The European Heat Wave 2018: The Dendroecological Response of Oak and Spruce in Western Germany
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Sites
2.2. Dendroecological Observations
2.3. Climate Data and Statistical Analyses
3. Results
3.1. Radial Growth
3.2. Interannual Growth/Climate Responses
3.3. Diurnal Sap Flow Activity and Radial Stem Variations in 2018
3.4. Physiological Reactions of Trees in 2018
4. Discussion
4.1. Climate/Growth Relationships
4.2. Specific Responses in 2018
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Imbery, F.; Friedrich, K.; Koppe, C.; Janssen, W.; Pfeifroth, U.; Daßler, J.; Bissolli, P. 2018 Wärmster Sommer im Norden und Osten Deutschlands; German Weather Service (DWD): Offenbach a. Main, Germany, 2018; p. 7. [Google Scholar]
- Drouard, M.; Kornhuber, K.; Woollings, T. Disentangling Dynamic Contributions to Summer 2018 Anomalous Weather Over Europe. Geophys. Res. Lett. 2019, 46, 12537–12546. [Google Scholar] [CrossRef] [Green Version]
- Pfleiderer, P.; Schleussner, C.-F.; Kornhuber, K.; Coumou, D. Summer weather becomes more persistent in a 2 °C world. Nat. Clim. Chang. 2019, 9, 666–671. [Google Scholar] [CrossRef]
- Kornhuber, K.; Osprey, S.; Coumou, D.; Petri, S.; Petoukhov, V.; Rahmstorf, S.; Gray, L. Extreme weather events in early summer 2018 connected by a recurrent hemispheric wave-7 pattern. Environ. Res. Lett. 2019, 14, 054002. [Google Scholar] [CrossRef]
- Kornhuber, K.; Coumou, D.; Vogel, E.; Lesk, C.; Donges, J.F.; Lehmann, J.; Horton, R.M. Amplified Rossby waves enhance risk of concurrent heatwaves in major breadbasket regions. Nat. Clim. Chang. 2019, 10, 48–53. [Google Scholar] [CrossRef]
- Albergel, C.; Dutra, E.; Bonan, B.; Zheng, Y.; Munier, S.; Balsamo, G.; de Rosnay, P.; Muñoz–Sabater, J.; Calvet, J.C. Monitoring and forecasting the impact of the 2018 summer heatwave on vegetation. Remote Sens. 2019, 11, 520. [Google Scholar] [CrossRef] [Green Version]
- Buras, A.; Rammig, A.; Zang, C.S. Quantifying impacts of the drought 2018 on European ecosystems in comparison to 2003. Biogeosci. Discuss. 2019, 17, 1655–1672. [Google Scholar] [CrossRef] [Green Version]
- Maes, S.L.; Perring, M.P.; Vanhellemont, M.; Depauw, L.; Bulcke, J.V.D.; Brūmelis, G.; Brunet, J.; Decocq, G.; Ouden, J.D.; Härdtle, W.; et al. Environmental drivers interactively affect individual tree growth across temperate European forests. Glob. Chang. Biol. 2019, 25, 201–217. [Google Scholar] [CrossRef] [Green Version]
- Vitasse, Y.; Bottero, A.; Cailleret, M.; Bigler, C.; Fonti, P.; Gessler, A.; Lévesque, M.; Rohner, B.; Weber, P.; Rigling, A.; et al. Contrasting resistance and resilience to extreme drought and late spring frost in five major European tree species. Glob. Chang. Biol. 2019, 25, 3781–3792. [Google Scholar] [CrossRef]
- Vanhellemont, M.; Sousa-Silva, R.; Maes, S.L.; Bulcke, J.V.D.; Hertzog, L.; De Groote, S.R.; Van Acker, J.; Bonte, D.; Martel, A.; Lens, L.; et al. Distinct growth responses to drought for oak and beech in temperate mixed forests. Sci. Total Environ. 2019, 650, 3017–3026. [Google Scholar] [CrossRef] [Green Version]
