen fertilization on morphological and biochemical traits of some Apiaceae crops under arid region conditions in Egypt. Nusantara Biosci. 2013, 5, 15–21. [Google Scholar] [CrossRef]
- Andrzejewska, J.; Woropaj-Janczak, M. German chamomile performance after stubble catch crops and response to nitrogen fertilization. Ind. Crops Prod. 2014, 62, 350–358. [Google Scholar] [CrossRef]
- Nikolova, A.; Kozhuharova, K.; Zheljazkov, V.D.; Craker, L.E. Mineral nutrition of chamomile (Chamomilla recutita L.). Acta Hortic. 1999, 502, 203–208. [Google Scholar] [CrossRef]
- Correa Junior, C.; Castellane, P.D.; Jorge Neto, J. Influence of organic and chemical fertilization on the yield of flowers, contents and composition of essential oil of (Chamomilla recutita (L.) Rauschert). Acta Hortic. 1999, 502, 195–202. [Google Scholar] [CrossRef]
- Aćimović, M.G. The influence of fertilization on yield of caraway, anise and coriander in organic agriculture. J. Agric. Sci. 2013, 58, 85–94. [Google Scholar]
- Abd–Allah, A.M.; Adamand, S.M.; Abou-Hadid, A.F. Productivity of green cowpea in sandy soil as influenced by different organic manure rates and sources. Egypt. J. Hortic. 2001, 28, 331–340. [Google Scholar]
- Laird, S.A.; Pierce, A.R. Strategies to improve commercial raw material sourcing. Results from the sustainable botanicals pilot project. Industry surveys, case studies and standards collection. Med. Plant Conserv. 2002, 8, 9–14. [Google Scholar]
- Sujatha, S.; Bhat, R.; Kannan, C.; Balasimha, D. Impact of intercropping of medicinal and aromatic plants with organic farming approach on resource use efficiency in arecanut (Areca catechu L.) plantation in India. Ind. Crops Prod. 2011, 33, 78–83. [Google Scholar] [CrossRef]
- Palada, M.C.; Mitchell, J.M.; Becker, B.N.; Nair, P.K.R. The Integration of Medicinal Plants and Culinary Herbs in Agroforestry Systems for the Caribbean: A Study in the U.S. Virgin Islands. III World Congress on Medicinal and Aromatic Plants. Volume 2: Conservation, Cultivation and Sustainable Use of Medicinal and Aromatic Plants. Acta Hortic. 2005, 676, 147–153. [Google Scholar]
- Singh, K.; Rajeswara Rao, B.R.; Rajput, D.K.; Bhattacharya, A.K.; Chauhan, H.S.; Mallavarapu, B.R.; Ramesh, S. Composition of essential oils of menthol mint (Mentha arvensis var. piperascens), citronella (Cymbopogon winterianus) and palmarosa (Cymbopogon martinii var. motia) grown in the open and partial shade of poplar (Populus deltoides) trees. J. Med. Aromat. Plant Sci. 2002, 24, 710–712. [Google Scholar]
- Adams, R. Identification of Essential Oil Components by Gaschromatography/Mass Spectrometry, 4th ed.; Allured Business Media: Carol Stream, IL, USA, 2007. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics. A Biometrical Approach, 2nd ed.; McGraw-Hill Book Company: New York, NY, USA, 1980. [Google Scholar]
- Meawad, A.A.; Awad, A.E.; Afify, A. The combined effect of N–fertilization and some growth regulators on chamomile plants. Acta Hortic. 1984, 144, 123–234. [Google Scholar] [CrossRef]
