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Abstract: European aspen deadwood is extensively studied as a habitat for saproxylic species,
while less is known of its dynamics and role in carbon sequestration. We studied unmanaged
mature (41–60 years), moderately overmature (61–80 years), overmature (81–100 years), and old-
growth (101–140 years) and managed mature and moderately overmature aspen stands on fertile
mineral soils. In unmanaged stands, marginal mean CWD volume was from 67.3 ± 12.1 m3 ha−1 in
moderately overmature to 92.4 ± 5.1 m3 ha−1 in old-growth stands, with corresponding marginal
mean CWD carbon pool 8.2 ± 1.6 t ha−1 and 12.5 ± 0.7 t ha−1 (all p > 0.05), respectively. High CWD
volume was present in most stands, by at least two-thirds of plots comprising more than 20 m3 ha−1,
and about half of CWD was larger than 30 cm in diameter. Changes in CWD species composition
toward a higher proportion of deciduous deadwood in old-growth stands, together with a high
volume of recently dead trees, suggest early senescence of the dominant aspen cohort.

Keywords: aspen senescence; carbon pool; deadwood; decline; overmature; Populus tremula

1. Introduction

European aspen (Populus tremula L.) is an early-succession species in boreal and
hemiboreal forests [1], with scattered occurrence [2–4] but high ecological importance.
Aspen is commonly regarded as ‘keystone species’ in the boreal and hemiboreal forests
because both living and dead aspen trees host more specialist and endangered species
than other tree species in the region [4–7]. Information of aspen deadwood volume and
characteristics, however, is limited, with only some insights from studies in boreal [6,8–11]
and hemiboreal [12] forests.

Besides the maintenance of biodiversity [13,14], deadwood has an important role
in carbon dynamics [15], estimated to comprise 8% of the total carbon pool in forests
globally [16]. The deadwood persistence and turnover are affected by a number of factors,
including disturbance dynamics, forest zone, site type and soil moisture regime, dominant
species, stand age, and productivity [17–19]. Large knowledge gaps on the effect of the
abovementioned factors on carbon pools remain and are substituted by internationally
accepted standards. Latest studies show that even seemingly small improvement by
empirical-based variables has a substantial effect on estimated global carbon stock [20].
Currently, the majority of knowledge on forest carbon pools is derived from studies
performed in managed forests. The vast deadwood diversity in unmanaged, old-growth
forests, however, hampers accurate estimations of carbon storage within it and has derived
contrasting results on whether old-growth forests are a carbon sink or source [21–28]. While
few studies have addressed the carbon budget in hemiboreal deciduous forests [29–32],
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including one in the old-growth forests [33], none have been performed in aspen-dominated
stands. However, studies of stands older than the longevity of the pioneer cohort are
emphasized as critical to improve the understanding of old forests in the global carbon
cycle [34]. Knowledge of carbon balance in stands dominated by relatively short-lived
species and how this balance changes with stand age is necessary in order to improve the
accuracy of greenhouse gas emission and carbon sequestration models.

We aimed to quantify the availability of coarse woody debris (CWD) and its carbon
pool and to characterize CWD structure in hemiboreal aspen stands. We intended to
represent CWD and its carbon pool regarding species composition, pose, diameter, and
decay classes with regard to its variation along with stand age from maturity to old-growth
state.

2. Materials and Methods

This study was conducted in European aspen (Populus tremula L.) stands in hemiboreal
forests (based on European Forest Types [35]) in Latvia. According to Latvian National
Forest Inventory (NFI, 2014–2018), forests cover 52% of the land. Aspen is the fourth most
common tree species, following Scots pine (Pinus sylvestris L.), silver and downy birch
(pooled Betula pendula Roth and Betula pubescens Ehrh.), and Norway spruce (Picea abies (L.)
Karst.), and constitutes 8% and 9% of the total forest land and volume, respectively. Data
consist of two sets: our measured stands at the age of 101 to 140 years, and NFI (2014–2018)
measured stands at the age of 41 to 100 years (Figure 1).
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clear circles (#) and pentagons (D) indicating managed mature and moderately overmature stands.

Our measured stands were randomly pre-selected from protected forests across Latvia,
based on species composition (at least 50% of the overstory growing stock comprised by
aspen), age limit (≥101 years), and site type. We included stands located on Hylocomiosa
and Oxalidosa (local classification by Bušs [36] site types on fertile mesic mineral soils, as
these are two the most common site types (17% and 44% of the area, respectively) for the
aspen-dominated stands in Latvia. The selected forests have various types of protection
determined by legislation and voluntary by state forests, mostly microreserves for protected
species and habitats. These forests have received no silvicultural measures for at least
four decades, although no documentation of prior management was available. Sites that
showed signs of former logging were excluded. Only sites that met all aforementioned
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criteria were measured. Overall, our study included 150 sample plots (mean 5.8 plots per
stand) from 26 aspen-dominated stands at the age of 104 to 134 years (Table 1). Throughout
this paper, this group is referred to as ‘old-growth stands’ (101–140 years), with the degree
of naturalness based on the Buchwald [37] classification ‘n6—Old-growth forest’.

Table 1. Characteristics (marginal mean ± standard error) of old-growth European aspen (Populus tremula L.) stands.

