Survival Rate, Chemical and Microbial Properties of Oak Seedlings Planted with or without Oak Forest Soils in a Black Locust Forest of a Dryland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Field Experiemnt
2.2.1. Experiment 1: Sowing Seeds
2.2.2. Experiment 2: Transplanting Wild Seedlings
2.2.3. Experiment 3: Transplanting Inoculated Seedlings
2.3. The Collection of Wild Seedling Samples
2.4. Laboratory Analysis
2.5. Statistical Analysis
3. Results
3.1. Planting Experiment
3.1.1. Experiment 1: Sowing Seeds
3.1.2. Experiment 2: Transplanting Wild Seedlings
3.1.3. Experiment 3: Transplanting Inoculated Seedlings
3.2. Wild Seedlings
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Orr, S.P.; Rudgers, J.A.; Clay, K. Invasive plants can inhibit native tree seedlings: Testing potential allelopathic mechanisms. Plant Ecol. 2005, 181, 153–165. [Google Scholar] [CrossRef]
- Mangla, S.; Inderjit; Callaway, R.M. Exotic invasive plant accumulates native soil pathogens which inhibit native plants. J. Ecol. 2008, 96, 58–67. [Google Scholar] [CrossRef]
- Stinson, K.A.; Campbell, S.A.; Powell, J.R.; Wolfe, B.E.; Callaway, R.M.; Thelen, G.C.; Hallett, S.G.; Prati, D.; Klironomos, J.N. Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biol. 2006, 4, e410. [Google Scholar] [CrossRef] [PubMed]
- Dehlin, H.; Peltzer, D.A.; Allison, V.J.; Yeates, G.W.; Nilsson, M.-C.; Wardle, D. Tree seedling performance and below-ground properties in stands of invasive and native tree species. N. Z. J. Ecol. 2008, 32, 67–79. [Google Scholar]
- Baohanta, R.; Thioulouse, J.; Ramanankierana, H.; Prin, Y.; Rasolomampianina, R.; Baudoin, E.; Rakotoarimanga, N.; Galiana, A.; Randriambanona, H.; Lebrun, M.; et al. Restoring native forest ecosystems after exotic tree plantation in Madagascar: Combination of the local ectotrophic species Leptolena bojeriana and Uapaca bojeri mitigates the negative influence of the exotic species Eucalyptus camaldulensis and Pinus pa. Biol. Invasions 2012, 14, 2407–2421. [Google Scholar] [CrossRef]
- Mascaro, J.; Becklund, K.K.; Hughes, R.F.; Schnitzer, S.A. Forest Ecology and Management Limited native plant regeneration in novel, exotic-dominated forests on Hawai’i. For. Ecol. Manag. 2008, 256, 593–606. [Google Scholar] [CrossRef] [Green Version]
- Murrell, C.; Gerber, E.; Krebs, C.; Parepa, M.; Schaffner, U.; Bossdorf, O. Invasive knotweed affects native plants through allelopathy. Am. J. Bot. 2011, 98, 38–43. [Google Scholar] [CrossRef]
- Reij, C.; Garrity, D. Scaling up farmer-managed natural regeneration in Africa to restore degraded landscapes. Biotropica 2016, 48, 834–843. [Google Scholar] [CrossRef]
- Lemenih, M. Expediting Ecological Restoration with the Help of Foster Tree Plantations in Ethiopia. J. Drylands 2006, 1, 72–84. [Google Scholar]
- Wubs, E.R.J.; Van Der Putten, W.H.; Bosch, M.; Bezemer, T.M. Soil inoculation steers restoration of terrestrial Ecosystems. Nat. Plants 2016, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taniguchi, T.; Yuzawa, T.; HuiPing, M.; Yamamoto, F.; Yamanaka, N. Plantation soil inoculation combined with straw checkerboard barriers enhances ectomycorrhizal colonization and subsequent growth of nursery grown Pinus tabulaeformis seedlings in a dryland. Ecol. Eng. 2021, 163, 106191. [Google Scholar] [CrossRef]
