Availability and Structure of Coarse Woody Debris in Hemiboreal Mature to Old-Growth Aspen Stands and Its Implications for Forest Carbon Pool
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Caudullo, G.; de Rigo, D. Populus tremula in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publication Office of the European Union: Luxembourg, 2016; pp. 138–139. [Google Scholar]
- Heräjärvi, H.; Junkkonen, R. Wood density and growth rate of European and hybrid aspen in Southern Finland. Balt. For. 2006, 12, 2–8. [Google Scholar]
- Global Forest Resources Assessment. Country Report, Sweden; Global Forest Resources Assessment: Rome, Italy, 2015. [Google Scholar]
- Rogers, P.C.; Pinno, B.D.; Šebesta, J.; Albrectsen, B.R.; Li, G.; Ivanova, N.; Kusbach, A.; Kuuluvainen, T.; Landhäusser, S.M.; Liu, H.; et al. A global view of aspen: Conservation science for widespread keystone systems. Glob. Ecol. Conserv. 2020, 21, e00828. [Google Scholar] [CrossRef]
- Sverdrup-Thygeson, A.; Ims, R.A. The effect of forest clearcutting in Norway on the community of saproxylic beetles on aspen. Biol. Conserv. 2002, 106, 347–357. [Google Scholar] [CrossRef]
- Kouki, J.; Arnold, K.; Martikainen, P. Long-term persistence of aspen—A key host for many threatened species—Is endangered in old-growth conservation areas in Finland. J. Nat. Conserv. 2004, 12, 41–52. [Google Scholar] [CrossRef]
- Kivinen, S.; Koivisto, E.; Keski-Saari, S.; Poikolainen, L.; Tanhuanpää, T.; Kuzmin, A.; Viinikka, A.; Heikkinen, R.K.; Pykälä, J.; Virkkala, R.; et al. A keystone species, European aspen (Populus tremula L.), in boreal forests: Ecological role, knowledge needs and mapping using remote sensing. For. Ecol. Manag. 2020, 462, 118008. [Google Scholar] [CrossRef]
- Siitonen, J.; Martikainen, P.; Punttila, P.; Rauh, J. Coarse woody debris and stand characteristics in mature managed and old-growth boreal mesic forests in southern Finland. For. Ecol. Manag. 2000, 128, 211–225. [Google Scholar] [CrossRef]
- Latva-Karjanmaa, T.; Penttilä, R.; Siitonen, J. The demographic structure of European aspen (Populus tremula) populations in managed and old-growth boreal forests in eastern Finland. Can. J. For. Res. 2007, 37, 1070–1081. [Google Scholar] [CrossRef]
- Shorohova, E.; Kapitsa, E. Influence of the substrate and ecosystem attributes on the decomposition rates of coarse woody debris in European boreal forests. For. Ecol. Manag. 2014, 315, 173–184. [Google Scholar] [CrossRef]
- Halme, P.; Purhonen, J.; Marjakangas, E.L.; Komonen, A.; Juutilainen, K.; Abrego, N. Dead wood profile of a semi-natural boreal forest-implications for sampling. Silva Fenn. 2019, 53, 10010. [Google Scholar] [CrossRef]
- Laarmann, D.; Korjus, H.; Sims, A.; Stanturf, J.A.; Kiviste, A.; Köster, K. Analysis of forest naturalness and tree mortality patterns in Estonia. For. Ecol. Manag. 2009, 258, S187–S195. [Google Scholar] [CrossRef]
- Doerfler, I.; Gossner, M.M.; Müller, J.; Seibold, S.; Weisser, W.W. Deadwood enrichment combining integrative and segregative conservation elements enhances biodiversity of multiple taxa in managed forests. Biol. Conserv. 2018, 228, 70–78. [Google Scholar] [CrossRef]
- Koivula, M.; Vanha-Majamaa, I. Experimental evidence on biodiversity impacts of variable retention forestry, prescribed burning, and deadwood manipulation in Fennoscandia. Ecol. Process. 2020, 9, 1–22. [Google Scholar] [CrossRef]