No. N

Overstory Understory CWD
Volume,
m3 ha−1

Species
A DBH, cm Height, m Growing Stock,

m3 ha−1
Species Growing Stock,

m3 ha−1Aspen Other

1 6 10 – 109 49.0 ± 1.6 39.4 ± 0.1 687 ± 99 5S5L 118.3 ± 28.6 123.5 ± 9.7
2 6 9 1S 114 57.1 ± 3.2 38.2 ± 0.3 555 ± 40 5S5L 116.3 ± 20.7 142.2 ± 20.5
3 6 9 1S 118 48.0 ± 1.7 38.1 ± 0.2 602 ± 42 10S 168.8 ± 14.9 28.1 ± 10.1
4 6 9 1B 118 44.0 ± 2.2 38.9 ± 0.5 620 ± 83 10S 78.0 ± 14.4 111.2 ± 10.5
5 6 10 – 108 46.0 ± 1.9 39.5 ± 0.2 812 ± 55 10S 111.8 ± 16.6 79.6 ± 15.4
6 8 7 1B1P1S 109 41.0 ± 2.7 32.1 ± 0.6 623 ± 73 9S1Ba 126.8 ± 12.8 75.2 ± 15.2
7 8 8 2B 106 47.0 ± 2.7 32.3 ± 0.5 471 ± 31 8S1O1B 81.3 ± 13.2 50.3 ± 13.0
8 3 9 1B 134 53.5 ± 0.8 35.2 ± 0.1 579 ± 90 9S1A 224.4 ± 21.0 61.0 ± 27.8
9 6 8 1S1B 114 44.9 ± 2.0 36.7 ± 0.2 628 ± 50 10S 109.4 ± 11.4 113.4 ± 10.4

10 6 9 1S 104 55.6 ± 2.8 39.2 ± 0.7 783 ± 66 10S 193.7 ± 17.8 137.8 ± 29.0
11 6 8 1B1S 113 56.1 ± 2.9 38.7 ± 0.2 753 ± 35 10S 138.9 ± 13.9 74.9 ± 13.7
12 6 9 1S 109 47.3 ± 1.7 38.4 ± 0.1 770 ± 51 6S3L1A 67.8 ± 11.5 59.7 ± 11.0
13 6 8 2S 104 46.3 ± 2.2 37.2 ± 0.7 601 ± 52 7S3L 105.8 ± 19.0 60.2 ± 9.1
14 6 9 1S 104 49.3 ± 2.0 39.3 ± 0.2 712 ± 71 9S1L 95.4 ± 12.1 174.1 ± 22.9
15 6 8 2S 117 47.7 ± 2.1 33.0 ± 0.5 598 ± 52 10S 122.5 ± 20.3 104.5 ± 21.8
16 6 8 1S 117 54.2 ± 1.2 36.2 ± 0.1 761 ± 69 5S4L1B 46.2 ± 3.1 70.0 ± 15.4
17 6 9 1B 116 52.0 ± 2.4 39.1 ± 0.2 721 ± 64 7S2L1M 85.4 ± 9.5 26.6 ± 10.7
18 6 9 1S 111 50.1 ± 3.6 39.9 ± 0.3 950 ± 77 10S 90.3 ± 8.6 94.6 ± 14.9
19 6 10 – 118 45.2 ± 1.1 37.1 ± 0.2 764 ± 48 9S1L 185.3 ± 27.5 147.4 ± 27.6
20 6 7 2S1B 107 52.0 ± 2.9 37.4 ± 0.4 622 ± 60 10S 99.9 ± 9.6 132.5 ± 35.4
21 6 7 2S1B 113 51.6 ± 2.2 36.4 ± 0.3 709 ± 71 10S 106.6 ± 14.9 112.3 ± 18.7
22 4 9 1S 107 50.4 ± 2.9 33.8 ± 0.2 381 ± 37 5Ga3As1Bc1S 14.1 ± 3.3 71.0 ± 34.9
23 2 5 4P1O 117 37.8 ± 10.1 27.6 ± 3.2 446 ± 31 9L1S 5.3 ± 0.0 10.7 ± 3.8
24 3 9 1B 104 41.4 ± 1.5 29.4 ± 0.3 617 ± 61 9S1B 77.0 ± 14.0 56.8 ± 42.2
25 8 8 1S1B 118 46.7 ± 2.0 37.7 ± 0.2 599 ± 47 9S1M 131.9 ± 14.5 106.5 ± 24.6
26 6 9 1S 108 55.6 ± 2.1 38.1 ± 0.1 689 ± 50 8S2M 102.5 ± 7.2 99.3 ± 20.6

N—number of sample plots; species composition is based on the proportion of the species growing stock in the respective stand layer:
10 = 90% . . . 100%, 9 = 80%...89%, 8 = 70%...79%, etc. A—aspen; S—spruce (Picea abies (L.) Karst.); B—birch (pooled Betula pendula Roth
and Betula pubescens Ehrh.); P—pine (Pinus sylvestris L.); L—lime (Tilia cordata Mill.); Ba—black alder (Alnus glutinosa (L.) Gaertn.); O—oak
(Quercus robur L.); As—ash (Fraxinus excelsior L.); M—maple (Acer platanoides L.); Ga—gray alder (Alnus incana (L.) Moench); Bc—bird
cherry (Padus avium Mill.).

All measurements were performed in 2019. In each sample plot, for living trees,
a diameter at breast height (DBH) of ≥6.1 cm was measured using a caliper (accuracy
±0.1 cm), and data on species and stand layer were noted. Height was measured using
Vertex clinometer (accuracy 0.1 m) for five overstory and three understory trees of the
dominant species; stand height was estimated by corresponding height to the quadratic
mean diameter of overstory aspen. The same overstory trees were sampled by increment
cores to measure age. For each standing dead tree (stems and snags), we measured DBH
≥6.1 cm and height and noted species (aspen, other deciduous, or coniferous) and decay
class. For lying CWD, we measured length (≥1.0 m) using a ruler (accuracy 0.1 m) and
the diameter at both ends (diameter at thicker end ≥6.1 cm), and noted species (aspen,
other deciduous, or coniferous) and decay class at the thickest end. The decay class was
observed visually and using the ‘knife method’. All CWD was divided into five decay
classes (applied from Mäkinen et al. [38], Table 2).
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Table 2. Description of decay classes, density (dry weight per raw volume), and carbon concentration [38]. Basic density
and carbon concentration are applied from Köster et al. [39].