- Martins, A.; Barroso, J.; Pais, M.S. Effect of ectomycorrhizal fungi on survival and growth of micropropagated plants and seedlings of Castanea sativa mill. Mycorrhiza 1996, 6, 265–270. [Google Scholar] [CrossRef] [Green Version]
- Valdés, M. Survival and growth of pines with specific ectomycorrhizae after 3 years on a highly eroded site. Can. J. Bot. 1986, 64, 885–888. [Google Scholar] [CrossRef]
- Seiwa, K.; Negishi, Y.; Eto, Y.; Hishita, M.; Masaka, K.; Fukasawa, Y. Forest Ecology and Management Successful seedling establishment of arbuscular mycorrhizal-compared to ectomycorrhizal-associated hardwoods in arbuscular cedar plantations. For. Ecol. Manag. 2020, 468, 118155. [Google Scholar] [CrossRef]
- Kadowaki, K.; Yamamoto, S.; Sato, H.; Tanabe, A.S.; Hidaka, A.; Toju, H. Mycorrhizal fungi mediate the direction and strength of plant–soil feedbacks differently between arbuscular mycorrhizal and ectomycorrhizal communities. Commun. Biol. 2018, 1–5. [Google Scholar] [CrossRef]
- Cairney, J.W.G. Ectomycorrhizal fungi: The symbiotic route to the root for phosphorus in forest soils. Plant Soil 2011, 344, 51–71. [Google Scholar] [CrossRef]
- Lehto, T.; Zwiazek, J.J. Ectomycorrhizas and water relations of trees: A review. Mycorrhiza 2011, 21, 71–90. [Google Scholar] [CrossRef] [PubMed]
- Hobbie, E.A.; Colpaert, J.V. Nitrogen availability and colonization by mycorrhizal fungi correlate with nitrogen isotope patterns in plants. New Phytol. 2003, 157, 115–126. [Google Scholar] [CrossRef]
- Villeneuve, N.; Ois, F.; Tacon, L.E.; Bouchard, D. Survival of inoculated Laccaria bicolor in competition with native ectomycorrhizai fungi and effects on the growth of outplanted Douglasfir seedlings. Plant Soil 1991, 95–107. [Google Scholar] [CrossRef]
- Menkis, A.; Vasiliauskas, R.; Taylor, A.F.S.; Stenlid, J.; Finlay, R. Afforestation of abandoned farmland with conifer seedlings inoculated with three ectomycorrhizal fungi—Impact on plant performance and ectomycorrhizal community. Mycorrhiza 2007, 337–348. [Google Scholar] [CrossRef]
- Yamanaka, N.; Hou, Q.; Du, S. Vegetation of the Loess Plateau. In Restoration and Development of the Degraded Loess Plateau, China; Tsunekawa, A., Liu, G., Yamanaka, N., Du, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 49–60. [Google Scholar]
- Otsuki, K.; Yamanaka, N.; Du, S.; Yamamoto, F.; Xue, Z.; Wang, S.; Hou, Q. Seasonal changes of forest ecosystem in an artificial forest of Robinia pseudoacacia in the Loess Plateau in China. J. Agric. Meteorol. 2005, 60, 613–616. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Tang, M.; Sulpice, R.; Chen, H.; Tian, S.; Ban, Y. Arbuscular mycorrhizal fungi alter fractal dimension characteristics of Robinia pseudoacacia L. seedlings through regulating plant growth, leaf water status, photosynthesis, and nutrient concentration under drought stress. J. Plant Growth Regul. 2014, 33, 612–625. [Google Scholar] [CrossRef]