- Kirschbaum, M.U.E. Does enhanced Photosynthesis enhance growth? Lessons learned from CO2 enrichment studies. Plant Physiol. 2011, 155, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Asare, R.; Asare, R.A.; Asante, W.A.; Markussen, B.O.; Ræbild, A. Influences of shading and fertilization on on-farm yields of cocoa in Ghana. Exp. Agric. 2017, 53, 416–431. [Google Scholar] [CrossRef] [Green Version]
- Rahmati, M.; Azizi, M.; Khayyat, M.H.; Nomati, H.; Asili, J. Yield and oil constituets of chamomile (Matricaria chamomilla L.) flowers depending on nitrogen application, plant density and climate conditions. J. Essent. Oil Bear. Plants 2011, 14, 731–741. [Google Scholar] [CrossRef]
- Solouki, M.; Mehdikhani, H.; Zeinali, H.; Emamjomeh, A.A. Study of genetic diversity in chamomile (Matricaria chamomilla) based on morphological traits and molecular markers. Sci. Hortic. 2008, 117, 281–287. [Google Scholar] [CrossRef]
- Giannoulis, K.D.; Kamvoukou, C.A.; Gougoulias, N.; Wogiatzi, E. Matricaria chamomilla L. (German chamomile) flower yield and essential oil affected by irrigation and nitrogen fertilization. Emir. J. Food Agric. 2020, 32, 328–335. [Google Scholar] [CrossRef]
- Salehi, A.; Gholamhoseini, M.; Ataei, R.; Sefikon, F.; Ghalavand, A. Effects of Zeolite, Bio- and Organic fertilizers Application on German Chamomile Yield and Essential Oil Composition. J. Essent. Oil Bear. Plants 2018, 21, 116–130. [Google Scholar] [CrossRef]
- Belsky, A.J. Influence of trees on savannah productivity: Test of shade, nutrients, and treegrass competition. Ecology 1994, 75, 922–932. [Google Scholar] [CrossRef]
- Pardales, J.R., Jr.; Banoc, D.M.; Yamauchi, A.; Ijima, M.; Esquibel, C. The effect of soil moisture fluctuation on root development during the establishment phase of sweetpotato. Plant Prod. Sci. 2002, 3, 134–139. [Google Scholar] [CrossRef]
- Emongor, V.E.; Chweya, J.A.; Keya, S.O.; Munavi, R.M. Effect of nitrogen and phosphorus on the essential oil yield and quality of chamomile (Matricaria chamomilla L.) flowers. East Afr. Agric. For. J. 1990, 55, 261–264. [Google Scholar] [CrossRef]
- Oliveira, G.C.; Vieira, W.L.; Bertolli, S.C.; Pacheco, A.C. Photosynthetic behavior, growth and essential oil production of Melissa officinalis L. cultivated under colored shade nets. Chil. J. Agric. Res. 2016, 76, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Singh, O. Cultivation of Matricaria chamomilla. In Supplement to Cultivation and Utilization of Aromatic Plants; Handa, H.S., Kaul, M.K., Eds.; Jammu-Tawi: Regional Research Laboratory (CSIR): Jammu, India, 1997; pp. 241–253. [Google Scholar]
- Burducea, M.; Zheljazkov, V.D.; Dincheva, I.; Lobiuc, A.; Teliban, G.C.; Stoleru, V.; Zamfirache, M.M. Fertilization modifies the essential oil and physiology of basil varieties. Ind. Crops Prod. 2018, 121, 282–293. [Google Scholar] [CrossRef]
- Bernáth, J. Production ecology of secondary plant products. In Spices, and Medicinal Plants: Recent Advances in Botany, Herbs, Horticulture and Pharmacology; Craker, L.E., Simon, J.E., Eds.; Oryx Press: Phoenix, AZ, USA, 1986; Volume 1, pp. 185–234. [Google Scholar]