Decay Class Description Basic Density,
kg m3

Carbon
Concentration, %

1 Recently dead Wood hard, knife blade penetrates a few millimeters.
Bark attached to the stem. 391.3 47.2

2 Weakly decayed The outer layer of wood starts to soften, knife blade
penetrates 1–2 cm. Loose bark, branches present. 330.6 47.4

3 Moderately decayed The wood of outer layers of stem soft, the core still hard,
knife blade penetrates <5 cm. Loose, fragmented bark. 230.6 47.4

4 Very decayed
Wood soft through the log, knife blade penetrates the
wood in its entirety. No branches, most of the surface

covered with mosses.
161.1 46.6

5 Almost completely
decomposed

Lost consistency of wood, breaks up easily. Surface
covered with lichens, mosses, and dwarf shrubs. 60.7 46.3

National Forest Inventory (NFI, 2014–2018) data with the corresponding parameters
were used (Table 3). We selected 111 sample plots with an overstory dominated by aspen
(at least 40% of the growing stock) at the age of 41 to 100 years, growing on Hylocomiosa
and Oxalidosa site types. The selected plots were divided into ‘managed’ and ‘unmanaged’
based on the presence of fresh stumps found during the previous 15 years (since the first
NFI measurement), while no information on tree removal before that time was available.
The NFI data were first used to characterize the mean quantity of CWD and CWD carbon
pool in managed and unmanaged stands, followed by further assessment of unmanaged
stands only. The selected NFI plots were divided into age groups of ‘mature stands’ at the
age of 41 to 60 years, ‘moderately overmature’ at the age of 61 to 80 years, and ‘overmature’
at the age of 81 to 100 years, and are referred respectively throughout this paper.

Table 3. Characteristics (marginal mean ± standard error) of mature (41–60 years), moderately overmature (61–80 years),
overmature (81–100 years), and old-growth (101–140 years) European aspen (Populus tremula L.) stands according to
management type.

Characteristics
Stand Type and Age

Managed Unmanaged

41–60 61–80 41–60 61–80 81–100 101–140

Stand age, years 50.1 ± 1.3 67.9 ± 1.1 53.1 ± 1.0 70.1 ± 1.2 86.9 ± 1.1 111.8 ± 0.5
Site index, m 28.0 ± 1.0 27.2 ± 1.0 28.8 ± 0.4 27.3 ± 0.7 25.7 ± 0.8 25.4 ± 0.2

DBH, cm 36.2 ± 2.2 42.8 ± 2.7 37.1 ± 1.5 39.5 ± 1.3 50.4 ± 2.2 49.0 ± 0.6
Height, m 28.0 ± 1.1 31.9 ± 1.1 29.7 ± 0.4 32.4 ± 0.7 33.8 ± 0.9 36.8 ± 0.2

Total basal area, m2 ha−1 29.2 ± 2.5 34.2 ± 3.0 32.2 ± 1.4 39.5 ± 2.3 41.8 ± 1.9 50.3 ± 0.9
Total growing stock, m3 ha−1 330 ± 30 447 ± 48 377 ± 21 526 ± 36 577 ± 37 774 ± 16
Total number of trees, ha−1 1388 ± 245 1049 ± 241 1421 ± 173 1087 ± 143 942 ± 108 1134 ± 67

Overstory basal area, m2 ha−1 21.8 ± 1.7 26.1 ± 2.6 24.3 ± 1.5 29.9 ± 2.3 30.4 ± 1.7 38.9 ± 0.8
Overstory growing stock, m3 ha−1 278 ± 26 383 ± 45 320 ± 21 443 ± 36 470 ± 34 664 ± 14
Overstory number of trees, ha−1 308 ± 34 262 ± 29 366 ± 34 345 ± 33 229 ± 25 246 ± 7

Aspen basal area, m2 ha−1 14.0 ± 2.0 17.6 ± 2.4 14.6 ± 1.2 20.3 ± 2.3 21.9 ± 2.1 32.1 ± 0.8
Aspen growing stock, m3 ha−1 187 ± 25 276 ± 42 205 ± 18 316 ± 38 355 ± 39 566 ± 15
Aspen number of trees, ha−1 363 ± 139 162 ± 35 296 ± 71 273 ± 68 126 ± 18 202 ± 18

Objects 19 19 30 26 17 26
Sample plots 19 19 30 26 17 150

Latvian National Forest Inventory data are used for mature, moderately overmature, and overmature stands, and our measured data are
used for old-growth stands.
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Jansons and Lı̄cı̄te [40] describe inventory plot sampling design in detail. All mea-
surements were performed in circular sample plots (500 m2). If the sample plot crossed
two distinctly different stands, it was divided into sectors. Only plots with a sector area of
≥400 m2 were used in this study. For all overstory trees, DBH was measured, and the stand
basal area was calculated. Tree height was measured for 8 to 19 trees of each overstory
species, depending on the number of species in the plot, and stand height was calculated.
Increment cores of three overstory trees were used to determine stand age. Measurements
of CWD were conducted using a concentric design: within a 12.62 m radius, standing
CWD with a diameter at breast height and lying CWD with a diameter of the thicker end
≥14.1 cm was measured; and within a 5.64 m radius, CWD with a respective diameter
≥6.1 cm was measured. Height of all standing trees and length (≥1.0 m) of lying trees
was measured, and decay class and species (aspen, other deciduous, or coniferous) were
noted. CWD was divided into three groups, according to decay class: ‘recently dead’ with
wood hard, bark intact, ‘moderately decayed’ with all succeeding phases of decomposition
starting from loose bark to the cover of epiphytic mosses on <10% of the visible stem
surface, and ‘very decayed’ with a cover of epiphytic mosses on ≥10% of the visible stem
surface. Our measured decay classes were integrated according to NFI descriptions to
compare the volume of CWD among decay classes at different stand ages. The adjusted
decay classes were (1) ‘recently dead’, (2) ‘weakly decayed’, and (3 + 4 + 5) ‘moderately to
almost completely decomposed’ (Table 2).