- Teskey, R.; Wertin, T.; Bauweraerts, I.; Ameye, M.; McGuire, M.A.; Steppe, K. Responses of tree species to heat waves and extreme heat events. Plant Cell Environ. 2015, 38, 1699–1712. [Google Scholar] [CrossRef] [PubMed]
- Cook, E.R.; Seager, R.; Kushnir, Y.; Briffa, K.R.; Büntgen, U.; Frank, D.; Krusic, P.J.; Tegel, W.; Van Der Schrier, G.; Andreu-Hayles, L.; et al. Old World megadroughts and pluvials during the Common Era. Sci. Adv. 2015, 1, e1500561. [Google Scholar] [CrossRef] [Green Version]
- Glaser, R.; Kahle, M. Reconstructions of droughts in Germany since 1500—Combining hermeneutic information and in-strumental records in historical and modern perspectives. Clim. Past. 2020, 16, 1207–1222. [Google Scholar] [CrossRef]
- Hinckley, T.M.; Dougherty, P.M.; Lassoie, J.P.; Roberts, J.E.; Teskey, R.O. A Severe Drought: Impact on Tree Growth, Phenology, Net Photosynthetic Rate and Water Relations. Am. Midl. Nat. 1979, 102, 307. [Google Scholar] [CrossRef]
- Levitt, J. Responses of Plants to Environmental Stresses; Academic Press: New York, NY, USA, 1972; 697p. [Google Scholar]
- Zweifel, R.; Zimmermann, L.; Zeugin, F.; Newbery, D.M. Intra-annual radial growth and water relations of trees: Implications towards a growth mechanism. J. Exp. Bot. 2006, 57, 1445–1459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsiao, T.C.; Acevedo, E. Plant responses to water deficits, water-use efficiency, and drought resistance. Agric. Meteorol. 1974, 14, 59–84. [Google Scholar] [CrossRef]
- Steppe, K.; De Pauw, D.J.W.; LeMeur, R.; Vanrolleghem, P.A. A mathematical model linking tree sap flow dynamics to daily stem diameter fluctuations and radial stem growth. Tree Physiol. 2006, 26, 257–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, B.I.; Wolkovich, E.M.; Parmesan, C. Divergent responses to spring and winter warming drive community level flowering trends. Proc. Natl. Acad. Sci. USA 2012, 109, 9000–9005. [Google Scholar] [CrossRef] [Green Version]
- Haeni, M.; Zweifel, R.; Eugster, W.; Gessler, A.; Zielis, S.; Bernhofer, C.; Carrara, A.; Grünwald, T.; Havránková, K.; Heinesch, B.; et al. Winter respiratory C losses provide explanatory power for net ecosystem productivity. J. Geophys. Res. Biogeosci. 2016, 122, 243–260. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Schwalm, C.R.; Biondi, F.; Camarero, J.J.; Koch, G.W.; Litvak, M.; Ogle, K.; Shaw, J.D.; Shevliakova, E.; Williams, A.; et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 2015, 349, 528–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, J.; Zhou, X.; Luo, Y.; Li, B.; Aurela, M.; Billesbach, D.; Blanken, P.D.; Bracho, R.; Chen, J.; Fischer, M.; et al. Direct and indirect effects of climatic variations on the interannual variability in net ecosystem exchange across terrestrial ecosystems. Tellus B Chem. Phys. Meteorol. 2016, 68, 30575. [Google Scholar] [CrossRef] [Green Version]
- Van Der Maaten-Theunissen, M.; Bümmerstede, H.; Iwanowski, J.; Scharnweber, T.; Wilmking, M.; Van Der Maaten, E. Drought sensitivity of beech on a shallow chalk soil in northeastern Germany—A comparative study. For. Ecosyst. 2016, 3, 24. [Google Scholar] [CrossRef] [Green Version]
