Deadwood, Soil and Carabid Beetle-Based Interaction Networks—An Initial Case Study from Montane Coniferous Forests in Poland
Abstract
:- (a)
- Trophic—large zoophages with body lengths greater than 15 mm, small zoophages with body lengths less than 15 mm or hemizoophages (i.e., omnivorous species);
- (b)
- Habitat—forest, eurytopic or open area species; and
- (c)
- Geographical—Palearctic, Holarctic or European species.
- (d)
- Hygrophilous species, whose occurrence is related to high water content in the soil;
- (e)
- Mesophilous species, which live in areas characterized by moderate soil moisture; and
- (f)
- Xerophilous species, which can occur in an environment with low water availability.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pearce, J.L.; Venier, L.A.; McKee, J.; Pedlar, J.; McKenney, D. Infuence of habitat and microhabitat on carabid (Coleoptera: Carabidae) assemblages in four stand types. Can. Entomol. 2003, 135, 337–357. [Google Scholar] [CrossRef]
- Latty, E.F.; Werner, S.M.; Mladenoff, D.J.; Raffa, K.F.; Sickley, T.A. Response of ground beetles (Carabidae) assemblages to logging history in northern hard wood-hem lock forests. For. Ecol. Manag. 2006, 222, 335–347. [Google Scholar] [CrossRef]
- Fuller, R.J.; Oliver, T.H.; Leather, S.R. Forest management effects on carabid beetle communities in coniferous and broadleaved forests: Implications for conservation. Insect Conserv. Divers. 2008, 1, 242–252. [Google Scholar] [CrossRef]
- Thiele, H.U. (Ed.) Carabid Beetles in Their Environments: A Study on Habitat Selection by Adaptations in Physiology and Behaviour; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1977. [Google Scholar]
- Slade, E.M.; Ritta, T. Interacting effects of leaf litter species and macrofauna on decomposition in different litter environments. Basic Appl. Ecol. 2012, 13, 423–443. [Google Scholar] [CrossRef]
- Błońska, E.; Lasota, J.; Piaszczyk, P.; Wiecheć, M.; Klamerus-Iwan, A. The effect of landslide on soil organic carbon stock and biochemical properties of soil. J. Soils Sediments 2017, 18, 2727–2737. [Google Scholar] [CrossRef]
- Błońska, E.; Kacprzyk, M.; Spólnik, A. Effect of deadwood of different tree species in various phases of decomposition on biochemical soil properties and carbon storage. Ecol. Res. 2017, 32, 193–203. [Google Scholar] [CrossRef]
- Piaszczyk, W.; Błońska, E.; Lasota, J. Soil biochemical properties and stabilization soil organic matter in relation to deadwood of different species. FEMS Microbiol. Ecol. 2019, 95, fiz011. [Google Scholar] [CrossRef]
- Watts, D.B.; Torbert, H.A.; Feng, Y.; Prior, S.A. Soil microbial community dynamics as influenced by composted dairy manure, soil properties, and landscape position. Soil Sci. 2010, 175, 474–486. [Google Scholar] [CrossRef]
- Wolińska, A.; Stępniewska, Z. Dehydrogenase activity in the soil environment. In Dehydrogenases; InTech: Rijeka, Croatia, 2012; pp. 183–210. [Google Scholar]
- Stevens, V. The Ecological Role of Coarse Woody Debris: An Overview of the Ecological Importance of CWD in BC Forests; Working Paper 30/1997; Ministry of Forests: Victoria, BC, Canada, 1997.