For both data sets, the volume of whole trees was calculated using equations devel-
oped by Liepa [41], and the volume of stumps and snags was calculated using Huber’s
formula (Equation (1)). For CWD carbon pool calculation, volume was converted to mass
using decay class-specific density and carbon content for aspen (Table 2), both applied
from a study by Köster et al. [39].

Huber’s formula:

V =
L π dm

2

4
(1)

V = Stump/snag volume,
L = Length of the log or height of the stump, and
dm = Mid-diameter of the log or the stump.
We used linear mixed models, incorporating ‘stand’ as a random effect (several plots

were measured in the same stand) to assess how quantities of CWD and CWD carbon
pool differed among groups based on stand parameters (age, site index, basal area), stand
management, CWD pose, species composition, and decay class. The same models were
used to calculate marginal mean values of stand and CWD parameters and their standard
errors. Data were analyzed using SPSS 14.0 for Windows; all tests were performed at
α = 0.05.

3. Results

We did not find a significant (both p > 0.05) difference between managed and unman-
aged stands within both mature and moderately overmature stands (Table 4). as well as no
significant difference (all p > 0.05) appeared among the age groups.

Lying CWD was 62% to 85% of the total volume among the age groups and manage-
ment types, however, we did not find significant differences (p > 0.05) for quantities of
standing and lying CWD among the stand age groups of each management type, with
the exception of significantly lower standing CWD volume in unmanaged mature stands
compared to that in old-growth stands (p < 0.05). The CWD carbon pool size also had no
significant differences (p > 0.05) among stand age groups for each CWD type and in total,
with the exception of significantly higher standing CWD carbon pool in old-growth stands
compared to that in unmanaged mature and moderately overmature stands (both p < 0.05).
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Table 4. Coarse woody debris (CWD) volume and CWD carbon pool size in mature (41–60 years), moderately overmature
(61–80 years), overmature (81–100 years), and old-growth (101–140 years) European aspen (Populus tremula L.) stands by
CWD pose and stand type.

CWD Pose Stand Type Stand Age,
Years

Number of
Sample Plots

CWD Volume, m3·ha−1 CWD Carbon Pool, t·ha−1

Marginal Mean SE Marginal Mean SE

Standing

Managed 41–60 19 7.6 6.0 1.0 0.9
61–80 19 5.3 6.0 0.7 0.9

Unmanaged

41–60 30 16.6 4.8 2.2 0.7
61–80 26 13.8 5.2 1.9 0.7

81–100 17 26.1 6.4 3.5 0.9
101–140 150 31.9 2.2 4.6 0.3

Lying

Managed 41–60 19 12.5 12.0 1.4 1.5
61–80 19 31.0 12.0 4.1 1.5

Unmanaged

41–60 30 53.3 9.6 6.6 1.2
61–80 26 53.5 10.3 6.4 1.3

81–100 17 47.5 12.9 5.3 1.6
101–140 150 60.5 4.3 8.0 0.5

Total

Managed 41–60 19 20.1 14.2 2.4 1.8
61–80 19 36.3 14.2 4.8 1.8

Unmanaged

41–60 30 69.9 11.3 8.7 1.5
61–80 26 67.3 12.1 8.2 1.6

81–100 17 73.5 15.3 8.8 2.0
101–140 150 92.4 5.1 12.5 0.7

Latvian National Forest Inventory data are used for mature, moderately overmature, and overmature stands, and our measured data are
used for old-growth stands. SE—standard error.

We further analyzed deadwood characteristics within unmanaged stands. Stand
age and site index were significant factors for CWD volume and CWD carbon pool (all
p < 0.001), contrary to stand basal area (both p > 0.05). However, this was described by only
weak positive correlations between both stand age and site index and CWD volume (for
both p < 0.05, r = 0.15) and CWD carbon pool size (p < 0.01, r = 0.19 and p < 0.05, r = 0.14,
respectively).

A large CWD volume was frequently present in assessed stands (Figure 2). The
volume of at least 20 m3 ha−1 was found in 77% to 89% of sample plots depending on
stand age. This proportion gradually decreased for larger CWD quantities, yet, at least
50 m3 ha−1 was present in 43% to 75% of sample plots.
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Figure 2. Occurrence of a particular coarse woody debris (CWD) volume according to stand age in
unmanaged European aspen (Populus tremula L.) stands.
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Most of the CWD consisted of deciduous deadwood (Figure 3). Aspen and other
deciduous species (mostly Betula pendula Roth, B. pubescens Ehrh., Alnus incana (L.) Moench,
Corylus avellana L, and Salix caprea L.) together accounted for 55% to 85% of CWD among the
stand age groups. The proportion of aspen CWD was similar (all p > 0.05) in all age groups.
The proportion of coniferous CWD was similar among mature, moderately overmature,
and overmature stands (all p > 0.05), and in all these age groups, coniferous deadwood
constituted a significantly higher (p < 0.05) portion of CWD than that in old-growth stands.
For deciduous deadwood, significant (p < 0.05) differences were only found between
mature and old-growth stands.
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Figure 3. The proportion of coarse woody debris (CWD) by groups of species (aspen, other decid-
uous, and coniferous) in mature (41–60 years), moderately overmature (61–80 years), overmature
(81–100 years), and old-growth (101–140 years) unmanaged European aspen (Populus tremula L.)
stands.

Mean CWD diameter was 15.6± 1.4 cm (±standard error) in mature stands, 20.9 ± 1.4 cm
in moderately overmature, 20.4 ± 1.8 cm in overmature, and 20.6 ± 0.6 cm in old-growth
stands. Mature stands had a significantly thinner mean diameter of debris than old-growth
stands (p < 0.05), but similar to that in both groups of overmature stands (both p > 0.05).

