# Imitated Whole Tree Harvesting Show Negligible Effect on Economic Value of Spruce Stands

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Site Description

^{2}(r = 12.62° m) were established. Within each sampling plot, diameter at breast height (DBH) of all living trees of DBH ≥ 6.1 cm was measured. In addition, within each sampling plot, tree height of 10 to 15 living trees of different canopy status were measured with accuracy of 0.2 m. For comparison, data from the National Forest Inventory (NFI) were acquired. Data on pure, planted and conventionally managed Norway spruce stands of similar age, growing in comparable conditions across Latvia were selected. Data on 68 plots were selected in total. The NFI uses the same methodology (sampling plots and measurements), as the experimental plantations were sampled.

#### 2.2. Data Analysis

_{ha}is the potential income from the selected forest type on ha; T is the total timber value per sample plot; and S is the area of the sample plot in m

^{2}.

_{ha}is the income from harvesting and H is the harvesting costs (according to the data from Central Statistics Bureau of Latvia). Income and costs were included in the analysis for calculation of net present value (NPV), which was calculated as the discount value of the expected net cash flow:

_{a}is the lower discount rate (3%); r

_{b}is the higher discount rate (5%); NPV

_{a}is NPV at r

_{a}; and NPV

_{b}is NPV at r

_{b}discount rate.

_{ijk}is the calculated economic indicators and stand productivity; M

_{i}is the fixed effect of management (two levels: CH and WTH); F

_{i}is the fixed effect of forest types (three levels); and M

_{i}:F

_{i}is the interaction of both. To account for dependencies in data arising from the different locations (sample plots and forest stands) (t

_{ij}; 77 levels) and years (p

_{k}; 7 levels), they were included in models as nested random effects. The models were estimated in program R v.4.0.4. [26] using the package “lme4” [27].

## 3. Results and Discussion

^{−1}, 2637 ± 292 EUR ha

^{−1}in favorable timber market conditions at conventional and WTH stands, respectively, which demonstrates good potential of financial return after 50 years. Regarding IRR, values in WTH stands ranged from 4.6% to 6.0% (data not shown) when timber prices were low (2015) (Table 1). In the conventional stands, IRR ranged from 2.5% to 6.2% in an unfavorable and from 3.9% to 6.2% in a favorable timber market (data not shown). Under such conditions, WTH stands show good profitability depending on timber market conditions; however, the estimated revenues might decrease due to parity costs [38]. The economic indicators were based on timber value with exclusion of below ground biomass. Hence, stump harvesting was not considered due to technical challenges and costs of harvesting operations [26,39]. However, considering that studied stands did not lose productivity after the simulated repeated WTH, and due to increasing interest in renewable resources, stump harvesting is to be likely revisited as a sustainable resource of additional revenue [40].