- Orav, A.; Raal, A.; Arak, E. Essential oil composition of Pimpinella anisum L. fruits from various European countries. Nat. Prod. Res. 2008, 22, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Degani, A.V.; Dudai, N.; Bechar, A.; Vaknin, Y. Shade Effects on Leaf Production and Essential Oil Content and Composition of the Novel Herb Eucalyptus citriodora Hook. J. Essent. Oil Bear. Plants 2016, 19, 410–420. [Google Scholar] [CrossRef]
- Khalid, A.K. Quality and quantity of Pimpinella anisum L. essential oil treated with macro and micronutrients under desert conditions. Int. Food Res. J. 2015, 22, 2396–2402. [Google Scholar]
- Fitsiou, E.; Mitropoulou, G.; Spyridopoulou, K.; Tiptiri-Kourpeti, A.; Vamvakias, M.; Bardouki, H.; Panayiotidis, M.; Galanis, A.; Kourkoutas, Y.; Chlichlia, K.; et al. Phytochemical profile and evaluation of the biological activities of essential oils derived from the Greek aromatic plant species Ocimum basilicum, Mentha spicata, Pimpinella anisum and Fortunella margarita. Molecules 2016, 21, 1069. [Google Scholar] [CrossRef] [Green Version]
- Chatzopoulou, P.S.; Koutsos, T.V.; Katsiotis, S.T. Study of nitrogen fertilization rate on fennel cultivars for essential oil yield and composition. J. Veg. Sci. 2006, 12, 85–93. [Google Scholar] [CrossRef]
- Buntain, M.; Chung, B. Effects of irrigation and nitrogen on the yield components of fennel (Foeniculum vulgare Mill). Aust. J. Exp. Agric. 1994, 34, 845–849. [Google Scholar] [CrossRef]
Experimental Surface | Olive Meadow | Open Field |
---|---|---|
Characterization | Clay Loam | Silty Clay |
Sand | 20.8% | 16.8% |
Silt | 45.2% | 51.2% |
Clay | 34.0% | 32.0% |
pH | 7.7 | 7.6 |
Organic matter | 1.3% | 2.0% |
CaCO3 | 9.7% | 9.7% |
Electrical conductivity | 1.5 mS cm−1 | 1.4 mS cm−1 |
Nutrients | ||
NO3-N | 2.6 mg kg−1 | 197 mg kg−1 |
P | 13 mg kg−1 | 44.5 mg kg−1 |
K | 107.6 mg kg−1 | 143.4 mg kg−1 |
Mg | 522 mg kg−1 | 422 mg kg−1 |
Fe | 8.1 mg kg−1 | 11.6 mg kg−1 |
Mn | 4.8 mg kg−1 | 5.5 mg kg−1 |
Zn | 1.2 mg kg−1 | 0.5 mg kg−1 |
Cu | 0.6 mg kg−1 | 2.4 mg kg−1 |
B | 0.82 mg kg−1 | 0.78 mg kg−1 |
Parameter | Shade | Fertilization | S × F |
---|---|---|---|
Plant height | 14.10 ** | 113.71 *** | 0.02 |
Flower heads | 0.81 | 23.17 *** | 0.26 |
Dry flower head yield | 0.37 | 5.01 * | 3.74 |
Essential oil yield | 0.09 | 6.65 | 12.93 * |
α-bisabolol oxide B | 38.42 *** | 21.97 ** | 21.97 ** |
α-bisabolone oxide A | 64.16 ** | 25.20 ** | 25.20 ** |
α-bisabolol oxide A | 9.99 * | 18.01 ** | 50.88 ** |
Chamazulene | 11.45 ** | 103.05 *** | 3.53 |
Z-spiroether | 246.43 *** | 52.34 ** | 141.04 ** |
Parameter | Shading | Control |
---|---|---|
Plant height (cm) | 27.25 ± 10.26 b | 33.50 ± 9.68 a |
Flower heads (%) | 52.22 ± 8.25 a | 49.80 ± 8.90 a |
Dry flower head yield (g m−2) | 34.36 ± 4.26 a | 41.23 ± 18.33 a |
Essential oil yield (mL·100 g−1) | 0.61 ± 0.10 a | 0.63 ± 0.22 a |
α-bisabolol oxide B (%) | 34.00 ± 3.48 a | 29.90 ± 1.22 b |
α-bisabolone oxide A (%) | 13.55 ± 2.74 b | 17.30 ± 0.40 a |
α-bisabolol oxide A (%) | 19.15 ± 3.61 a | 17.40 ± 1.06 b |