The volume of large CWD tended to increase with stand age, yet no significant
differences (all p > 0.05) were found within each diameter group (Figure 4). About
half of the CWD volume consisted of debris larger than 30 cm in diameter: from 48%
(33.5 ± 9.3 m3 ha−1) in mature stands to 64% (47.3 ± 12.3 m3 ha−1) in overmature stands.
Moreover, debris with a diameter greater than 40 cm formed from 19% (13.2 ± 7.0 m3 ha−1)
in mature stands to 44% (32.3 ± 9.2 m3 ha−1) in overmature stands.

We used adjusted decay classes to assess differences in CWD volume among stand
age groups (Figure 5). The most distinct differences were found for recently dead wood,
with the highest volume of such CWD in old-growth and mature stands: 12% and 17%,
respectively. However, old-growth stands had significantly higher recently dead CWD
volume than both overmature stand groups (both p < 0.05), while mature stands had no
significant differences from others (all p > 0.05). The proportion of weakly decayed debris
was similar in all age groups, ranging from 31% of total CWD in moderately overmature to
40% in mature stands.
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Figure 4. The marginal mean volume (± standard error of total volume) of aspen (black stacked bars), other deciduous (gray
stacked bars) and coniferous (clear stacked bars) coarse woody debris (CWD) in mature (41–60 years; n = 30), moderately
overmature (61–80 years; n= 26), overmature (81–100 years; n = 17), and old-growth (101–140 years; n = 150) unmanaged
European aspen (Populus tremula L.) stands by groups of CWD diameter: (a) >10 cm, (b) >20 cm, (c) >30 cm, and (d) >40 cm.

In all stand age groups, moderately to almost completely decomposed wood formed
from 44% (40.4 ± 3.5 m3 ha−1) in old-growth stands to 68% (45.6 ± 8.9 m3 ha−1) in
moderately overmature stands. In old-growth stands, CWD distribution was categorized
into five decay classes. The first two were the same as for adjusted decay classes (Figure 5),
moderately decayed CWD accounted for 21% (19.8 ± 1.8 m3 ha−1), and very decayed and
almost completely decomposed CWD accounted for 14% (12.6 ± 1.5 m3 ha−1) and 9%
(7.9 ± 1.1 m3 ha−1) of total CWD in old-growth stands, respectively.



Forests 2021, 12, 901 9 of 16Forests 2021, 12, x FOR PEER REVIEW 9 of 16 
 

 

 

 

 

Figure 5. The marginal mean volume (± standard error) of coarse woody debris (CWD) in mature 

(41–60 years; n = 30), moderately overmature (61–80 years; n = 26), overmature (81–100 years; n = 

17), and old-growth (101–140 years; n = 150) unmanaged European aspen (Populus tremula L.) stands 

by adjusted decay classes: (1) recently dead, (2) weakly decayed, and (3 + 4 + 5) moderately to almost 

completely decomposed. 

4. Discussion 

This study characterizes CWD volume, composition, and structure in aspen stands 

from mature to old-growth age. The information on the histories of the studied old-

growth stands is not available; however, we assume that the age of the overstory corre-

sponds well with time since stand origin after disturbance. The present stand composition 

0

10

20

41–60 61–80 81–100 101–140

C
W

D
 v

o
lu

m
e,

 m
³ 

h
a⁻

¹

Stand age, years

(a) 1

0

10

20

30

40

41–60 61–80 81–100 101–140

C
W

D
 v

o
lu

m
e,

 m
³ 

h
a⁻

¹

Stand age, years

(b) 2

0

20

40

60

41–60 61–80 81–100 101–140

C
W

D
 v

o
lu

m
e,

 m
³ 

h
a⁻

¹

Stand age, years

(c) 3 + 4 + 5

Figure 5. The marginal mean volume (± standard error) of coarse woody debris (CWD) in mature
(41–60 years; n = 30), moderately overmature (61–80 years; n = 26), overmature (81–100 years; n = 17),
and old-growth (101–140 years; n = 150) unmanaged European aspen (Populus tremula L.) stands by
adjusted decay classes: (1) recently dead, (2) weakly decayed, and (3 + 4 + 5) moderately to almost
completely decomposed.

4. Discussion

This study characterizes CWD volume, composition, and structure in aspen stands
from mature to old-growth age. The information on the histories of the studied old-growth
stands is not available; however, we assume that the age of the overstory corresponds well
with time since stand origin after disturbance. The present stand composition with aspen
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as the dominant species in the overstory could almost exclusively form only if regeneration
of the species is abundant enough, i.e., after a large-scale disturbance, such as forest fire
or clear-cutting. This is supported by the species-specific regeneration requirements, as
aspen is essentially a pioneer species [9], with limited regeneration capacity under lack
of sufficiently large canopy gaps [42–44], and as a shade-intolerant species [45], it has
difficulties to reach canopy-layer if regenerated in gaps.

We did not find a significant differences between managed and unmanaged stands,
that could indicate an effect of the continuous removal of lower-dimension and vitality
trees (i.e., potential deadwood) from the conventionally managed stands [46,47]. The CWD
volume in the studied managed stands, however, considerably exceeded deadwood volume
that is reported in other countries in Northern Europe: 5.9 m3 ha−1 for managed stands
in Finland [48], 7.6 m3 ha−1 for managed stands in Sweden [47], and 13.7 m3 ha−1 across
forests in Estonia [49]. Our results are also somewhat higher than the mean CWD volume
across forests in Latvia for managed and unmanaged stands together: according to NFI,
19.8 m3 ha−1. The studied unmanaged stands comprised about 70 to 90 m3 ha−1, which
is in between average deadwood volume of 40 to 170 m3 ha−1 in boreal unmanaged
forests [11,50–52].