- Covey, K.R.; Bueno de Mesquita, C.; Oberle, B.; Maynard, D.S.; Bettigole, C.; Crowther, T.W.; Duguid, M.C.; Steven, B.; Zanne, A.E.; Lapin, M.; et al. Greenhouse trace gases in deadwood. Biogeochemistry 2016, 130, 215–226. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef]
- Ranius, T.; Kindvall, O.; Kruys, N.; Jonsson, B.G. Modelling dead wood in Norway spruce stands subject to different management regimes. For. Ecol. Manag. 2003, 182, 13–29. [Google Scholar] [CrossRef]
- Cornelissen, J.H.C.; Sass-Klaassen, U.; Poorter, L.; Van Geffen, K.; Van Logtestijn, R.S.P.; Van Hal, J.; Goudzwaard, L.; Sterck, F.J.; Klaassen, R.K.W.M.; Freschet, G.T.; et al. Controls on coarse wood decay in temperate tree species: Birth of the LOGLIFE experiment. Ambio 2012, 41, 231–245. [Google Scholar] [CrossRef]
- Garbarino, M.; Marzano, R.; Shaw, J.D.; Long, J.N. Environmental drivers of deadwood dynamics in woodlands and forests. Ecosphere 2015, 6, 30. [Google Scholar] [CrossRef]
- Martin, A.; Dimke, G.; Doraisami, M.; Thomas, S. Carbon fractions in the world’s dead wood. Nat. Commun. 2021, 12, 889. [Google Scholar] [CrossRef]
- Carey, E.V.; Sala, A.; Keane, R.; Callaway, R.M. Are old forests underestimated as global carbon sinks? Glob. Chang. Biol. 2001, 7, 339–344. [Google Scholar] [CrossRef]
- Röser, C.; Montagnani, L.; Schulze, E.-D.; Mollicone, D.; Kolle, O.; Meroni, M.; Papale, D.; Marchesini, L.B.; Federici, S.; Valentini, R. Net CO₂ exchange rates in three different successional stages of the “Dark Taiga” of central Siberia. Tellus B Chem. Phys. Meteorol. 2002, 54, 642–654. [Google Scholar] [CrossRef]
- Wardle, D.A.; Hörnberg, G.; Zackrisson, O.; Kalela-Brundin, M.; Coomes, D.A. Long-term effects of wildfire on ecosystem properties across an island area gradient. Science 2003, 300, 972–975. [Google Scholar] [CrossRef] [PubMed]
- Luyssaert, S.; Schulze, E.D.; Börner, A.; Knohl, A.; Hessenmöller, D.; Law, B.E.; Ciais, P.; Grace, J. Old-growth forests as global carbon sinks. Nature 2008, 455, 213–215. [Google Scholar] [CrossRef]
- Seedre, M.; Kopáček, J.; Janda, P.; Bače, R.; Svoboda, M. Carbon pools in a montane old-growth Norway spruce ecosystem in Bohemian Forest: Effects of stand age and elevation. For. Ecol. Manag. 2015, 346, 106–113. [Google Scholar] [CrossRef]
- Hadden, D.; Grelle, A. Net CO₂ emissions from a primary boreo-nemoral forest over a 10 year period. For. Ecol. Manag. 2017, 398, 164–173. [Google Scholar] [CrossRef]
- Pukkala, T. Does management improve the carbon balance of forestry? For. Int. J. For. Res. 2017, 90, 125–135. [Google Scholar] [CrossRef]
- Nord-Larsen, T.; Vesterdal, L.; Bentsen, N.S.; Larsen, J.B. Ecosystem carbon stocks and their temporal resilience in a semi-natural beech-dominated forest. For. Ecol. Manag. 2019, 447, 67–76. [Google Scholar] [CrossRef]
- Uri, V.; Varik, M.; Aosaar, J.; Kanal, A.; Kukumägi, M.; Lõhmus, K. Biomass production and carbon sequestration in a fertile silver birch (Betula pendula Roth) forest chronosequence. For. Ecol. Manag. 2012, 267, 117–126. [Google Scholar] [CrossRef]
- Uri, V.; Kukumägi, M.; Aosaar, J.; Varik, M.; Becker, H.; Morozov, G.; Karoles, K. Ecosystems carbon budgets of differently aged downy birch stands growing on well-drained peatlands. For. Ecol. Manag. 2017, 399, 82–93. [Google Scholar] [CrossRef]
- Varik, M.; Aosaar, J.; Ostonen, I.; Lõhmus, K.; Uri, V. Carbon and nitrogen accumulation in belowground tree biomass in a chronosequence of silver birch stands. For. Ecol. Manag. 2013, 302, 62–70. [Google Scholar] [CrossRef]
- Varik, M.; Kukumägi, M.; Aosaar, J.; Becker, H.; Ostonen, I.; Lõhmus, K.; Uri, V. Carbon budgets in fertile silver birch (Betula pendula Roth) chronosequence stands. Ecol. Eng. 2015, 77, 284–296. [Google Scholar] [CrossRef]