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Wall, A. Risk analysis of effects of whole-tree harvesting on site productivity. For. Ecol. Manag.
**2012**, 282, 175–184. [Google Scholar] [CrossRef] - Hamberg, L.; Hotanen, J.-P.; Nousiainen, H.; Nieminen, T.M.; Ukonmaanaho, L. Recovery of understorey vegetation after stem-only and whole-tree harvesting in drained peatland forests. For. Ecol. Manag.
**2019**, 442, 124–134. [Google Scholar] [CrossRef] - Uri, V.; Aosaar, J.; Varik, M.; Becker, H.; Kukumägi, M.; Ligi, K.; Pärn, L.; Kanal, A. Biomass resource and environmental effects of Norway spruce (Picea abies) stump harvesting: An Estonian case study. For. Ecol. Manag.
**2015**, 335, 207–215. [Google Scholar] [CrossRef] - Lim, H.; Olsson, B.A.; Lundmark, T.; Dahl, J.; Nordin, A. Effects of whole-tree harvesting at thinning and subsequent compensatory nutrient additions on carbon sequestration and soil acidification in a boreal forest. Glob. Chang. Biol. Bioenergy
**2020**, 12, 992–1001. [Google Scholar] [CrossRef] - Kaarakka, L.; Tamminen, P.; Saarsalmi, A.; Kukkola, M.; Helmisaari, H.-S.; Burton, A.J. Effects of repeated whole-tree harvesting on soil properties and tree growth in a Norway spruce (Picea abies (L.) Karst.) stand. For. Ecol. Manag.
**2014**, 313, 180–187. [Google Scholar] [CrossRef] - Kaarakka, L.; Vaittinen, J.; Marjanen, M.; Hellsten, S.; Kukkola, M.; Saarsalmi, A.; Palviainen, M.; Helmisaari, H.-S. Stump harvesting in Picea abies stands: Soil surface disturbance and biomass distribution of the harvested stumps and roots. For. Ecol. Manag.
**2018**, 425, 27–34. [Google Scholar] [CrossRef] - Egnell, G. Is the productivity decline in Norway spruce following whole-tree harvesting in the final felling in boreal Sweden permanent or temporary? For. Ecol. Manag.
**2011**, 261, 148–153. [Google Scholar] [CrossRef] - Tamminen, P.; Saarsalmi, A. Effects of whole-tree harvesting on growth of pine and spruce seedling in southern Finland. Scand. J. For. Res.
**2013**, 28, 559–565. [Google Scholar] [CrossRef] - Karlsson, K.; Tamminen, P. Long-term effects of stump harvesting on soil properties and tree growth in Scots pine and Norway spruce stands. Scand. J. For. Res.
**2013**, 28, 550–558. [Google Scholar] [CrossRef] - Schelhaas, M.J.; Varis, S.; Schuck, A.; Nabuurs, G.J. EFISCEN Inventory Database; European Forest Institute: Joensuu, Finland, 2006. [Google Scholar]
- Egnell, G. A review of Nordic trials studying effects of biomass harvest intensity on subsequent forest production. For. Ecol. Manag.
**2017**, 383, 27–36. [Google Scholar] [CrossRef] - Saarsalmi, A.; Tamminen, P.; Kukkola, M.; Hautajärvi, R. Whole-tree harvesting at clear-felling: Impact on soil chemistry, needle nutrient concentrations and growth of Scots pine. Scand. J. For. Res.
**2010**, 25, 148–156. [Google Scholar] [CrossRef] - Weatherall, A.; Proe, M.F.; Craig, J.; Cameron, A.D.; McKay, H.M.; Midwood, A.J. Tracking N, K, Mg and Ca released from decomposing biomass to new tree growth. Part II: A model system simulating root decomposition on clearfell sites. Biomass Bioenergy
**2006**, 30, 1060–1066. [Google Scholar] [CrossRef] - Hyvönen, R.; Kaarakka, L.; Leppälammi-Kujansuu, J.; Olsson, B.A.; Palviainen, M.; Vegerfors-Persson, B.; Helmisaari, H.-S. Effects of stump harvesting on soil C and N stocks and vegetation 8-13 years after clear-cutting. For. Ecol. Manag.
**2016**, 371, 23–32. [Google Scholar] [CrossRef] - Wall, A.; Hytönen, J. The long-term effects of logging residue removal on forest floor nutrient capital, foliar chemistry and growth of Norway spruce stand. Biomass Bioenergy
**2011**, 35, 3328–3334. [Google Scholar] [CrossRef] - Thiffault, E.; Hannam, K.D.; Paré, D.; Titus, B.D.; Hazlett, P.W.; Maynard, D.G.; Brais, S. Effects of forest biomass harvesting on soil productivity in boreal and temperate forests—A review. Environ. Rev.
**2011**, 19, 278–309. [Google Scholar] [CrossRef] - Helmisaari, H.; Hanssen, K.H.; Jacobson, S.; Kukkola, M.; Luiro, J.; Saarsalmi, A.; Tamminen, P.; Tveite, B. Logging residue removal after thinning in Nordic boreal forests: Long-term impact on tree growth. For. Ecol. Manag.
**2011**, 261, 1919–1927. [Google Scholar] [CrossRef] - Vanguelova, E.; Pitman, R.; Luiro, J.; Helmisaari, H.-S. Long term effects of whole tree harvesting on soil carbon and nutrient sustainability in the UK. Biogeochemistry
**2010**, 101, 43–59. [Google Scholar] [CrossRef] - Jansons, Ā.; Robalte, L.; Čakšs, R.; Matisons, R. Long-term effect of whole tree biomass harvesting on ground cover vegetation in a dry Scots pine stand. Silva Fenn.