- Zweifel, R.; Sterck, F. A Conceptual Tree Model Explaining Legacy Effects on Stem Growth. Front. For. Glob. Chang. 2018, 1, 9. [Google Scholar] [CrossRef]
- Leuzinger, S.; Zotz, G.; Asshoff, R.; Körner, C. Responses of deciduous forest trees to severe drought in Central Europe. Tree Physiol. 2005, 25, 641–650. [Google Scholar] [CrossRef] [Green Version]
- Zweifel, R.; Eugster, W.; Etzold, S.; Dobbertin, M.; Buchmann, N.; Hasler, R. Link between continuous stem radius changes and net ecosystem productivity of a subalpine Norway spruce forest in the Swiss Alps. New Phytol. 2010, 187, 819–830. [Google Scholar] [CrossRef] [PubMed]
- Weemstra, M.; Eilmann, B.; Sass-Klaassen, U.G.; Sterck, F.J. Summer droughts limit tree growth across 10 temperate species on a productive forest site. For. Ecol. Manag. 2013, 306, 142–149. [Google Scholar] [CrossRef]
- Perkins, D.; Uhl, E.; Biber, P.; Du Toit, B.; Carraro, V.; Rötzer, T.; Pretzsch, H. Impact of Climate Trends and Drought Events on the Growth of Oaks (Quercus robur L. and Quercus petraea (Matt.) Liebl.) within and beyond Their Natural Range. Forests 2018, 9, 108. [Google Scholar] [CrossRef] [Green Version]
- Harvey, J.E.; Smiljanić, M.; Scharnweber, T.; Buras, A.; Cedro, A.; Cruz-García, R.; Drobyshev, I.; Janecka, K.; Jansons, Ā.; Kaczka, R.; et al. Tree growth influenced by warming winter climate and summer moisture availability in northern temperate forests. Glob. Chang. Biol. 2020, 26, 2505–2518. [Google Scholar] [CrossRef] [PubMed]
- Burri, S.; Haeler, E.; Eugster, W.; Haeni, M.; Etzold, S.; Walthert, L.; Braun, S.; Zweifel, R. How did Swiss forest trees respond to the hot summer 2015? Die Erde 2019, 150, 214–229. [Google Scholar]
- Bogena, H.R.; Bol, R.; Borchard, N.; Brüggemann, N.; Diekkrüger, B.; Drüe, C.; Groh, J.; Gottselig, N.; Huismann, J.A.; Lücke, A.; et al. A terrestrial observatory approach to the integrated investigation of the effects of deforestration on water, energy, and matter fluxes. Sci. China Earth Sci. 2015, 58, 61–75. [Google Scholar]
- Friess, N.; Bendix, J.; Brändle, M.; Brandl, R.; Dahlke, S.; Farwig, N.; Freisleben, B.; Holzmann, H.; Meyer, H.; Müller, T.; et al. Introducing Nature 4.0: A sensor network for environmental monitoring in the Marburg Open Forest. Biodivers. Inf. Sci. Stand. 2019, 3, 36389. [Google Scholar] [CrossRef]
- Gottselig, N.; Wiekenkamp, I.; Weihermüller, L.; Brüggemann, N.; Berns, A.E.; Bogena, H.R.; Borchard, N.; Klumpp, E.; Lücke, A.; Missong, A.; et al. A three–dimensional view on soil biogeochemistry: A dataset for a forested headwater catchment. J. Environ. Qual. 2017, 46, 210–218. [Google Scholar] [CrossRef]
- Hessen–Forst. Forstbetriebsbuch; 2017. FE_RPT_000-1.1.2; Stand: Kassel, Germany, 2017; Not Published. [Google Scholar]
- Thomas, F.M.; Rzepecki, A.; Lücke, A.; Wiekenkamp, I.; Rabbel, I.; Pütz, T.; Neuwirth, B. Growth and wood isotopic signature of Norway spruce (Picea abies) along a small-scale gradient of soil moisture. Tree Physiol. 2018, 38, 1855–1870. [Google Scholar] [CrossRef]