- Šēnhofa, S.; Jaunslaviete, I.; Šņepsts, G.; Jansons, J.; Liepa, L.; Jansons, A. Deadwood characteristics in mature and old-growth birch stands and their implications for carbon storage. Forests 2020, 11, 536. [Google Scholar] [CrossRef]
- Gao, B.; Taylor, A.R.; Searle, E.B.; Kumar, P.; Ma, Z.; Hume, A.M.; Chen, H.Y.H. Carbon Storage Declines in Old Boreal Forests Irrespective of Succession Pathway. Ecosystems 2017, 21, 1168–1182. [Google Scholar] [CrossRef]
- European Environment Agency. European Forest Types. Categories and Types for Sustainable Forest Management Reporting and Policy; Technical Report; European Environment Agency: Copenhagen, Denmark, 2007. [Google Scholar]
- Bušs, K. Forest ecosystem classification in Latvia. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. 1997, 51, 204–218. [Google Scholar]
- Buchwald, E. A hierarchical terminology for more or less natural forests in relation to sustainable management and biodiversity conservation. In Proceedings of the Proceedings of the Third Expert Meeting on Harmonizing Forest-related Definitions, Rome, Italy, 11–19 January 2005. [Google Scholar]
- Mäkinen, H.; Hynynen, J.; Siitonen, J.; Sievänen, R. Predicting the decomposition of scots pine, norway spruce, and birch stems in Finland. Ecol. Appl. 2006, 16, 1865–1879. [Google Scholar] [CrossRef]
- Köster, K.; Metslaid, M.; Engelhart, J.; Köster, E. Dead wood basic density, and the concentration of carbon and nitrogen for main tree species in managed hemiboreal forests. For. Ecol. Manag. 2015, 354, 35–42. [Google Scholar] [CrossRef]
- Jansons, J.; Līcīte, I. Latvia. In National Forest Inventories: Pathways for Common Reporting; Tomppo, E., Gschwantner, T., Lawrence, M., McRoberts, R.E., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 341–350. [Google Scholar]
- Liepa, I. Pieauguma mācība; LLU: Jelgava, Latvia, 1996. [Google Scholar]
- Bobiec, A. The influence of gaps on tree regeneration: A case study of the mixed lime-hornbeam (Tilio-Carpinetum Tracz. 1962) communities in the Białowieża Primeval Forest. Polish J. Ecol. 2007, 55, 441–455. [Google Scholar]
- Jonášová, M.; Matějková, I. Natural regeneration and vegetation changes in wet spruce forests after natural and artificial disturbances. Can. J. For. Res. 2007, 37, 1907–1914. [Google Scholar] [CrossRef]
- Vehmas, M.; Kouki, J.; Eerikainen, K. Long-term spatio-temporal dynamics and historical continuity of European aspen (Populus tremula L.) stands in the Koli National Park, eastern Finland. Forestry 2009, 82, 135–148. [Google Scholar] [CrossRef][Green Version]
- Kull, O.; Niinemets, Ü. Distribution of leaf photosynthetic properties in tree canopies: Comparison of species with different shade tolerance. Funct. Ecol. 1998, 12, 472–479. [Google Scholar] [CrossRef]
- Yatskov, M.; Harmon, M.E.; Krankina, O.N. A chronosequence of wood decomposition in the boreal forests of Russia. Can. J. For. Res. 2003, 33, 1211–1226. [Google Scholar] [CrossRef]
- Jonsson, B.G.; Ekström, M.; Esseen, P.A.; Grafström, A.; Ståhl, G.; Westerlund, B. Dead wood availability in managed Swedish forests—Policy outcomes and implications for biodiversity. For. Ecol. Manag. 2016, 376, 174–182. [Google Scholar] [CrossRef]
- Similä, M.; Kouki, J.; Martikainen, P. Saproxylic beetles in managed and seminatural Scots pine forests: Quality of dead wood matters. For. Ecol. Manag. 2003, 174, 365–381. [Google Scholar] [CrossRef]
