Photodegradation of Unmodified and Thermally Modified Wood Due to Indoor Lighting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Irradiation of Specimens
2.3. Evaluation of Discolouration
2.4. FTIR Spectroscopy
2.5. Evaluation of Formation of Water-Soluble Substances
3. Results and Discussion
3.1. Discolouration
3.2. Reflectance Difference Spectra
3.3. FTIR Spectra
3.4. Formation of Water-Soluble Substances
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hill, C.A.S. Thermal Modification of wood. In Wood Modification: Chemical, Thermal, and Other Processes; John Willey and Sons Ltd.: Chichester, UK, 2006; pp. 99–127. [Google Scholar] [CrossRef]
- Militz, H.; Altgen, M. Processes and properties of thermally modified wood manufactured in Europe. In Deterioration and Protection of Sustainable Biomaterials; ACS Symposium Series; ACS Publications: Washington, DC, USA, 2014; Volume 1158, pp. 269–285. [Google Scholar] [CrossRef]
- Ormondroyd, G.; Spear, M.; Curling, S. Modified wood: Review of efficacy and service life testing. Constr. Mater. 2015, 168, 187–203. [Google Scholar] [CrossRef] [Green Version]
- Jirouš-Rajković, V.; Miklečić, J. Weathering resistance of modified wood—A review. Annu. Croat. Acad. Eng. 2018, 10, 223–244. [Google Scholar]
- Hill, C.; Altgen, M.; Rautkari, L. Thermal modification of wood—A review: Chemical changes and hygroscopicity. J. Mater. Sci. 2021, 56, 6581–6614. [Google Scholar] [CrossRef]
- Ayadi, N.; Lejeune, F.; Charrier, F.; Charrier, B.; Merlin, A. Color stability of heat-treated wood during artificial weathering. Eur. J. Wood Wood Prod. 2003, 61, 221–226. [Google Scholar] [CrossRef]
- Esteves, B.; Marques, A.; Domingos, I.; Pereira, H. Heat-induced colour changes of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Sci. Technol. 2008, 42, 369–384. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Gao, J.; Fan, Y.; Tshabalala, M.A.; Stark, N.M. Heat-Induced Chemical and Color Changes of Extractive-Free Black Locust (Robinia Pseudoacacia) Wood. BioResources 2012, 7, 2236–2248. [Google Scholar] [CrossRef]
- Miklečić, J.; Jirouš-Rajković, V.; Antonović, A.; Španić, N. Discolouration of thermally modified wood during simulated indoor sunlight exposure. BioResources 2011, 6, 434–446. [Google Scholar] [CrossRef]
- Nhacila, F.; Sitoe, E.; Uetimane, E.; Manhica, A.; Egas, A.; Möttönen, V. Effects of thermal modification on physical and mechanical properties of Mozambican Brachystegia spiciformis and Julbernardia globiflora wood. Eur. J. Wood Wood Prod. 2020, 78, 871–878. [Google Scholar] [CrossRef]
- Esteves, B.; Pereira, H. Wood modification by heat treatment: A review. BioResources 2009, 4, 370–404. [Google Scholar] [CrossRef]
- Xing, D.; Wang, S.; Li, J. Effect of Artificial Weathering on the Properties of Industrial-Scale Thermally Modified Wood. BioResources 2015, 10, 8238–8252. [Google Scholar] [CrossRef] [Green Version]
- Sandberg, D.; Kutnar, A.; Mantanis, G. Wood modification technologies—A review. iForest Biogeosci. For. 2017, 10, 895–908. [Google Scholar] [CrossRef] [Green Version]
- Hon, D.N.S. Weathering and photochemistry. In Wood and Cellulosic Chemistry; Hon, D.N., Shiraishi, N., Eds.; Marcel Dekker: New York, NY, USA, 2001; pp. 513–546. [Google Scholar]
- Baysal, E.; Degirmentepe, S.; Şimşek, H. Some surface properties of thermally modified scots pine after artificial weathering. Maderas. Cienc. Tecnol. 2014, 16, 355–364. [Google Scholar] [CrossRef] [Green Version]