- Hurrell, J.W.; Kushnir, Y.; Ottersen, G.; Visbeck, M. An overview of the North Atlantic Oscillation. Climatic significance and environmental impact. Geophys. Monogr. 2003, 134, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Rabbel, I.; Bogena, H.; Neuwirth, B.; Diekkrüger, B. Using Sap Flow Data to Parameterize the Feddes Water Stress Model for Norway Spruce. Water 2018, 10, 279. [Google Scholar] [CrossRef] [Green Version]
- Speer, J.H. Fundamentals of Tree–Ring Research; The University of Arizona Press: Tucson, AL, USA, 2018; 333p. [Google Scholar]
- Rinn, F. TSAP–Win. In Time Series Analysis and Presentation for Dendrochronology and Related Applications, Version 0.53 for Microsoft Windows; User Reference: Heidelberg, Germany, 2003. [Google Scholar]
- Stokes, M.A.; Smiley, T.L. An Introduction to Tree–Ring Dating; University of Arizona Press: Tucson, AL, USA, 1968; 73p, University of Chicago: Chicago, IL, USA, 1996. [Google Scholar]
- Pilcher, J.R. Sample preparation, cross–dating and measurement. In Methods of Dendrochronology; Applications in the Environmental Sciences; Cook, E.R., Kairiukstis, L.A., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1990; pp. 40–51. [Google Scholar]
- Cropper, J.P. Tree-Ring skeleton plotting by computer. Tree Ring Bull. 1979, 39, 47–59. [Google Scholar]
- Neuwirth, B.; Esper, J.; Schweingruber, F.H.; Winiger, M. Site ecological differences to the climatic forcing of spruce pointer years from the Lötschental, Switzerland. Dendrochronologia 2004, 21, 69–78. [Google Scholar] [CrossRef]
- Neuwirth, B.; Schweingruber, F.H.; Winiger, M. Spatial patterns of central European pointer years from 1901 to 1971. Dendrochronologia 2007, 24, 79–89. [Google Scholar] [CrossRef]
- Jetschke, G.; van der Maaten, E.; van der Maaten–Theunissen, M. Towards the extremes: A critical analysis of pointer year detection methods. Dendrochronologia 2019, 53, 55–62. [Google Scholar] [CrossRef]
- DesLauriers, A.; Anfodillo, T.; Rossi, S.; Carraro, V. Using simple causal modeling to understand how water and temperature affect daily stem radial variation in trees. Tree Physiol. 2007, 27, 1125–1136. [Google Scholar] [CrossRef] [Green Version]
- DesLauriers, A.; Rossi, S.; Turcotte, A.; Morin, H.; Krause, C. A three-step procedure in SAS to analyze the time series from automatic dendrometers. Dendrochronologia 2011, 29, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Granier, A. Une nouvelle méthode pour la mesure du flux de sévebrute dans le tronc des arbres. Ann. Sci. For. 1985, 42, 193–200. [Google Scholar] [CrossRef]
- Granier, A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol. 1987, 3, 309–320. [Google Scholar] [CrossRef]
- Oishi, A.C.; Oren, R.; Stoy, P.C. Estimating components of forest evapotranspiration: A footprint approach for scaling sap flux measurements. Agric. For. Meteorol. 2008, 148, 1719–1732. [Google Scholar] [CrossRef] [Green Version]
- Oishi, A.C.; Hawthorne, D.A.; Oren, R. Science Direct Baseliner: An open–source, interactive tool for processing sap flux data from thermal dissipation probes. SoftwareX 2016, 5, 139–143. [Google Scholar] [CrossRef] [Green Version]
- Rabbel, I.; Diekkrüger, B.; Voigt, H.; Neuwirth, B. Comparing ∆Tmax Determination Approaches for Granier-Based Sapflow Estimations. Sensors 2016, 16, 2042. [Google Scholar] [CrossRef] [Green Version]