- Adermann, V. Estonia. In National Forest Inventories: Pathways for Common Reporting; Tomppo, E., Gschwantner, T., Lawrence, M., McRoberts, R.E., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 171–184. [Google Scholar]
- Siitonen, J. Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecol. Bull. 2001, 49, 11–41. [Google Scholar] [CrossRef]
- Rouvinen, S.; Kuuluvainen, T.; Karjalainen, L. Coarse woody debris in old Pinus sylvestris dominated forests along a geographic and human impact gradient in boreal Fennoscandia. Can. J. For. Res. 2002, 32, 2184–2200. [Google Scholar] [CrossRef]
- Aakala, T. Coarse woody debris in late-successional Picea abies forests in northern Europe: Variability in quantities and models of decay class dynamics. For. Ecol. Manag. 2010, 260, 770–779. [Google Scholar] [CrossRef]
- Lee, P. Dynamics of snags in aspen-dominated midboreal forests. For. Ecol. Manag. 1998, 105, 263–272. [Google Scholar] [CrossRef]
- Vasiliauskas, R.; Vasiliauskas, A.; Stenlid, J.; Matelis, A. Dead trees and protected polypores in unmanaged north-temperate forest stands of Lithuania. For. Ecol. Manag. 2004, 193, 355–370. [Google Scholar] [CrossRef]
- Bujoczek, L.; Bujoczek, M.; Zięba, S. How much, why and where? Deadwood in forest ecosystems: The case of Poland. Ecol. Indic. 2021, 121, 107027. [Google Scholar] [CrossRef]
- Krankina, O.N.; Treyfeld, R.F.; Harmon, M.E.; Spycher, G.; Povarov, E.D. Coarse Woody Debris in the Forests of the St. Petersburg Region, Russia. Ecol. Bull. 2001, 93–107. [Google Scholar] [CrossRef]
- Lee, P.C.; Crites, S.; Nietfeld, M.; Nguyen, H.V.; Stelfox, J.B. Characteristics and origins of deadwood material in aspen-dominated boreal forests. Ecol. Appl. 1997, 7, 691–701. [Google Scholar] [CrossRef]
- Köster, K.; Jõgiste, K.; Tukia, H.; Niklasson, M.; Möls, T. Variation and ecological characteristics of coarse woody debris in Lahemaa and Karula National Parks, Estonia. Scand. J. For. Res. 2005, 20, 102–111. [Google Scholar] [CrossRef]
- Nilsson, S.G.; Niklasson, M.; Hedin, J.; Aronsson, G.; Gutowski, J.M.; Linder, P.; Ljungberg, H.; Mikusinski, G.; Ranius, T. Densities of large living and dead trees in old-growth temperate and boreal forests. For. Ecol. Manag. 2002, 161, 198–204. [Google Scholar] [CrossRef]
- Framstad, E.; de Wit, H.; Mäkipää, R.; Larjavaar, M.; Vesterdal, L.; Karltun, E. Biodiversity, Carbon Storage and Dynamics of Old Northern Forests; Nordic Council of Ministers: Copenhagen, Denmark, 2013. [Google Scholar]
- Chen, H.Y.H.; Popadiouk, R.V. Dynamics of North American boreal mixedwoods. Environ. Rev. 2002, 10, 137–166. [Google Scholar] [CrossRef]
- Liepiņa, L. Apses. In Meža Enciklopēdija; Broks, J., Ed.; Zelta Grauds: Rīga, Latvia, 2005. [Google Scholar]
- Lankia, H.; Wallenius, T.; Várkonyi, G.; Kouki, J.; Snäll, T. Forest fire history, aspen and goat willow in a Fennoscandian old-growth landscape: Are current population structures a legacy of historical fires? J. Veg. Sci. 2012, 23, 1159–1169. [Google Scholar] [CrossRef]
- Müller, J.; Bütler, R. A review of habitat thresholds for dead wood: A baseline for management recommendations in European forests. Eur. J. For. Res. 2010, 129, 981–992. [Google Scholar] [CrossRef]
- Brin, A.; Brustel, H.; Jactel, H. Species variables or environmental variables as indicators of forest biodiversity: A case study using saproxylic beetles in Maritime pine plantations. Ann. For. Sci. 2009, 66, 306. [Google Scholar] [CrossRef]