- Jirouš-Rajković, V.; Miklečić, J. Heat-Treated Wood as a Substrate for Coatings, Weathering of Heat-Treated Wood, and Coating Performance on Heat-Treated Wood. Adv. Mater. Sci. Eng. 2019, 2019, 8621486. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Fan, Y.; Gao, J.; Stark, N.M. The effect of heat treatment on the chemical and color change of black locust (Robinia pseudoacacia) wood flour. BioResources 2012, 7, 1157–1170. [Google Scholar] [CrossRef]
- Bekhta, P.; Niemz, P. Effect of High Temperature on the Change in Color, Dimensional Stability and Mechanical Properties of Spruce Wood. Holzforschung 2003, 57, 539–546. [Google Scholar] [CrossRef]
- Sundqvist, B.; Morén, T. The influence of wood polymers and extractives on wood colour induced by hydrothermal treatment. Eur. J. Wood Wood Prod. 2002, 60, 375–376. [Google Scholar] [CrossRef]
- Kataoka, Y.; Kiguchi, M.; Williams, R.S.; Evans, P.D. Violet light causes photodegradation of wood beyond the zone affected by ultraviolet radiation. Holzforschung 2007, 61, 23–27. [Google Scholar] [CrossRef]
- Živković, V.; Arnold, M.; Radmanović, K.; Richter, K.; Turkulin, H. Spectral sensitivity in the photodegradation of fir wood (Abies alba Mill.) surfaces: Colour changes in natural weathering. Wood Sci. Technol. 2013, 48, 239–252. [Google Scholar] [CrossRef] [Green Version]
- Cīrule, D.; Meija-Feldmane, A.; Kuka, E.; Andersons, B.; Kurnosova, N.; Antons, A.; Tuherm, H. Spectral Sensitivity of Thermally Modified and Unmodified Wood. BioResources 2015, 11, 324–335. [Google Scholar] [CrossRef]
- George, B.; Suttie, E.; Merlin, A.; Deglise, X. Photodegradation and photostabilisation of wood—The state of the art. Polym. Degrad. Stab. 2005, 88, 268–274. [Google Scholar] [CrossRef]
- Pandey, K.K. Study of the effect of photo-irradiation on the surface chemistry of wood. Polym. Degrad. Stab. 2005, 90, 9–20. [Google Scholar] [CrossRef]
- Pandey, K.K.; Vuorinen, T. Comparative study of photodegradation of wood by a UV laser and a xenon light source. Polym. Degrad. Stab. 2008, 93, 2138–2146. [Google Scholar] [CrossRef]
- Srinivasa, K.; Pandey, K.K. Photodegradation of thermally modified wood. J. Photochem. Photobiol. B Biol. 2012, 117, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Zahri, S.; Belloncle, C.; Charrier, F.; Pardon, P.; Quideau, S. UV light impact on ellagitannins and wood surface colour of European oak (Quercus petraea and Quercus robur). Appl. Surf. Sci. 2007, 253, 4985–4989. [Google Scholar] [CrossRef]
- Chang, T.-C.; Chang, H.-T.; Wu, C.-L.; Chang, S.-T. Influences of extractives on the photodegradation of wood. Polym. Degrad. Stab. 2010, 95, 516–521. [Google Scholar] [CrossRef]
- Baar, J.; Wimmer, R.; D’Amico, S. Dependence of colour and discolouration on total extractive content of African Padauk and Jatoba. Wood Sci. Technol. 2014, 48, 1155–1165. [Google Scholar] [CrossRef]
- Chang, T.-C.; Chang, S.-T. Multiple photostabilization actions of heartwood extract from Acacia confusa. Wood Sci. Technol. 2017, 51, 1133–1153. [Google Scholar] [CrossRef]
- Deka, M.; Humar, M.; Rep, G.; Kričej, B.; Šentjurc, M.; Petrič, M. Effects of UV light irradiation on colour stability of thermally modified, copper ethanolamine treated and non-modified wood: EPR and DRIFT spectroscopic studies. Wood Sci. Technol. 2008, 42, 5–20. [Google Scholar] [CrossRef]
- Esteves, B.M.; Herrera, R.; Santos, J.; Carvalho, L.; Nunes, L.; Ferreira, J.; Domingos, I.J.; Cruz-Lopes, L. Artificial weathering of heat-treated pines from the Iberian peninsula. BioResources 2020, 15, 9642–9655. [Google Scholar] [CrossRef]
- Huang, X.; Kocaefe, D.; Kocaefe, Y.; Boluk, Y.; Pichette, A. A spectrocolorimetric and chemical study on color modification of heat-treated wood during artificial weathering. Appl. Surf. Sci. 2012, 258, 5360–5369. [Google Scholar] [CrossRef]