- Jönsell, M. The effects of forest biomass harvesting on biodiversity. In Sustainable Use of Forest Biomass for Energy. A Synthesis with Focus on the Baltic and Nordic Region; Röser, D., Asikainen, A., Raulund-Rasmussen, K., Stupak, I., Eds.; Springer: Dordecht, The Netherlands, 2008; pp. 129–154. [Google Scholar]
- Wright, P.; Cregger, A.M.; Souza, L.; Sanders, N.J.; Classen, A.T. The effect of insects, nutrients, and plant invasion on community structure and function above- and belowground. Ecol. Evol. 2014, 4, 732–742. [Google Scholar] [CrossRef]
- Jones, A.G.; Scullion, J.; Ostle, N.; Oakley, S.; Di Dio, A.; Gwynn-Jones, D. Plant community composition and an insect outbreak influence phenol oxidase activity and soli-litter biochemistry in a sub-Arctic birch heath. Polar Biol. 2015, 38, 505–516. [Google Scholar] [CrossRef]
- Szyszko, J.; Szwerk, A.; Malczyk, J. Animals as an indicator of carbon sequestration and valuable landscapes. ZooKeys 2011, 100, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Błońska, E.; Lasota, J.; Tullus, A.; Lutter, R.; Ostonen, I. Impact of deadwood decomposition on soil organic carbonsequestration in Estonian and Polish forests. Ann. For. Sci. 2019, 76, 102. [Google Scholar] [CrossRef]
- Piaszczyk, W.; Lasota, J.; Błońska, E. Effect of Organic Matter Released from Deadwood at Different Decomposition Stages on Physical Properties of Forest Soil. Forests 2020, 11, 24. [Google Scholar] [CrossRef]
- Lövei, G.L.; Sunderland, K.D. Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annu. Rev. Entomol. 1996, 41, 231–256. [Google Scholar] [CrossRef]
- Cvetkovska-Gjorgjievska, A.; Hristovski, S.; Prelić, D.; Jelaska, L. Šerić; Slavevska-Stamenković, V.; Ristovska, M. Body size and mean individual biomass variation of ground-beetles community (Coleoptera: Carabidae) as a response to increasing altitude and associated vegetation types in mountainous ecosystem. Biologia 2017, 72, 1059–1066. [Google Scholar] [CrossRef]
- Paletto, A.; Tosi, V. Deadwood density variation with decay class in seven tree species of the Italian Alps. Scand. J. For. Res. 2010, 25, 164–173. [Google Scholar] [CrossRef]
- Herrmann, S.; Kahl, T.; Bauhus, J. Decomposition dynamics of coarse woody debris of three important central European tree species. For. Ecosyst. 2015, 2, 27. [Google Scholar] [CrossRef]
- Fravolini, G.; Egli, M.; Derungs, C.; Cherubini, P.; Ascher-Jenull, J.; Gómez-Brandón, M.; Bardelli, T.; Tognetti, R.; Lombardi, F.; Marchetti, M. Soil attributes and microclimate are important drivers of initial deadwood decay in sub-alpine Norway spruce forests. Sci. Total Environ. 2016, 569, 1064–1076. [Google Scholar] [CrossRef]
- Hararuk, O.; Kurz, W.A.; Didion, M. Dynamics of dead wood decay in Swiss forests. For. Ecosyst. 2020, 7, 1–16. [Google Scholar] [CrossRef]
- Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Burakowski, B.; Mroczkowski, M.; Stefańska, J. Chrząszcze—Coleoptera. Biegaczowate—Carabidae, Część I. Katalog Fauny Polski, cz. XXIII, t. 2, nr 20 [Catalogue of Beetles—Coleoptera. Ground Beetles—Carabidae, Part I. Catalogue of Fauna of Poland Part XXIII]; PWN: Warsaw, Poland, 1973; Volume 2. [Google Scholar]