As expected, age was a significant factor affecting CWD volume in the unmanaged
stands since deadwood tends to accumulate under the absence of tree removal [53–55].
Such tendency has been often reported in coniferous-dominated forests [8,17,47,54,56],
whereas for birch, stand age was not a significant factor affecting CWD volume at the
range of 71 to 150 years [33]. For trembling aspen (Populus tremuloides Michx.), the volume
of CWD significantly increased for older stands and was comparable with our estimates:
63.1 m3 ha−1 in young stands, 76.8 m3 ha−1 in mature, and 101.4 m3 ha−1 in old stands [57].

Site index showed a significant but very weak positive effect on CWD volume and was
in accordance with results of other studies in younger stands [58–60]. However, another
indicator of stand productivity, stand basal area, had a non-significant effect on CWD
volume, presumably due to a wide range of the studied stand age.

In stands undergoing increased tree death from senescence and natural disturbance,
a negative relationship between deadwood volume and stand basal area occur, i.e., dis-
turbance decreases the basal area of living trees and simultaneously increases deadwood
volume [8]. Our study only included stands where old aspen still formed the dominant
cohort. The old aspen trees with large diameters were still alive and did not contributed
to CWD, thus, lacking a relation between CWD volume and basal area. Likewise, the
relation between basal area and CWD volume was absent in old-growth hemiboreal birch
stands [33]. Both aspen and birch are pioneer species, typically undergoing canopy transi-
tion from early- to late-successional species after reaching their life span [61]. For aspen,
lifespan commonly reaches 90 years [62], although species longevity might reach up to
200 years [9,63]. The studied old-growth stands were somewhere in between these ages,
thus might represent stands in early senescence (see below), although aspen might persist
in old-growth conditions for a prolonged time [44].

In European boreal forests, the majority of deadwood-dependent species need from
20 to 30 m3 ha−1 deadwood for their presence [64]. Yet, deadwood volume per se is an
insufficient measure [65–67], and additional characteristics are important for saproxylic
species diversity. This includes deadwood species diversity, especially the abundance of
temperate deciduous deadwood [47], and deadwood spatial and temporal continuity [68].
Our studied aspen stands had a high proportion of deciduous debris (pooled aspen and
other deciduous species), accounting for 55% of total CWD in mature stands to 85% in
old-growth stands (Figure 3). The higher portion of coniferous deadwood in mature stands
likely originated from understory spruce, which typically forms small fractions of debris
due to self-thinning [11]. As stand ages, death from the senescence of aspen and other
pioneer species (B. pendula, B. pubescens, and A. incana were most common) increases,
forming canopy gaps. These might provide access to more resources for understory trees,
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decreasing their mortality, hence, probably explaining the thrice lower volume of coniferous
CWD in old-growth stands than that in mature stands.

Various deadwood species supply substrates of different chemical compositions,
as well as provide a more diverse layout of debris poses, as a share of standing trees
and snags and lying deadwood is species-specific [54]. We found about 60% to 85% of
CWD lying, similarly to findings of aspen deadwood in old-growth coniferous-dominated
forests: 60% to 75% [8,9]. Aspen typically tends to snap, forming both broken snags and
lying deadwood [54,69]. Stems of low density are more fragile to breakage [70,71], and
aspen stems are characteristic of crumbling into pieces when a tree falls, possibly leading
to underestimation of aspen CWD if the broken pieces are shorter than the minimum
measured length of a particular study. Additionally, smaller (shorter) debris has a larger
proportion of surface area exposed to decomposer colonization and a higher degree of soil
contact that increases moisture of the deadwood [70]. Both of these factors contribute to an
increased deadwood turnover rate for smaller debris. Besides the size, deadwood pose
largely affects substrate conditions, with dry snags and leaning logs being a less suitable
substrate for wood-decaying fungi compared to moist deadwood [18,72], thus prolonging
deadwood’s life span [10,73].

Our estimated CWD volume in the old-growth stands was affected by gradual decay.
This should most certainly apply to aspen, as it is among the species with a relatively fast
turnover rate, with 85% of the initial mass lost in 27 years for logs 5–25 cm, 43 years for logs
25–60 cm, and 106 years for bark [74]. Another study has suggested a much longer aspen
decomposition time, 110 to 120 years [10]. Still, aspen has the strongest loss of wood density
during decomposition also if compared with other short-lived species, i.e., birch [10,39]
and black alder [39].

Softwood CWD has a longer turnover time than hardwoods [10]. Although no distinc-
tion between the softwood species was made, it should predominantly consist of spruce,
as pine rarely occurred in the studied stands. For spruce in unmanaged boreal forests,
deadwood half-lives varied from 12 to 27 years for standing snags and from 20 to 40 years
for lying debris [52]. Relatively rapid decomposition for spruce was also reported in the
boreal old-growth forest where spruce at the last decay stage was estimated to be dead for
34 years [75]. A longer half-life duration was found for softwood snags in forests across
Switzerland, about 45 to 48 years [76].

Considering the decomposition times, the old-growth stands could comprise some
legacy deadwood in the last decay classes that have originated from the previous (pre-
disturbance) generation. Alternatively, deadwood from the previous generation could be
omitted in our measurements. That could be if the legacy deadwood appears in the form
of buried CWD [77], as only visible debris was measured, including that overgrown by
mosses but still forming distinctive appearance from the ground layer. This might lead
to underestimation of total deadwood stocks, as well as total carbon stocks, if the buried
CWD is not accounted into forest floor carbon estimates..

The overmature stands had low or absent recently dead and weakly decomposed
CWD. A similar pattern of CWD availability regarding stand age has been described for P.
tremuloides [19]. The wood of more decomposed classes was similar for all stand age groups,
indicating that overmature stands are at a state of stand development when mortality due
to self-thinning has diminished while mortality due to senescence has not become apparent
yet. This might be a concern for saproxylic species, as they show a preference for deadwood
of a particular decomposition level [78–80].