- Timar, M.C.; Varodi, A.M.; Gurau, L. Comparative study of photodegradation of six wood species after short-time UV exposure. Wood Sci. Technol. 2016, 50, 135–163. [Google Scholar] [CrossRef]
- Mokrzycki, W.S.; Tatol, M. Colour difference DE—A survey. Mach. Graph. Vis. 2011, 20, 383–411. [Google Scholar]
- Deka, M.; Petrič, M. Photo-degradation of water borne acrylic coated modified and non-modified wood during artificial light exposure. BioResources 2008, 3, 346–362. [Google Scholar] [CrossRef]
- Oltean, L.; Teischinger, A.; Hansmann, C. Wood surface discolouration due to simulated indoor sunlight exposure. Eur. J. Wood Wood Prod. 2007, 66, 51–56. [Google Scholar] [CrossRef]
- Cogulet, A.; Blanchet, P.; Landry, V. Wood degradation under UV irradiation: A lignin characterization. J. Photochem. Photobiol. B Biol. 2016, 158, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Lu, Y.-C.; Hu, H.-Q.; Xie, F.-J.; Wei, X.-Y.; Fan, X. Structural Characterization of Lignin and Its Degradation Products with Spectroscopic Methods. J. Spectrosc. 2017, 2017, 8951658. [Google Scholar] [CrossRef] [Green Version]
- Tolvaj, L.; Molnár, Z.; Németh, R. Photodegradation of wood at elevated temperature: Infrared spectroscopic study. J. Photochem. Photobiol. B Biol. 2013, 121, 32–36. [Google Scholar] [CrossRef]
- Yildiz, S.; Tomak, E.D.; Yildiz, U.C.; Ustaomer, D. Effect of artificial weathering on the properties of heat treated wood. Polym. Degrad. Stab. 2013, 98, 1419–1427. [Google Scholar] [CrossRef]
- Hon, D.N.-S.; Chang, S.-T. Surface degradation of wood by ultraviolet light. J. Polym. Sci. Polym. Chem. Ed. 1984, 22, 2227–2241. [Google Scholar] [CrossRef]
- Evans, P.D.; Michell, A.J.; Schmalzl, K.J. Studies of the degradation and protection of wood surfaces. Wood Sci. Technol. 1992, 26, 151–163. [Google Scholar] [CrossRef]
- Colom, X.; Carrillo-Navarrete, F.; Nogués, F.; Garriga, P. Structural analysis of photodegraded wood by means of FTIR spectroscopy. Polym. Degrad. Stab. 2003, 80, 543–549. [Google Scholar] [CrossRef]
- Chang, H.-T.; Su, Y.-C.; Chang, S.-T. Studies on photostability of butyrylated, milled wood lignin using spectroscopic analyses. Polym. Degrad. Stab. 2006, 91, 816–822. [Google Scholar] [CrossRef]
- Tribulová, T.; Kačík, F.; Evtuguin, D.; Čabalová, I. Assessment of chromophores in chemically treated and aged wood by Uv-Vis diffuse reflectance spectroscopy. Cellul. Chem.Technol. 2016, 50, 659–667. [Google Scholar]
Wood Type | Species | Extractives, % | pH | ||
---|---|---|---|---|---|
UV | LED | UV | LED | ||
UM | Aspen | 27.4 | 2.2 | 3.5 | 5.2 |
Ash | 21.0 | 2.4 | 3.6 | 5.5 | |
Pine | 20.3 | 6.2 | 3.7 | 4.7 | |
TM | Aspen | 15.6 | 3.0 | 3.7 | 4.5 |
Ash | 12.7 | 2.3 | 3.5 | 4.3 | |
Pine | 12.5 | 1.1 | 3.7 | 4.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cirule, D.; Kuka, E.; Kevers, M.; Andersone, I.; Andersons, B. Photodegradation of Unmodified and Thermally Modified Wood Due to Indoor Lighting. Forests 2021, 12, 1060. https://doi.org/10.3390/f12081060
Cirule D, Kuka E, Kevers M, Andersone I, Andersons B. Photodegradation of Unmodified and Thermally Modified Wood Due to Indoor Lighting. Forests. 2021; 12(8):1060. https://doi.org/10.3390/f12081060
Chicago/Turabian StyleCirule, Dace, Edgars Kuka, Matiss Kevers, Ingeborga Andersone, and Bruno Andersons. 2021. "Photodegradation of Unmodified and Thermally Modified Wood Due to Indoor Lighting" Forests 12, no. 8: 1060. https://doi.org/10.3390/f12081060
APA StyleCirule, D., Kuka, E., Kevers, M., Andersone, I., & Andersons, B. (2021). Photodegradation of Unmodified and Thermally Modified Wood Due to Indoor Lighting. Forests, 12(8), 1060. https://doi.org/10.3390/f12081060