**2016**, 50, 1661. [Google Scholar] [CrossRef] [Green Version] - Kalēja, S.; Lazdiņš, A.; Zimelis, A.; Spalva, G. Model for cost calculation and sensitivity analysis of forest operations. Agron. Res.
**2018**, 16, 2068–2078. [Google Scholar] - Čakšs, R.; Čakša, L.; Desaine, I.; Lībiete, Z.; Elferts, D.; Butlers, A.; Jansons, Ā. Long-Term influence of stump-removal on components of hemiboreal pine forest ecosystem. Sustainability
**2021**, 13, 2095. [Google Scholar] [CrossRef] - Sharma, R.P.; Vacek, Z.; Vacek, S. Nonlinear mixed effect height-diameter model for mixed species forests in the central part of the Czech Republic. J. For. Sci.
**2016**, 62, 470–484. [Google Scholar] - Liepa, I. Tree Growth Study; LLU: Jelgava, Latvia, 1996; p. 31. (In Latvian) [Google Scholar]
- Ozoliņš, R. Forest stand assortment structure analysis using mathematical modelling. For. Stud.
**2002**, 7, 33–42. [Google Scholar] - Zimelis, A. Technology for Extraction and Transportation of Coniferous Stumps. Ph.D. Thesis, Latvia University of Life Sciences and Technologies, Jelgava, Latvia, 2020. [Google Scholar]
- R Core Team R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 15 December 2020).
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw.
**2015**, 67, 1–48. [Google Scholar] [CrossRef] - Lindner, M.; Suominen, T.; Palosuo, T.; Garcia-Gonzalo, J.; Verweij, P.; Zudin, S.; Päivinen, R. ToSIA—A tool for sustainability impact assessment of forest-wood-chains. For. Ecol. Manag.
**2010**, 221, 2197–2205. [Google Scholar] [CrossRef] - McLaughlin, J.W.; Phillips, S.A. Soil carbon, nitrogen, and base cation cycling 17 years after whole-tree harvesting in a low-elevation red spruce (Picea rubens)-balsam fir (Abies balsamea) forested watershed in central Maine, USA. For. Ecol. Manag.
**2006**, 222, 234–253. [Google Scholar] [CrossRef] - Persson, T. Environmental consequences of tree-stump harvesting. For. Ecol. Manag.
**2013**, 290, 1–4. [Google Scholar] [CrossRef] - Helmisaari, H.-S.; Kaarakka, L.; Olsson, B.A. Increased utilization of different tree parts for energy purposes in the Nordic countries. Scand. J. For. Res.
**2014**, 29, 312–322. [Google Scholar] [CrossRef] - Palviainen, M.; Finer, L. Estimation of nutrient removals in stem-only and whole-tree harvesting of Scots pine, Norway spruce, and birch stand with generalized nutrient equations. Eur. J. For. Res.
**2012**, 131, 945–964. [Google Scholar] [CrossRef] - Tveite, B.; Hanssen, K.H. Whole-tree thinnings in stands of Scots pine (Pinus sylvestris) and Norway spruce (Picea abies): Short- and long-term growth results. For. Ecol. Manag.
**2013**, 298, 52–61. [Google Scholar] [CrossRef] - Kļaviņš, I.; Bārdule, A.; Lībiete, Z.; Lazdiņa, D.; Lazdiņš, A. Impact of biomass harvesting on nitrogen concentration in the soil solution in hemiboreal woody ecosystems. Silva Fenn.
**2019**, 53, 10016. [Google Scholar] [CrossRef] - Banaś, J.; Kożuch, A. The Application of Time Series Decomposition for the Identification and Analysis of Fluctuations in Timber Supply and Price: A Case Study from Poland. Forests
**2019**, 10, 990. [Google Scholar] [CrossRef] [Green Version] - Simonsen, R.; Rosvall, O.; Gong, P.; Wibe, S. Profitability of measures to increase forest growth. For. Policy Econ.
**2010**, 12, 473–482. [Google Scholar] [CrossRef] - Holopainen, M.; Mäkinen, A.; Rasinmäki, J.; Hyytiäinen, K.; Bayazidi, S.; Pietilä, I. Comparison of various sources of uncertainty in stand-level net present value estimates. For. Policy Econ.
**2010**, 12, 377–386. [Google Scholar] [CrossRef] - Gailis, A.; Kārkliņa, A.; Purviņš, A.; Matisons, R.; Zeltiņš, P.; Jansons, Ā. Effect of Breeding on Income at First CommercialThinning in Silver Birch Plantations. Forests
**2020**, 11, 327. [Google Scholar] [CrossRef] [Green Version] - Lībiete, Z.; Bārdule, A.; Kļaviņš, I.; Kalvīte, Z.; Lazdiņš, A. Medium-term impact of stump harvesting on general soil parametrs in Hylocomiosa site type. Res. Rural Dev. For. Wood Process.
**2019**, 1, 58–64. [Google Scholar] - Jönsson, M.; Sjögren, J.; Hannrup, B.; Larsolle, A.; Mörtberg, U.; Nordström, M.; Olsson, B.A.; Strömgren, M. A Spatially Explicit Decision Support System for Assessment of Tree Stump Harvest Using Biodiversity and Economic Criteria. Forests
**2020**, 12, 8900. [Google Scholar] [CrossRef]