The spatial availability showed rather regular CWD distribution for all stand age
groups, with at least two-thirds of the plots comprising at least 20 m3 ha−1 at all age groups.
Our results coincide with an extensive study across Europe by Puletti et al. [81] that showed
that 72% of sample plots comprise deadwood amount up to 25 m3 ha−1. Observations of
much higher deadwood volume are often related to damage to living trees [55,82], however,
stands with signs of notable damage to living trees were omitted in the selection of our
study areas.
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Deadwood is also an important carbon pool that partly acts as a carbon source to
the atmosphere and partly redistributes carbon to soil [83,84]. The vast heterogeneity of
deadwood (e.g., tree species, type, size, pose, level of decay) that determine the richness
of saproxylic organisms [67,85] makes it complicated to assess carbon storage within
it. For aspen, controversial findings of its carbon concentration throughout proceeding
decomposition have been reported claiming no effect [20], reduced [39,86], or increased [87]
carbon concentration along the decay stages. Precise calculations are also hampered by
species-specific features related to characteristic decay from inside of living trees that
complicate both live and dead aspen wood estimations.

Aspen is susceptible to heart rot infection caused by Phellinus tremulae (Bond.) Bond.
and Borisov [88,89]. Infected aspen trees are found through all stand development stages,
including these younger than 40 years. Trees severely infected while alive have a faster
transition through decay classes after death [90]. This, on the one hand, hinders the
assessment of total deadwood volume due to part of already-dead wood still enclosed or
attached to living trees. On the other hand, mature aspen stems are commonly hollowed
by heart rot [9,50], leading to overestimated deadwood volume if the hollow of the dead
stem is not excluded from deadwood estimates.

Forest restructuration by senescence among dominant trees or disturbances alters
stand carbon balance with reduced photosynthesis and increased heterotrophic respiration.
There are various mutually non-exclusive hypotheses for stand biomass dynamics with
respect to carbon pathways along stand succession [91]. Whether old-growth forests
continue to accumulate, decline, or stabilize carbon balance, largely depends on stand
development after early succession [34]. Small-scale disturbances could have a minor
effect on ecosystem production, as forests shifting from early- to late-successional species
remained stable ecosystem production regardless of increased heterotrophic respiration
from enlarged deadwood volume [92]. However, debris, as discussed above, persists as
a CO2 source over several decades, af-fecting the net carbon balance of the stand [26],
especially for aspen with a relatively fast decomposition rate [10,74]. Thus, alternatively,
even with relatively small patches of increased deadwood volume (increased net emissions),
gradual changes in species composition could switch forests from a carbon sink to a source
of CO2 to the at-mosphere [26]. A study that focused on multiple succession pathways
in old boreal forests found a decline in total ecosystem carbon pool from transition to
late-succession stages irrespective of tree species combinations [34]. All these relations,
however, might be inter-rupted by unpreventable stand-replacing disturbances that cause
old, carbon-saturated forests to release large amounts of carbon into the atmosphere [93,94].
This might also af-fect forest landscapes as the disturbance regimes are changing with
climate change [95].

5. Conclusions

There was a large CWD volume in both managed and unmanaged stands. The CWD
profile was diverse in species composition and layout of debris poses. Substantial CWD
volume was comprised of large diameter units and was frequently found in the studied
stands. Our estimated CWD volume and CWD carbon pool represent rather maximum
mean quantities regarding the high probability of decayed heartwood or hollowed trees
(assessment not included in this paper) in aspen stands that have reached maturity. Con-
sidering stand age, changes in CWD species composition together with the high volume of
recently dead debris suggests early senescence of dominant aspen cohort in old-growth
stands. Further monitoring studies would render the understanding of stand development
pathway through dominant pioneer species substitution, regarding CWD carbon pool and
CWD dynamics for a relatively short-lived tree species.
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read and agreed to the published version of the manuscript.

Funding: This research was funded by the LVM project “Carbon cycle in forest ecosystem”.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Caudullo, G.; de Rigo, D. Populus tremula in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree

Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publication Office of the European
Union: Luxembourg, 2016; pp. 138–139.

2. Heräjärvi, H.; Junkkonen, R. Wood density and growth rate of European and hybrid aspen in Southern Finland. Balt. For. 2006,
12, 2–8.

3. Global Forest Resources Assessment. Country Report, Sweden; Global Forest Resources Assessment: Rome, Italy, 2015.
4. Rogers, P.C.; Pinno, B.D.; Šebesta, J.; Albrectsen, B.R.; Li, G.; Ivanova, N.; Kusbach, A.; Kuuluvainen, T.; Landhäusser, S.M.; Liu,

H.; et al. A global view of aspen: Conservation science for widespread keystone systems. Glob. Ecol. Conserv. 2020, 21, e00828.
[CrossRef]

5. Sverdrup-Thygeson, A.; Ims, R.A. The effect of forest clearcutting in Norway on the community of saproxylic beetles on aspen.
Biol. Conserv. 2002, 106, 347–357. [CrossRef]

6. Kouki, J.; Arnold, K.; Martikainen, P. Long-term persistence of aspen—A key host for many threatened species—Is endangered in
old-growth conservation areas in Finland. J. Nat. Conserv. 2004, 12, 41–52. [CrossRef]

7. Kivinen, S.; Koivisto, E.; Keski-Saari, S.; Poikolainen, L.; Tanhuanpää, T.; Kuzmin, A.; Viinikka, A.; Heikkinen, R.K.; Pykälä, J.;
Virkkala, R.; et al. A keystone species, European aspen (Populus tremula L.), in boreal forests: Ecological role, knowledge needs
and mapping using remote sensing. For. Ecol. Manag. 2020, 462, 118008. [CrossRef]