- Hottola, J.; Ovaskainen, O.; Hanski, I. A unified measure of the number, volume and diversity of dead trees and the response of fungal communities. J. Ecol. 2009, 97, 1320–1328. [Google Scholar] [CrossRef]
- Lassauce, A.; Paillet, Y.; Jactel, H.; Bouget, C. Deadwood as a surrogate for forest biodiversity: Meta-analysis of correlations between deadwood volume and species richness of saproxylic organisms. Ecol. Indic. 2011, 11, 1027–1039. [Google Scholar] [CrossRef]
- Hekkala, A.M.; Ahtikoski, A.; Päätalo, M.L.; Tarvainen, O.; Siipilehto, J.; Tolvanen, A. Restoring volume, diversity and continuity of deadwood in boreal forests. Biodivers. Conserv. 2016, 25, 1107–1132. [Google Scholar] [CrossRef]
- Liu, Q.; Hytteborn, H. Gap structure, disturbance and regeneration in a primeval Picea abies forest. J. Veg. Sci. 1991, 2, 391–402. [Google Scholar] [CrossRef]
- Cornwell, W.K.; Cornelissen, J.H.C.; Allison, S.D.; Bauhus, J.; Eggleton, P.; Preston, C.M.; Scarff, F.; Weedon, J.T.; Wirth, C.; Zanne, A.E. Plant traits and wood fates across the globe: Rotted, burned, or consumed? Glob. Chang. Biol. 2009, 15, 2431–2449. [Google Scholar] [CrossRef]
- Niklas, K.J.; Spatz, H.-C. Worldwide correlations of mechanical properties and green wood density. Am. J. Bot. 2010, 97, 1587–1594. [Google Scholar] [CrossRef]
- Jacobsen, R.M.; Sverdrup-Thygeson, A.; Kauserud, H.; Mundra, S.; Birkemoe, T. Exclusion of invertebrates influences saprotrophic fungal community and wood decay rate in an experimental field study. Funct. Ecol. 2018, 32, 2571–2582. [Google Scholar] [CrossRef]
- DeLong, S.C.; Daniels, L.D.; Heemskerk, B.; Storaunet, K.O. Temporal development of decaying log habitats in wet spruce-fir stands in east-central British Columbia. Can. J. For. Res. 2005, 35, 2841–2850. [Google Scholar] [CrossRef]
- Tarasov, M.E.; Birdsey, R.A. Decay rate and potential storage of coarse woody debris in the Leningrad region. Ecol. Bull. 2001, 137–147. [Google Scholar] [CrossRef]
- Jonsson, B.G. Availability of coarse woody debris in a boreal old-growth Picea abies forest. J. Veg. Sci. 2000, 11, 51–56. [Google Scholar] [CrossRef]
- Hararuk, O.; Kurz, W.A.; Didion, M. Dynamics of dead wood decay in Swiss forests. For. Ecosyst. 2020, 7, 36. [Google Scholar] [CrossRef]
- Moroni, M.T.; Morris, D.M.; Shaw, C.; Stokland, J.N.; Harmon, M.E.; Fenton, N.J.; Merganičová, K.; Merganič, J.; Okabe, K.; Hagemann, U. Buried Wood: A Common Yet Poorly Documented Form of Deadwood. Ecosystems 2015, 18, 605–628. [Google Scholar] [CrossRef]
- Tikkanen, O.-P.; Martikainen, P.; Hyvärinen, E.; Junninen, K.; Kouki, J. Red-listed boreal forest species of Finland: Associations with forest structure, tree species, and decaying wood. Ann. Zool. Fennici 2006, 43, 373–383. [Google Scholar] [CrossRef]
- Ranius, T.; Martikainen, P.; Kouki, J. Colonisation of ephemeral forest habitats by specialised species: Beetles and bugs associated with recently dead aspen wood. Biodivers. Conserv. 2011, 20, 2903–2915. [Google Scholar] [CrossRef]
- Shorohova, E.; Kushnevskaya, H.; Ruokolainen, A.; Polevoi, A.; Borovichev, E. Behavior in a wide range of choices: Substrate preferences of threatened wood-inhabiting species in a mixed old-growth boreal forest. In Proceedings of the ECCB2018 5th European Congress of Conservation Biology, Jyväskylä, Finland, 12–15 June 2018; Open Science Centre, University of Jyväskylä: Jyväskylä, Finland, 2018. [Google Scholar]
- Puletti, N.; Canullo, R.; Mattioli, W.; Gawryś, R.; Corona, P.; Czerepko, J. A dataset of forest volume deadwood estimates for Europe. Ann. For. Sci. 2019, 76, 1–8. [Google Scholar] [CrossRef]