**Table 1.**The assortments by diameter at the top end and monetary value during the period from 2014 to 2020.

Assortment | Length, m | Diameter at the Top End, cm | Price, EUR m^{3} | ||||||
---|---|---|---|---|---|---|---|---|---|

2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | |||

Sawlog A | 3.0 | 26.0 | 73 | 69 | 67 | 68 | 76 | 74 | 64 |

Sawlog B | 3.0 | 18.0 | 71 | 67 | 60 | 66 | 74 | 70 | 60 |

Sawlog C | 3.0 | 14.0 | 50 | 49 | 56 | 46 | 55 | 53 | 43 |

Pulpwood | 3.0 | 6.0 | 36 | 30 | 31 | 39 | 55 | 44 | 25 |

Energy-wood | 3.0 | 3.0 | 22 | 22 | 22 | 21 | 28 | 30 | 21 |

**Table 2.**The effect (Chi square) of management, forest type and their interaction on economic performance and stand productivity, and the variances of random effect. The asterisks denote statistical significance (p-values) of the effects: * < 0.05, ** < 0.01, and *** < 0.001.

Fixed Effect | Random Effect | ||||||
---|---|---|---|---|---|---|---|

Management | Forest Type | Management × Forest Type | Sample Plot × Location | Location | Year | Residuals | |

Chi Square | Variance | ||||||

NWV | 0.02 | 19.50 *** | 0.33 | 28,975,815 | 975,125 | 1,449,187 | 989,183 |

NPV (3%) | 0.03 | 17.71 *** | 0.41 | 1,702,977 | 105,205 | 49,049 | 57,095 |

NPV (5%) | 0.03 | 15.01 *** | 0.43 | 284,443 | 20,837 | 7514 | 9353 |

IRR | 0.15 | 9.37 ** | 0.18 | 2.59 × 10^{−5} | 1.60 × 10^{−6} | 2.44 × 10^{−6} | 2.60 × 10^{−6} |

Basal area (m^{2}·ha^{−1}) | 0.10 | 7.54 * | 1.50 | 67.02 | 0.27 | 8.83 | |

Wood volume m^{3}·ha^{−1} | 0.19 | 11.25 ** | 0.56 | 1.14 × 10^{+4} | 1.10 × 10^{−7} | 9.46 × 10^{+2} |

**Table 3.**The mean values of tree stand productivity for the analyzed forest types in the conventional (CH) and whole tree harvested (WTH) stands.

Management | Forest Type | Basal Area, m^{2}/ha^{−1} | Wood Volume, m^{3}/ha^{−1} |
---|---|---|---|

Hylocomiosa | 29.1 ± 3.9 | 295.0 ± 52.3 | |

CH | Myrtilloso-sphagnosa | 23.4 ± 2.9 | 206.5 ± 33.6 |

Myrtillosa mel | 29.6 ± 3.0 | 305.1 ± 37.1 | |

Hylocomiosa | 24.3 ± 0.5 | 264.8 ± 7.1 | |

WTH | Myrtilloso-sphagnosa | 21.4 ± 2.8 | 203.7 ± 26.8 |

Myrtillosa mel | 36.4 ± 4.3 | 367.7 ± 44.4 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Desaine, I.; Kārkliņa, A.; Matisons, R.; Pastare, A.; Adamovičs, A.; Lībiete, Z.; Jansons, Ā.
Imitated Whole Tree Harvesting Show Negligible Effect on Economic Value of Spruce Stands. *Forests* **2021**, *12*, 841.
https://doi.org/10.3390/f12070841

**AMA Style**

Desaine I, Kārkliņa A, Matisons R, Pastare A, Adamovičs A, Lībiete Z, Jansons Ā.
Imitated Whole Tree Harvesting Show Negligible Effect on Economic Value of Spruce Stands. *Forests*. 2021; 12(7):841.
https://doi.org/10.3390/f12070841

**Chicago/Turabian Style**

Desaine, Iveta, Annija Kārkliņa, Roberts Matisons, Anna Pastare, Andis Adamovičs, Zane Lībiete, and Āris Jansons.
2021. "Imitated Whole Tree Harvesting Show Negligible Effect on Economic Value of Spruce Stands" *Forests* 12, no. 7: 841.
https://doi.org/10.3390/f12070841