8. Siitonen, J.; Martikainen, P.; Punttila, P.; Rauh, J. Coarse woody debris and stand characteristics in mature managed and
old-growth boreal mesic forests in southern Finland. For. Ecol. Manag. 2000, 128, 211–225. [CrossRef]

9. Latva-Karjanmaa, T.; Penttilä, R.; Siitonen, J. The demographic structure of European aspen (Populus tremula) populations in
managed and old-growth boreal forests in eastern Finland. Can. J. For. Res. 2007, 37, 1070–1081. [CrossRef]

10. Shorohova, E.; Kapitsa, E. Influence of the substrate and ecosystem attributes on the decomposition rates of coarse woody debris
in European boreal forests. For. Ecol. Manag. 2014, 315, 173–184. [CrossRef]

11. Halme, P.; Purhonen, J.; Marjakangas, E.L.; Komonen, A.; Juutilainen, K.; Abrego, N. Dead wood profile of a semi-natural boreal
forest-implications for sampling. Silva Fenn. 2019, 53, 10010. [CrossRef]

12. Laarmann, D.; Korjus, H.; Sims, A.; Stanturf, J.A.; Kiviste, A.; Köster, K. Analysis of forest naturalness and tree mortality patterns
in Estonia. For. Ecol. Manag. 2009, 258, S187–S195. [CrossRef]

13. Doerfler, I.; Gossner, M.M.; Müller, J.; Seibold, S.; Weisser, W.W. Deadwood enrichment combining integrative and segregative
conservation elements enhances biodiversity of multiple taxa in managed forests. Biol. Conserv. 2018, 228, 70–78. [CrossRef]

14. Koivula, M.; Vanha-Majamaa, I. Experimental evidence on biodiversity impacts of variable retention forestry, prescribed burning,
and deadwood manipulation in Fennoscandia. Ecol. Process. 2020, 9, 1–22. [CrossRef]

15. Covey, K.R.; Bueno de Mesquita, C.; Oberle, B.; Maynard, D.S.; Bettigole, C.; Crowther, T.W.; Duguid, M.C.; Steven, B.; Zanne,
A.E.; Lapin, M.; et al. Greenhouse trace gases in deadwood. Biogeochemistry 2016, 130, 215–226. [CrossRef]

16. Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.;
et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [CrossRef]

17. Ranius, T.; Kindvall, O.; Kruys, N.; Jonsson, B.G. Modelling dead wood in Norway spruce stands subject to different management
regimes. For. Ecol. Manag. 2003, 182, 13–29. [CrossRef]

18. Cornelissen, J.H.C.; Sass-Klaassen, U.; Poorter, L.; Van Geffen, K.; Van Logtestijn, R.S.P.; Van Hal, J.; Goudzwaard, L.; Sterck,
F.J.; Klaassen, R.K.W.M.; Freschet, G.T.; et al. Controls on coarse wood decay in temperate tree species: Birth of the LOGLIFE
experiment. Ambio 2012, 41, 231–245. [CrossRef]

19. Garbarino, M.; Marzano, R.; Shaw, J.D.; Long, J.N. Environmental drivers of deadwood dynamics in woodlands and forests.
Ecosphere 2015, 6, 30. [CrossRef]

20. Martin, A.; Dimke, G.; Doraisami, M.; Thomas, S. Carbon fractions in the world’s dead wood. Nat. Commun. 2021, 12, 889.
[CrossRef]

21. Carey, E.V.; Sala, A.; Keane, R.; Callaway, R.M. Are old forests underestimated as global carbon sinks? Glob. Chang. Biol. 2001, 7,
339–344. [CrossRef]

22. Röser, C.; Montagnani, L.; Schulze, E.-D.; Mollicone, D.; Kolle, O.; Meroni, M.; Papale, D.; Marchesini, L.B.; Federici, S.; Valentini,
R. Net CO2 exchange rates in three different successional stages of the “Dark Taiga” of central Siberia. Tellus B Chem. Phys.
Meteorol. 2002, 54, 642–654. [CrossRef]

http://doi.org/10.1016/j.gecco.2019.e00828
http://doi.org/10.1016/S0006-3207(01)00261-0
http://doi.org/10.1016/j.jnc.2003.08.002
http://doi.org/10.1016/j.foreco.2020.118008
http://doi.org/10.1016/S0378-1127(99)00148-6
http://doi.org/10.1139/X06-289
http://doi.org/10.1016/j.foreco.2013.12.025
http://doi.org/10.14214/sf.10010
http://doi.org/10.1016/j.foreco.2009.07.014
http://doi.org/10.1016/j.biocon.2018.10.013
http://doi.org/10.1186/s13717-019-0209-1
http://doi.org/10.1007/s10533-016-0253-1
http://doi.org/10.1126/science.1201609
http://doi.org/10.1016/S0378-1127(03)00027-6
http://doi.org/10.1007/s13280-012-0304-3
http://doi.org/10.1890/ES14-00342.1
http://doi.org/10.1038/s41467-021-21149-9
http://doi.org/10.1046/j.1365-2486.2001.00418.x
http://doi.org/10.3402/tellusb.v54i5.16704


Forests 2021, 12, 901 14 of 16

23. Wardle, D.A.; Hörnberg, G.; Zackrisson, O.; Kalela-Brundin, M.; Coomes, D.A. Long-term effects of wildfire on ecosystem
properties across an island area gradient. Science 2003, 300, 972–975. [CrossRef] [PubMed]

24. Luyssaert, S.; Schulze, E.D.; Börner, A.; Knohl, A.; Hessenmöller, D.; Law, B.E.; Ciais, P.; Grace, J. Old-growth forests as global
carbon sinks. Nature 2008, 455, 213–215. [CrossRef]
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