- Priewasser, K.; Brang, P.; Bachofen, H.; Bugmann, H.; Wohlgemuth, T. Impacts of salvage-logging on the status of deadwood after windthrow in Swiss forests. Eur. J. For. Res. 2013, 132, 231–240. [Google Scholar] [CrossRef]
- Kahl, T.; Baber, K.; Otto, P.; Wirth, C.; Bauhus, J. Drivers of CO2 Emission Rates from Dead Wood Logs of 13 Tree Species in the Initial Decomposition Phase. Forests 2015, 6, 2484–2504. [Google Scholar] [CrossRef]
- Błońska, E.; Lasota, J.; Tullus, A.; Lutter, R.; Ostonen, I. Impact of deadwood decomposition on soil organic carbon sequestration in Estonian and Polish forests. Ann. For. Sci. 2019, 76, 1–14. [Google Scholar] [CrossRef]
- Seibold, S.; Bässler, C.; Brandl, R.; Büche, B.; Szallies, A.; Thorn, S.; Ulyshen, M.D.; Müller, J. Microclimate and habitat heterogeneity as the major drivers of beetle diversity in dead wood. J. Appl. Ecol. 2016, 53, 934–943. [Google Scholar] [CrossRef]
- Ķēniņa, L.; Mača, S.; Jaunslaviete, I.; Jansons, Ā. Carbon pools in old-growth Scots pine stands on organic soils and its concentration in deadwood: Cases study in Latvia. In Proceedings of the 9th International Scientific Conference “Rural Development 2019”, Kaunas, Lithuania, 26–28 September; VDU: Kaunas, Lithuania, 2019; pp. 284–288. [Google Scholar]
- Stakėnas, V.; Varnagirytė-Kabašinskienė, I.; Sirgedaitė-Šėžienė, V.; Armolaitis, K.; Araminienė, V.; Muraškienė, M.; Žemaitis, P. Dead wood carbon density for the main tree species in the Lithuanian hemiboreal forest. Eur. J. For. Res. 2020, 139, 1045–1055. [Google Scholar] [CrossRef]
- Witt, C. Characteristics of aspen infected with heartrot: Implications for cavity-nesting birds. For. Ecol. Manag. 2010, 260, 1010–1016. [Google Scholar] [CrossRef]
- Lõhmus, A. Aspen-inhabiting aphyllophoroid fungi in a managed forest landscape in Estonia. Scand. J. For. Res. 2011, 26, 212–220. [Google Scholar] [CrossRef]
- Andelic, M.; Tangnaes, M.-J. The Effect of Secondary Metabolites, Nutrients and Invertebrates on Fungal Establishment and Decomposition Rates in European Aspen (Populus tremula). Master’s Thesis, Norwegian University of Life Sciences, Ås, Norway, 2019. [Google Scholar]
- Wirth, C.; Lichstein, J.W. The Imprint of Species Turnover on Old-Growth Forest Carbon Balances—Insights From a Trait-Based Model of Forest Dynamics; Springer: Berlin/Heidelberg, Germany, 2009; pp. 81–113. [Google Scholar]
- Schmid, A.V.; Vogel, C.S.; Liebman, E.; Curtis, P.S.; Gough, C.M. Coarse woody debris and the carbon balance of a moderately disturbed forest. For. Ecol. Manag. 2016, 361, 38–45. [Google Scholar] [CrossRef]
- Harmon, M.E.; Bond-Lamberty, B.; Tang, J.; Vargas, R. Heterotrophic respiration in disturbed forests: A review with examples from North America. J. Geophys. Res. Biogeosci. 2011, 116, G00K04. [Google Scholar] [CrossRef]
- Nabuurs, G.J.; Lindner, M.; Verkerk, P.J.; Gunia, K.; Deda, P.; Michalak, R.; Grassi, G. First signs of carbon sink saturation in European forest biomass. Nat. Clim. Chang. 2013, 3, 792–796. [Google Scholar] [CrossRef]
- Senf, C.; Seidl, R. Mapping the forest disturbance regimes of Europe. Nat. Sustain. 2021, 4, 63–70. [Google Scholar] [CrossRef]
No. | N | Overstory | Understory | CWD Volume, m3 ha−1 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Species | A | DBH, cm | Height, m | Growing Stock, m3 ha−1 | Species | Growing Stock, m3 ha−1 | ||||
Aspen | Other | |||||||||
1 | 6 | 10 | – | 109 | 49.0 ± 1.6 | 39.4 ± 0.1 | 687 ± 99 | 5S5L | 118.3 ± 28.6 | 123.5 ± 9.7 |