- Burakowski, B.; Mroczkowski, M.; Stefańska, J. Chrząszcze—Coleoptera. Biegaczowate—Carabidae, Część II. Katalog Fauny Polski, cz. XXIII, t. 3, nr 22 [Catalogue of Beetles—Coleoptera. Ground Beetles—Carabidae, Part II. Catalogue of Fauna of Poland Part XXIII]; PWN: Warsaw, Poland, 1974; Volume 3. [Google Scholar]
- Hůrka, K. Carabidae of the Czech and Slovak Republices; Kabourek: Zlin, Czech Republic, 1996. [Google Scholar]
- de Jong, Y.; Verbeek, M.; Michelsen, V.; Bjørn, P.D.P.; Los, W.; Steeman, F.; Bailly, N.; Basire, C.; Chylarecki, P.; Stloukal, E.; et al. Fauna Europaea—All European animal species on the web. Biodivers. Data J. 2014, 2, e4034. [Google Scholar] [CrossRef] [PubMed]
- Paje, F.; Mossakowski, D. pH-preferences and habitat selection in carabid beetles. Oecologia 1984, 64, 41–46. [Google Scholar] [CrossRef]
- Magura, T.; Tóthmérész, B.; Zoltán, E. Diversity and composition of carabids during a forestry cycle. Biodivers. Conserv. 2003, 12, 73–85. [Google Scholar] [CrossRef]
- Głowaciński, Z.; Makomaska-Juchiewicz, M.; Połczyńska-Konior, G.; Pawłowski, J. (Eds.) Czerwona Lista Zwierząt Ginących i Zagrożonych w Polsce (Red List of Threatened and Endandered Animals in Poland); Instytut Ochrony Przyrody PAN: Krakow, Poland, 2002. [Google Scholar]
- Bobiec, A.; Gutowski, J.M.; Laudenslayer, W.F.; Pawlaczyk, P.; Zub, K. (Eds.) The Afterlife of a Tree; WWF Poland: Warsaw, Poland, 2005; p. 253. [Google Scholar]
- Kehler, D.; Bondrup-Nielsen, S.; Corkum, C. Beetle diversity associated with forest structure including deadwood in softwood and hardwood stands in Nova Scotia. Proc. Nova Scotian Inst. Sci. 2004, 42, 227–239. [Google Scholar] [CrossRef]
- Sota, T. Altitudinal variation in life cycles of carabid beetles: Life-cycle strategy and colonization in alpine zones. Arct. Alp. Res. 1996, 28, 441–447. [Google Scholar] [CrossRef]
- Fraser, L.H.; Bassett, E. Effects of Cattle on the Abundance and Composition of Carabid Beetles in Temperate Grasslands. J. Agric. Stud. 2015, 3, 36–47. [Google Scholar] [CrossRef]
- Gobbi, M.; Rossaro, B.; Vater, A.; de Bernardi, F.; Pelfini, M.; Brandmayr, P. Environmental features influencing Carabid beetle (Coleoptera) assemblages along a recently deglaciated area in the Alpine region. Ecol. Entomol. 2007, 32, 682–689. [Google Scholar] [CrossRef]
- Magura, T.; Ferrante, M.; Lövei, G.L. Only habitat specialists become smaller with advancing urbanization. Glob. Ecol. Biogeogr. 2020, 29, 1978–1987. [Google Scholar] [CrossRef]
- Hodkinson, I.D. Terrestrial insects along elevation gradients: Species and community responses to altitude. Biol. Rev. 2005, 80, 489–513. [Google Scholar] [CrossRef]
- Jung, J.-K.; Kim, S.T.; Lee, S.; Park, C.-G.; Park, J.K.; Lee, J.-H. Community structure of ground beetles (Coleoptera: Carabidae) along an altitudinal gradient on Mt. Sobaeksan, Korea. J. Asia Pac. Entomol. 2012, 15, 487–494. [Google Scholar] [CrossRef]
- Magura, T.; Tóthmérész, B.; Elek, Z. Impacts of leaf-litter addition on carabids in a conifer plantation. Biodivers. Conserv. 2005, 14, 475–491. [Google Scholar] [CrossRef]
- Sroka, K.; Finch, O.-D. Ground beetle diversity in ancient woodland remnants in north-western Germany (Coleoptera, Carabidae). J. Insect Conserv. 2006, 10, 335–350. [Google Scholar] [CrossRef]
- Schiegg, K. Effects of dead wood volume and connectivity on saproxylic insect species diversity. Écoscience 2000, 7, 290–298. [Google Scholar] [CrossRef]