Chamazulene (%) | 10.25 ± 1.95 b | 11.60 ± 2.67 a |
Z-spiroether (%) | 11.80 ± 3.89 a | 6.05 ± 1.02 b |
Parameter | Fertilization | Control |
---|---|---|
Plant height (cm) | 39.25 ± 4.43 a | 21.50 ± 4.66 b |
Flower heads (%) | 44.52 ± 2.79 b | 57.50 ± 6.82 a |
Dry flower head yield (g m−2) | 50.44 ± 12.77 a | 25.14 ± 8.68 b |
Essential oil yield (mL·100 g−1) | 0.54 ± 0.12 a | 0.70 ± 0.15 a |
α-bisabolol oxide B (%) | 30.40 ± 1.07 b | 33.50 ± 4.10 a |
α-bisabolone oxide A (%) | 14.25 ± 3.15 b | 16.60 ± 0.94 a |
α-bisabolol oxide A (%) | 19.45 ± 3.28 a | 17.10 ± 1.38 b |
Chamazulene (%) | 8.90 ± 0.65 b | 12.95 ± 1.33 a |
Z-spiroether (%) | 10.25 ± 5.54 a | 7.60 ± 1.04 b |
Treatment | α-Bisabolol Oxide B (%) | α-Bisabolone Oxide A (%) | α-Bisabolol Oxide A (%) | Z-Spiroether (%) |
---|---|---|---|---|
Olive grove | ||||
Fertilized | 37.10 ± 0.82 a | 11.20 ± 1.25 b | 22.30 ± 1.42 a | 15.30 ± 0.56 a |
Control | 30.90 ± 0.92 b | 15.90 ± 0.82 a | 16.00 ± 0.89 c | 8.30 ± 0.92 b |
Open field | ||||
Fertilized | 29.90 ± 1.13 b | 17.30 ± 0.56 a | 16.60 ± 0.72 bc | 5.20 ± 0.26 d |
Control | 29.90 ± 1.57 b | 17.30 ± 0.30 a | 18.20 ± 0.60 b | 6.90 ± 0.62 c |
LSD0.05 | 2.18 | 1.53 | 1.81 | 1.19 |
Parameter | Shade | Fertilization | S × F |
---|---|---|---|
Plant height | 5.03 * | 288.00 *** | 2.00 |
Dry seeds yield | 0.77 | 0.01 | 0.41 |
Essential oil yield | 2.94 | 0.01 | 1.19 |
E-anethole | 0.33 | 39.63 *** | 0.12 |
Limonene | 0.18 | 22.22 ** | 0.51 |
Parameter | Shading | Control |
---|---|---|
Plant height (cm) | 26.87 ± 7.49 b | 27.12 ± 8.87 a |
Dry seeds yield (g m−2) | 19.67 ± 13.21 a | 26.34 ± 15.29 a |
Essential oil yield (mL·100 g−1) | 5.19 ± 0.74 a | 4.16 ± 0.83 a |
E-anethole (%) | 88.65 ± 1.71 a | 88.90 ± 1.60 a |
Limonene (%) | 5.55 ± 1.13 a | 5.40 ± 0.99 a |
Parameter | Fertilization | Control |
---|---|---|
Plant height (cm) | 34.50 ± 1.41 a | 19.50 ± 2.07 b |
Dry seeds yield (g m−2) | 23.05 ± 13.27 a | 22.96 ± 16.04 a |
Essential oil yield (mL·100 g−1) | 4.66 ± 1.06 a | 4.69 ± 0.97 a |
E-anethole (%) | 90.15 ± 0.48 a | 87.40 ± 0.86 b |
Limonene (%) | 4.65 ± 0.71 b | 6.30 ± 0.37 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsoulis, G.I.; Kimbaris, A.C.; Anastasaki, E.; Damalas, C.A.; Kyriazopoulos, A.P. Chamomile and Anise Cultivation in Olive Agroforestry Systems. Forests 2022, 13, 128. https://doi.org/10.3390/f13010128
Katsoulis GI, Kimbaris AC, Anastasaki E, Damalas CA, Kyriazopoulos AP. Chamomile and Anise Cultivation in Olive Agroforestry Systems. Forests. 2022; 13(1):128. https://doi.org/10.3390/f13010128
Chicago/Turabian StyleKatsoulis, Georgios I., Athanassios C. Kimbaris, Eirini Anastasaki, Christos A. Damalas, and Apostolos P. Kyriazopoulos. 2022. "Chamomile and Anise Cultivation in Olive Agroforestry Systems" Forests 13, no. 1: 128. https://doi.org/10.3390/f13010128
APA StyleKatsoulis, G. I., Kimbaris, A. C., Anastasaki, E., Damalas, C. A., & Kyriazopoulos, A. P. (2022). Chamomile and Anise Cultivation in Olive Agroforestry Systems. Forests, 13(1), 128. https://doi.org/10.3390/f13010128