2 | 6 | 9 | 1S | 114 | 57.1 ± 3.2 | 38.2 ± 0.3 | 555 ± 40 | 5S5L | 116.3 ± 20.7 | 142.2 ± 20.5 |
3 | 6 | 9 | 1S | 118 | 48.0 ± 1.7 | 38.1 ± 0.2 | 602 ± 42 | 10S | 168.8 ± 14.9 | 28.1 ± 10.1 |
4 | 6 | 9 | 1B | 118 | 44.0 ± 2.2 | 38.9 ± 0.5 | 620 ± 83 | 10S | 78.0 ± 14.4 | 111.2 ± 10.5 |
5 | 6 | 10 | – | 108 | 46.0 ± 1.9 | 39.5 ± 0.2 | 812 ± 55 | 10S | 111.8 ± 16.6 | 79.6 ± 15.4 |
6 | 8 | 7 | 1B1P1S | 109 | 41.0 ± 2.7 | 32.1 ± 0.6 | 623 ± 73 | 9S1Ba | 126.8 ± 12.8 | 75.2 ± 15.2 |
7 | 8 | 8 | 2B | 106 | 47.0 ± 2.7 | 32.3 ± 0.5 | 471 ± 31 | 8S1O1B | 81.3 ± 13.2 | 50.3 ± 13.0 |
8 | 3 | 9 | 1B | 134 | 53.5 ± 0.8 | 35.2 ± 0.1 | 579 ± 90 | 9S1A | 224.4 ± 21.0 | 61.0 ± 27.8 |
9 | 6 | 8 | 1S1B | 114 | 44.9 ± 2.0 | 36.7 ± 0.2 | 628 ± 50 | 10S | 109.4 ± 11.4 | 113.4 ± 10.4 |
10 | 6 | 9 | 1S | 104 | 55.6 ± 2.8 | 39.2 ± 0.7 | 783 ± 66 | 10S | 193.7 ± 17.8 | 137.8 ± 29.0 |
11 | 6 | 8 | 1B1S | 113 | 56.1 ± 2.9 | 38.7 ± 0.2 | 753 ± 35 | 10S | 138.9 ± 13.9 | 74.9 ± 13.7 |
12 | 6 | 9 | 1S | 109 | 47.3 ± 1.7 | 38.4 ± 0.1 | 770 ± 51 | 6S3L1A | 67.8 ± 11.5 | 59.7 ± 11.0 |
13 | 6 | 8 | 2S | 104 | 46.3 ± 2.2 | 37.2 ± 0.7 | 601 ± 52 | 7S3L | 105.8 ± 19.0 | 60.2 ± 9.1 |
14 | 6 | 9 | 1S | 104 | 49.3 ± 2.0 | 39.3 ± 0.2 | 712 ± 71 | 9S1L | 95.4 ± 12.1 | 174.1 ± 22.9 |
15 | 6 | 8 | 2S | 117 | 47.7 ± 2.1 | 33.0 ± 0.5 | 598 ± 52 | 10S | 122.5 ± 20.3 | 104.5 ± 21.8 |
16 | 6 | 8 | 1S | 117 | 54.2 ± 1.2 | 36.2 ± 0.1 | 761 ± 69 | 5S4L1B | 46.2 ± 3.1 | 70.0 ± 15.4 |
17 | 6 | 9 | 1B | 116 | 52.0 ± 2.4 | 39.1 ± 0.2 | 721 ± 64 | 7S2L1M | 85.4 ± 9.5 | 26.6 ± 10.7 |
18 | 6 | 9 | 1S | 111 | 50.1 ± 3.6 | 39.9 ± 0.3 | 950 ± 77 | 10S | 90.3 ± 8.6 | 94.6 ± 14.9 |
19 | 6 | 10 | – | 118 | 45.2 ± 1.1 | 37.1 ± 0.2 | 764 ± 48 | 9S1L | 185.3 ± 27.5 | 147.4 ± 27.6 |
20 | 6 | 7 | 2S1B | 107 | 52.0 ± 2.9 | 37.4 ± 0.4 | 622 ± 60 | 10S | 99.9 ± 9.6 | 132.5 ± 35.4 |
21 | 6 | 7 | 2S1B | 113 | 51.6 ± 2.2 | 36.4 ± 0.3 | 709 ± 71 | 10S | 106.6 ± 14.9 | 112.3 ± 18.7 |
22 | 4 | 9 | 1S | 107 | 50.4 ± 2.9 | 33.8 ± 0.2 | 381 ± 37 | 5Ga3As1Bc1S | 14.1 ± 3.3 | 71.0 ± 34.9 |
23 | 2 | 5 | 4P1O | 117 | 37.8 ± 10.1 | 27.6 ± 3.2 | 446 ± 31 | 9L1S | 5.3 ± 0.0 | 10.7 ± 3.8 |
24 | 3 | 9 | 1B | 104 | 41.4 ± 1.5 | 29.4 ± 0.3 | 617 ± 61 | 9S1B | 77.0 ± 14.0 | 56.8 ± 42.2 |
25 | 8 | 8 | 1S1B | 118 | 46.7 ± 2.0 | 37.7 ± 0.2 | 599 ± 47 | 9S1M | 131.9 ± 14.5 | 106.5 ± 24.6 |
26 | 6 | 9 | 1S | 108 | 55.6 ± 2.1 | 38.1 ± 0.1 | 689 ± 50 | 8S2M | 102.5 ± 7.2 | 99.3 ± 20.6 |
Decay Class | Description | Basic Density, kg m3 | Carbon Concentration, % | |
---|---|---|---|---|
1 | Recently dead | Wood hard, knife blade penetrates a few millimeters. Bark attached to the stem. | 391.3 | 47.2 |
2 | Weakly decayed | The outer layer of wood starts to soften, knife blade penetrates 1–2 cm. Loose bark, branches present. | 330.6 | 47.4 |
3 | Moderately decayed | The wood of outer layers of stem soft, the core still hard, knife blade penetrates <5 cm. Loose, fragmented bark. | 230.6 | 47.4 |
4 | Very decayed | Wood soft through the log, knife blade penetrates the wood in its entirety. No branches, most of the surface covered with mosses. | 161.1 | 46.6 |
5 | Almost completely decomposed | Lost consistency of wood, breaks up easily. Surface covered with lichens, mosses, and dwarf shrubs. | 60.7 | 46.3 |
Characteristics | Stand Type and Age | |||||
---|---|---|---|---|---|---|
Managed | Unmanaged | |||||
41–60 | 61–80 | 41–60 | 61–80 | 81–100 | 101–140 | |
Stand age, years | 50.1 ± 1.3 | 67.9 ± 1.1 | 53.1 ± 1.0 | 70.1 ± 1.2 | 86.9 ± 1.1 | 111.8 ± 0.5 |
Site index, m | 28.0 ± 1.0 | 27.2 ± 1.0 | 28.8 ± 0.4 | 27.3 ± 0.7 | 25.7 ± 0.8 | 25.4 ± 0.2 |