- Stenbacka, F.; Hjältén, J.; Hilszczański, J.; Dynesius, M. Saproxylic and non-saproxylic beetle assemblages in boreal spruce forests of different age and forestry intensity. Ecol. Appl. 2010, 20, 2310–2321. [Google Scholar] [CrossRef] [PubMed]
- Lassauce, A.; Paillet, Y.; Jactel, H.; Bouget, C. Deadwood as a surrogate for forest biodiversity: Meta-analysis of correlations between deadwood volume and species richness of saproxylic organisms. Ecol. Indic. 2011, 11, 1027–1039. [Google Scholar] [CrossRef]
- Nittérus, K.; Gunnarsson, Ǻ.; Gunnarsson, B. Manipulated structural variability affects the habitat choice of two ground-living beetle species in a laboratory experiment. Èntomol. Fenn. 2008, 19, 122–128. [Google Scholar] [CrossRef]
- Skłodowski, J. Survival of carabids after windthrow of pine forest depends on the presence of broken tree crowns. Scand. J. For. Res. 2020, 35, 1–10. [Google Scholar] [CrossRef]
- Sippola, A.L.; Siitonen, J.; Jokimäki, J.; Inkeröinen, J.; Kallio, R. Effects of forest structure and vegetation on diversity of beetles (Coleoptera) and birds in north-boreal pine forests. In Ecosystem Monitoring and Protected Areas; Science and Management of Protected Areas Association: Wolfville, NS, Canada, 1992; pp. 197–203. [Google Scholar]
- Økland, B.; Bakke, A.; Hågvar, S.; Kvamme, T.F. What factors influence the diversity of saproxylic beetles? A multiscaled study from a spruce forest in southern Norway. Biol. Conserv. 1996, 5, 75–100. [Google Scholar] [CrossRef]
- Gongalsky, K.B.; Cividanes, F.J. Distribution of carabid beetles in agroecosystems across spatial scales—A review. Balt. J. Coleopterol. 2008, 1, 15–30. [Google Scholar]
- Niemelä, J.; Halme, E. Habitat associations of carabid beetles in fields and forests on the Aland Islands, SW Finland. Ecography 1992, 15, 3–11. [Google Scholar] [CrossRef]
- Shevlin, K.D.; Hennessy, R.; Dillon, A.B.; O’Dea, P.; Griffin, C.T.; Williams, C.D. Stump-harvesting for bioenergy probably has transient impacts on abundance, richness and community structure of beetle assemblages. Agric. For. Entomol. 2017, 19, 388–399. [Google Scholar] [CrossRef]
- Vician, V.; Svitok, M.; Kočík, K.; Stašiov, S. The influence of agricultural man-agement of ground beetle (Coleoptera: Carabidae) assemblages. Biologia 2015, 70, 240–251. [Google Scholar] [CrossRef]
- Vician, V.; Svitok, M.; Michalková, E.; Lukáčik, I.; Stašiov, S. Influence of tree species and soil properties on ground beetle (Coleoptera: Carabidae) communities. Acta Oecologica 2018, 91, 120–126. [Google Scholar] [CrossRef]
- Kuperman, R.G. Relationships between soil properties and community structure of soil macroinvertebrates in oak-hickory forests along an acidic deposition gradient. Appl. Soil Ecol. 1996, 4, 125–137. [Google Scholar] [CrossRef]
- Nietupski, M.; Sowiński, P.; Sądej, W.; Kosewska, A. Content of organic C and pH of bog and post-bog soils versus the presence of ground beetles Carabidae in Stary Dwór near Olsztyn. J. Elem. 2010, 15, 581–591. [Google Scholar] [CrossRef]
- Sądej, W.; Kosewska, A.; Sądej, W.; Nietupski, M. Effects of fertilizer and land-use type on soil properties and ground beetles ommunities. Bull. Insectol. 2012, 65, 239–246. [Google Scholar]