- Zhang, J.; Taniguchi, T.; Xu, M.; Du, S.; Liu, G.B.; Yamanaka, N. Ectomycorrhizal fungal communities of Quercus liaotungensis along different successional stands on the Loess Plateau, China. J. For. Res. 2014, 19, 395–403. [Google Scholar] [CrossRef]
- Cheng, J.M.; Wan, H.E. Vegetation Construction and Soil and Water Conservation in the Loess Plateau of China; China Forestry Publishing House: Beijing, China, 2002. [Google Scholar]
- Tatsumi, C.; Hyodo, F.; Taniguchi, T.; Shi, W.; Koba, K.; Fukushima, K.; Du, S.; Yamanaka, N.; Templer, P.; Tateno, R. Arbuscular Mycorrhizal Community in Roots and Nitrogen Uptake Patterns of Understory Trees Beneath Ectomycorrhizal and Non-ectomycorrhizal Overstory Trees. Front. Plant Sci. 2021, 11, 1–13. [Google Scholar] [CrossRef]
- Yamashita, S.; Fukuda, K.; Ugawa, S. Ectomycorrhizal Communities on Tree Roots and in Soil Propagule Banks along a Secondary Successional Vegetation Gradient. For Sci. 2007, 53, 635–644. [Google Scholar] [CrossRef]
- Nash, J.; Laushman, R.; Schadt, C. Ectomycorrhizal fungal diversity interacts with soil nutrients to predict plant growth despite weak plant-soil feedbacks. Plant Soil 2020, 453, 445–458. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models using lme4. J. Stat. Softw. 2014, 67. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82. [Google Scholar] [CrossRef] [Green Version]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2019. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. 2020. Available online: http://www.r-project.org/index.html (accessed on 22 April 2021).
- Sebastiana, M.; Pereira, V.T.; Alcântara, A.; Pais, M.S.; Silva, A.B. Ectomycorrhizal inoculation with Pisolithus tinctorius increases the performance of Quercus suber L. (cork oak) nursery and field seedlings. New For. 2013, 44, 937–949. [Google Scholar] [CrossRef]
- Burkett, V.R.; Draugelis-Dale, R.O.; Williams, H.M.; Schoenholtz, S.H. Effects of flooding regime and seedling treatment on early survival and growth of nuttall Oak. Restor. Ecol. 2005, 13, 471–479. [Google Scholar] [CrossRef]
- Cao, S.; Chen, L.; Liu, Z.; Wang, G. A new tree-planting technique to improve tree survival and growth on steep and arid land in the Loess Plateau of China. J. Arid Environ. 2008, 72, 1374–1382. [Google Scholar] [CrossRef]
- Fini, A.; Frangi, P.; Amoroso, G.; Piatti, R.; Faoro, M.; Bellasio, C.; Ferrini, F. Effect of controlled inoculation with specific mycorrhizal fungi from the urban environment on growth and physiology of containerized shade tree species growing under different water regimes. Mycorrhiza 2011, 21, 703–719. [Google Scholar] [CrossRef] [PubMed]
- Hubick, K.; Farquhar, G.; Shorter, R. Correlation between water-use efficiency and carbon isotope discrimination in diverse Peanut (Arachis) Germplasm. Aust. J. Plant Physiol. 1986, 13, 803–816. [Google Scholar] [CrossRef]
- Farquhar, G.; Richards, R. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Aust. J. Plant Physiol. 1984, 11, 539–552. [Google Scholar] [CrossRef]