DBH, cm | 36.2 ± 2.2 | 42.8 ± 2.7 | 37.1 ± 1.5 | 39.5 ± 1.3 | 50.4 ± 2.2 | 49.0 ± 0.6 |
Height, m | 28.0 ± 1.1 | 31.9 ± 1.1 | 29.7 ± 0.4 | 32.4 ± 0.7 | 33.8 ± 0.9 | 36.8 ± 0.2 |
Total basal area, m2 ha−1 | 29.2 ± 2.5 | 34.2 ± 3.0 | 32.2 ± 1.4 | 39.5 ± 2.3 | 41.8 ± 1.9 | 50.3 ± 0.9 |
Total growing stock, m3 ha−1 | 330 ± 30 | 447 ± 48 | 377 ± 21 | 526 ± 36 | 577 ± 37 | 774 ± 16 |
Total number of trees, ha−1 | 1388 ± 245 | 1049 ± 241 | 1421 ± 173 | 1087 ± 143 | 942 ± 108 | 1134 ± 67 |
Overstory basal area, m2 ha−1 | 21.8 ± 1.7 | 26.1 ± 2.6 | 24.3 ± 1.5 | 29.9 ± 2.3 | 30.4 ± 1.7 | 38.9 ± 0.8 |
Overstory growing stock, m3 ha−1 | 278 ± 26 | 383 ± 45 | 320 ± 21 | 443 ± 36 | 470 ± 34 | 664 ± 14 |
Overstory number of trees, ha−1 | 308 ± 34 | 262 ± 29 | 366 ± 34 | 345 ± 33 | 229 ± 25 | 246 ± 7 |
Aspen basal area, m2 ha−1 | 14.0 ± 2.0 | 17.6 ± 2.4 | 14.6 ± 1.2 | 20.3 ± 2.3 | 21.9 ± 2.1 | 32.1 ± 0.8 |
Aspen growing stock, m3 ha−1 | 187 ± 25 | 276 ± 42 | 205 ± 18 | 316 ± 38 | 355 ± 39 | 566 ± 15 |
Aspen number of trees, ha−1 | 363 ± 139 | 162 ± 35 | 296 ± 71 | 273 ± 68 | 126 ± 18 | 202 ± 18 |
Objects | 19 | 19 | 30 | 26 | 17 | 26 |
Sample plots | 19 | 19 | 30 | 26 | 17 | 150 |
CWD Pose | Stand Type | Stand Age, Years | Number of Sample Plots | CWD Volume, m3·ha−1 | CWD Carbon Pool, t·ha−1 | ||
---|---|---|---|---|---|---|---|
Marginal Mean | SE | Marginal Mean | SE | ||||
Standing | Managed | 41–60 | 19 | 7.6 | 6.0 | 1.0 | 0.9 |
61–80 | 19 | 5.3 | 6.0 | 0.7 | 0.9 | ||
Unmanaged | 41–60 | 30 | 16.6 | 4.8 | 2.2 | 0.7 | |
61–80 | 26 | 13.8 | 5.2 | 1.9 | 0.7 | ||
81–100 | 17 | 26.1 | 6.4 | 3.5 | 0.9 | ||
101–140 | 150 | 31.9 | 2.2 | 4.6 | 0.3 | ||
Lying | Managed | 41–60 | 19 | 12.5 | 12.0 | 1.4 | 1.5 |
61–80 | 19 | 31.0 | 12.0 | 4.1 | 1.5 | ||
Unmanaged | 41–60 | 30 | 53.3 | 9.6 | 6.6 | 1.2 | |
61–80 | 26 | 53.5 | 10.3 | 6.4 | 1.3 | ||
81–100 | 17 | 47.5 | 12.9 | 5.3 | 1.6 | ||
101–140 | 150 | 60.5 | 4.3 | 8.0 | 0.5 | ||
Total | Managed | 41–60 | 19 | 20.1 | 14.2 | 2.4 | 1.8 |
61–80 | 19 | 36.3 | 14.2 | 4.8 | 1.8 | ||
Unmanaged | 41–60 | 30 | 69.9 | 11.3 | 8.7 | 1.5 | |
61–80 | 26 | 67.3 | 12.1 | 8.2 | 1.6 | ||
81–100 | 17 | 73.5 | 15.3 | 8.8 | 2.0 | ||
101–140 | 150 | 92.4 | 5.1 | 12.5 | 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šēnhofa, S.; Šņepsts, G.; Bičkovskis, K.; Jaunslaviete, I.; Liepa, L.; Straupe, I.; Jansons, Ā. Availability and Structure of Coarse Woody Debris in Hemiboreal Mature to Old-Growth Aspen Stands and Its Implications for Forest Carbon Pool. Forests 2021, 12, 901. https://doi.org/10.3390/f12070901
Šēnhofa S, Šņepsts G, Bičkovskis K, Jaunslaviete I, Liepa L, Straupe I, Jansons Ā. Availability and Structure of Coarse Woody Debris in Hemiboreal Mature to Old-Growth Aspen Stands and Its Implications for Forest Carbon Pool. Forests. 2021; 12(7):901. https://doi.org/10.3390/f12070901
Chicago/Turabian StyleŠēnhofa, Silva, Guntars Šņepsts, Kārlis Bičkovskis, Ieva Jaunslaviete, Līga Liepa, Inga Straupe, and Āris Jansons. 2021. "Availability and Structure of Coarse Woody Debris in Hemiboreal Mature to Old-Growth Aspen Stands and Its Implications for Forest Carbon Pool" Forests 12, no. 7: 901. https://doi.org/10.3390/f12070901
APA StyleŠēnhofa, S., Šņepsts, G., Bičkovskis, K., Jaunslaviete, I., Liepa, L., Straupe, I., & Jansons, Ā. (2021). Availability and Structure of Coarse Woody Debris in Hemiboreal Mature to Old-Growth Aspen Stands and Its Implications for Forest Carbon Pool. Forests, 12(7), 901. https://doi.org/10.3390/f12070901