- Jukes, M.R.; Peace, A.J.; Ferris, R. Carabid beetle communities associated with coniferous plantations in Britain: The influence of site, ground vegetation and stand structure. For. Ecol. Manag. 2001, 148, 271–286. [Google Scholar] [CrossRef]
- Lasota, J.; Błońska, E.; Piaszczyk, W.; Wiecheć, M. How the deadwood of different tree species in various stages of decomposition affected nutrient dynamics? J. Soils Sediments 2017, 18, 2759–2769. [Google Scholar] [CrossRef]
Species (** Red List Species: R, Rare) | Ecological Features * | Study Site | ||||||
---|---|---|---|---|---|---|---|---|
A | B | C | D | SFF | SFLM | SPF | SPLM | |
Abax ovalis (Duft.) | SZ | F | EU | mez | 25.9 | 17.1 | 19.8 | 12.8 |
Abax schueppeli (Germ.) ** R | LZ | F | EU | mez | 18.5 | 14.3 | 38.5 | 12.8 |
Abax parallelus (Duft.) | SZ | F | EU | mez | 7.4 | 11.4 | 5.5 | 2.1 |
Carabus arcensis (Herbst) | LZ | F | PA | mez | 7.7 | |||
Carabus coriaceus (L.) | LZ | F | EU | mez | 3.3 | |||
Carabus linnei (Panzer) | LZ | F | EU | mez | 7.5 | 11.4 | 2.2 | 23.4 |
Carabus glabratus (Paykull) ** R | LZ | F | EU | hig | 8.6 | 2.1 | ||
Carabus sylvestris (Panzer) ** R | LZ | F | EU | mez | 3.7 | 2.2 | ||
Carabus violaceus (L.) | LZ | F | PA | hig | 2.9 | 10.6 | ||
Molops piceus (Panzer) | SZ | F | EU | mez | 3.7 | 5.7 | 6.6 | 4.3 |
Pterostichus burmeisteri (Heer) | SZ | F | EU | mez | 7.5 | 11.4 | 2.2 | 4.3 |
Pterostichus niger (Shall.) | LZ | F | PA | hig | 2.9 | 2.2 | 6.4 | |
Pterostichus oblongopunctatus (Fabr.) | SZ | F | PA | mez | 25.9 | 14.3 | 9.9 | 21.3 |
Abundance (N) | 27 | 35 | 91 | 47 | ||||
MIB [mg] | 266 | 279 | 341 | 271 | ||||
Simpson dominance (c) | 0.018 | 0.031 | 0.207 | 0.055 | ||||
Shannon’s diversity (H ‘) | 0.117 | 0.132 | 0.156 | 0.148 | ||||
Simpson’s diversity (D) | 0.98 | 0.97 | 0.79 | 0.94 |
Effect | No of Individuals | No of Species | MIB | |||
---|---|---|---|---|---|---|
F | p-Value | F | p-Value | F | p-Value | |
Elevation m a.s.l | 5.119 | 0.025 | 9.231 | 0.003 | 10.860 | 0.030 |
DW species | 17.114 | 0.000 | 24.074 | 0.000 | 27.270 | 0.006 |
Elevation m a.s.l × DW species | 4.748 | 0.031 | 8.767 | 0.004 | 19.958 | 0.011 |
DW volume | 1.520 | 0.219 | 0.565 | 0.453 | 0.075 | 0.798 |
DW species × DW volume | 2.598 | 0.109 | 1.040 | 0.201 | 0.233 | 0.654 |
Elevation m a.s.l × DW volume | 1.851 | 0.176 | 1.007 | 0.317 | 0.279 | 0.625 |
DW species × Elevation m a.s.l × DW volume | 1.570 | 0.212 | 0.767 | 0.382 | 0.071 | 0.803 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kacprzyk, M.; Błońska, E.; Wojas, T. Deadwood, Soil and Carabid Beetle-Based Interaction Networks—An Initial Case Study from Montane Coniferous Forests in Poland. Forests 2021, 12, 382. https://doi.org/10.3390/f12040382
Kacprzyk M, Błońska E, Wojas T. Deadwood, Soil and Carabid Beetle-Based Interaction Networks—An Initial Case Study from Montane Coniferous Forests in Poland. Forests. 2021; 12(4):382. https://doi.org/10.3390/f12040382
Chicago/Turabian StyleKacprzyk, Magdalena, Ewa Błońska, and Tadeusz Wojas. 2021. "Deadwood, Soil and Carabid Beetle-Based Interaction Networks—An Initial Case Study from Montane Coniferous Forests in Poland" Forests 12, no. 4: 382. https://doi.org/10.3390/f12040382
APA StyleKacprzyk, M., Błońska, E., & Wojas, T. (2021). Deadwood, Soil and Carabid Beetle-Based Interaction Networks—An Initial Case Study from Montane Coniferous Forests in Poland. Forests, 12(4), 382. https://doi.org/10.3390/f12040382