- Zhang, A.; Zhang, H.; Zhu, L.; Zhang, C.; Ning, Y.; Zhang, Y. Effect of water stress on dry mass accumulation and allocation in sweet potato based on stable isotope analysis Effect of water stress on dry mass accumulation and allocation in sweet potato based on stable isotope analysis. Can. J. Plant Sci. 2015, 95, 263–271. [Google Scholar] [CrossRef]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3rd ed.; Academic Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Read, D.J.; Perez-Moreno, J. Mycorrhizas and nutrient cycling in ecosystems–A journey towards relevance? New Phytol. 2003, 157, 475–492. [Google Scholar] [CrossRef]
- Pellitier, P.T.; Zak, D.R. Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: Why evolutionary history matters. New Phytol. 2018, 217, 68–73. [Google Scholar] [CrossRef] [Green Version]
- Engelbrecht, B.M.J.; Kursar, T.A.; Tyree, M.T. Drought effects on seedling survival in a tropical moist forest. Trees 2005, 19, 312–321. [Google Scholar] [CrossRef]
- Sack, L. Responses of temperate woody seedlings to shade and drought: Do trade-offs limit potential niche differentiation? Oikos 2004, 1. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Hone, T. Leaf nitrogen, photosynthesis, and crop radiation use efficiency: A review. Crop Physiol. Metab. 1989, 29, 90–98. [Google Scholar] [CrossRef]
- Sims, D.A.; Pearcy, R.W. Photosynthetic characteristics of a tropical forest understory herb, Alocasia macrorrhiza, and a related crop species, Colocasia esculenta grown in contrasting light environments. Oecologia 1989, 79, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Brix, H. Effects of plant water stress on photosynthesis and survival of four conifers. Can. J. For. Res. 1979, 9, 160–165. [Google Scholar] [CrossRef]
- Normand, P.; Fortin, J.A. Comparison of six surface-sterilizing agents for axenic germination of Alnus crispa (Ait.) Pursh. Can. J. For. Res. 1982, 12, 1003–1005. [Google Scholar] [CrossRef]
- Bahram, M.; Kõljalg, U.; Kohout, P.; Mirshahvaladi, S.; Tedersoo, L. Ectomycorrhizal fungi of exotic pine plantations in relation to native host trees in Iran: Evidence of host range expansion by local symbionts to distantly related host taxa. Mycorrhiza 2013, 23, 11–19. [Google Scholar] [CrossRef]
- Jairus, T.; Mpumba, R.; Chinoya, S.; Tedersoo, L. Invasion potential and host shifts of Australian and African ectomycorrhizal fungi in mixed eucalypt plantations. New Phytol. 2011, 192, 179–187. [Google Scholar] [CrossRef]
- Amaranthus, M.P.; Perry, D.A. Effect of soil transfer on ectomycorrhiza formation and the survival and growth of conifer seedlings on old, nonreforested clear-cuts. Can. J. For. Res. 1987, 17, 944–950. [Google Scholar] [CrossRef]
- Richter, D.L.; Bruhn, J.N. Field survival of containerized red and jack pine seedlings inoculated with mycelial slurries of ectomycorrhizal fungi. New For. 1989, 3, 247–258. [Google Scholar] [CrossRef]
- Puchałka, R.; Dyderski, M.K.; Vítková, M.; Sádlo, J.; Klisz, M.; Netsvetov, M.; Prokopuk, Y.; Matisons, R.; Mionskowski, M.; Wojda, T.; et al. Black locust (Robinia pseudoacacia L.) range contraction and expansion in Europe under changing climate. Glob. Chang. Biol. 2021, 27, 1587–1600. [Google Scholar] [CrossRef]
Sample | Measurement | Treatment | F Value | ||||
---|---|---|---|---|---|---|---|
without Oak Forest Soils | (n) | with Oak Forest Soils | (n) | ||||
Aboveground | Weight (mg) | 116 ± 33 | (21) | 129 ± 32 | (21) | 0.2 | |
Length (cm) | 6.57 ± 0.83 | (21) | 7.01 ± 0.82 | (21) | 0.5 | ||
Diameter (mm) | 1.34 ± 0.23 | (21) | 1.29 ± 0.23 | (21) | 0.1 | ||
C concentration (%) | 41.7 ± 0.65 | (9) | 43.3 ± 0.64 | (9) | 3.8 | ||
N concentration (%) | 1.00± 0.22 | (9) | 2.52 ± 0.22 | (9) | 34.2 | *** | |
C:N ratio | 44.2 ± 4.0 | (9) | 18.2 ± 3.9 | (9) | 28.5 | *** | |
δ13C (‰) | −28.2 ± 0.8 | (9) | −29.0 ± 0.8 | (9) | 2.0 | ||
δ15N (‰) | −3.2 ± 0.3 | (9) | −2.7 ± 0.3 | (9) | 4.4 | ||
Belowground | Weight (mg) | 352 ± 74 | (21) | 456 ± 73 | (21) | 2.1 | |
Length (cm) | 15.8 ± 1.54 | (21) | 19.4 ± 1.46 | (21) | 3.1 | ||
Diameter (mm) | 3.02 ± 0.21 | (21) | 3.05 ± 0.21 | (21) | 0.0 | ||
C concentration (%) | 42.5 ± 0.57 | (9) | 43.7 ± 0.57 | (9) | 3.1 | ||
N concentration (%) | 1.03 ± 0.18 | (9) | 2.53 ± 0.18 | (9) | 43.8 | *** | |
C:N ratio | 45.4 ± 5.14 | (9) | 20.3 ± 5.28 | (9) | 28.9 | *** | |
δ13C (‰) | −27.6 ± 0.4 | (9) | −30.0 ± 0.4 | (9) | 32.4 | *** | |
δ15N (‰) | −3.4 ± 0.4 | (9) | −2.9 ± 0.4 | (9) | 1.0 | ||
Root tips | 148 ± 53.1 | (12) | 220 ± 53.9 | (12) | 1.0 | ||
Mycorrhizal tips (%) | 7.92 ± 1.71 | (12) | 18.90 ± 1.73 | (12) | 23.5 | *** |
Sample | Measurement | Black Locust Forest | (n) | Oak Forest | (n) | F Value | |
---|---|---|---|---|---|---|---|
Aboveground | C concentration (%) | 44.8 ± 0.9 | (18) | 45.5 ± 0.5 | (20) | 1.4 | |
N concentration (%) | 1.65 ± 0.11 | (18) | 1.43 ± 0.18 | (20) | 3.5 | ||
C:N ratio | 27.7 ± 1.6 | (18) | 34.1 ± 3.4 | (20) | 9.0 | ** | |
δ13C (‰) | −24.7 ± 0.33 | (6) | −28.4 ± 0.12 | (6) | 112.1 | *** | |
δ15N (‰) | −3.42 ± 0.28 | (6) | −6.50 ± 0.77 | (6) | 14.3 | ** | |
Belowground | C concentration (%) | 42.9 ± 0.6 | (6) | 42.7 ± 0.4 | (6) | 0.2 | |
N concentration (%) | 1.17 ± 0.11 | (6) | 0.66 ± 0.06 | (6) | 16.8 | ** | |
C:N ratio | 38.5 ± 4.0 | (6) | 66.7 ± 5.9 | (6) | 15.6 | ** | |
δ13C(‰) | −24.1 ± 0.4 | (6) | −27.4 ± 0.2 | (6) | 63.0 | *** | |
δ15N (‰) | −3.31 ± 0.26 | (6) | −5.35 ± 0.31 | (6) | 25.2 | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tatsumi, C.; Taniguchi, T.; Hyodo, F.; Du, S.; Yamanaka, N.; Tateno, R. Survival Rate, Chemical and Microbial Properties of Oak Seedlings Planted with or without Oak Forest Soils in a Black Locust Forest of a Dryland. Forests 2021, 12, 669. https://doi.org/10.3390/f12060669
Tatsumi C, Taniguchi T, Hyodo F, Du S, Yamanaka N, Tateno R. Survival Rate, Chemical and Microbial Properties of Oak Seedlings Planted with or without Oak Forest Soils in a Black Locust Forest of a Dryland. Forests. 2021; 12(6):669. https://doi.org/10.3390/f12060669
Chicago/Turabian StyleTatsumi, Chikae, Takeshi Taniguchi, Fujio Hyodo, Sheng Du, Norikazu Yamanaka, and Ryunosuke Tateno. 2021. "Survival Rate, Chemical and Microbial Properties of Oak Seedlings Planted with or without Oak Forest Soils in a Black Locust Forest of a Dryland" Forests 12, no. 6: 669. https://doi.org/10.3390/f12060669
APA StyleTatsumi, C., Taniguchi, T., Hyodo, F., Du, S., Yamanaka, N., & Tateno, R. (2021). Survival Rate, Chemical and Microbial Properties of Oak Seedlings Planted with or without Oak Forest Soils in a Black Locust Forest of a Dryland. Forests, 12(6), 669. https://doi.org/10.3390/f12060669