- Graf, A.; Bogena, H.R.; Drüe, C.; Hardelauf, H.; Putz, T.; Heinemann, G.; Vereecken, H. Spatiotemporal relations between water budget components and soil water content in a forested tributary catchment. Water Resour. Res. 2014, 50, 4837–4857. [Google Scholar] [CrossRef] [Green Version]
- Koubaa, A.; Isabel, N.; Zhang, S.Y.; Beaulieu, J.; Bousquet, J. Transition from juvenile to mature wood in black spruce (Picea mariana (Mill.) B.S.P.). Wood Fiber Sci. 2005, 37, 445–455. [Google Scholar]
- Babst, F.; Carrer, M.; Poulter, B.; Urbinati, C.; Neuwirth, B.; Frank, D. 500 years of regional forest growth variability and links to climatic extreme events in Europe. Environ. Res. Lett. 2012, 7, 045705. [Google Scholar] [CrossRef]
- Russo, S.; Sillmann, J.; Fischer, E.M. Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ. Res. Lett. 2015, 10, 124003. [Google Scholar] [CrossRef]
- Friedrichs, D.A.; Trouet, V.; Büntgen, U.; Frank, D.C.; Esper, J.; Neuwirth, B.; Löffler, J. Species-specific climate sensitivity of tree growth in Central-West Germany. Trees 2009, 23, 729–739. [Google Scholar] [CrossRef]
- Fischer, S.; Neuwirth, B. Klimasensitivität der Douglasie in Eifel und Kellerwald [Climate sensitivityof Douglas–fir in Eifel and Kellerwald]. Allg. Forst Jagdztg. 2012, 183, 23–32. [Google Scholar]
- Van der Maaten–Theunissen, M.; Kahle, H.P.; van der Maaten, E. Drought sensitivity of Norway spruce is higher than that of silver fir along an altitudinal gradient in southwestern Germany. Ann. For. Sci. 2013, 70, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Lebourgeois, C.; Rathgeber, B.K.; Ulrich, E. Sensitivity of French temperate coniferous forests to climate variability and extreme events (Abies alba, Picea abies and Pinus sylvestris). J. Veg. Sci. 2010, 21, 364–376. [Google Scholar] [CrossRef]
- Lévesque, M.; Rigling, A.; Bugmann, H.; Weber, P.; Brang, P. Growth response of five co-occurring conifers to drought across a wide climatic gradient in Central Europe. Agric. For. Meteorol. 2014, 197, 1–12. [Google Scholar] [CrossRef]
- Büntgen, U.; Frank, D.C.; Schmidhalter, M.; Neuwirth, B.; Seifert, M.; Esper, J. Growth/climate response shift in a long subalpine spruce chronology. Trees 2005, 20, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Hartl-Meier, C.; Zang, C.; Dittmar, C.; Esper, J.; Göttlein, A.; Rothe, A. Vulnerability of Norway spruce to climate change in mountain forests of the European Alps. Clim. Res. 2014, 60, 119–132. [Google Scholar] [CrossRef]
- Ponocná, T.; Spyt, B.; Kaczka, R.; Büntgen, U.; Treml, V. Growth trends and climate responses of Norway spruce along ele-vational gradients in East–Central Europe. Trees 2016, 30, 14. [Google Scholar] [CrossRef]
- Rybníček, M.; Čermák, P.; Prokop, O.; Žid, T.; Trnka, M.; Kolář, T. Oak (Quercus spp.) response to climate differs more among sites than among species in central Czech Republic. Dendrobiology 2016, 75, 55–65. [Google Scholar] [CrossRef]
- Kolář, T.; Čermák, P.; Trnka, M.; Žid, T.; Rybníček, M. Temporal changes in the climate sensitivity of Norway spruce and European beech along an elevation gradient in Central Europe. Agric. For. Meteorol. 2017, 239, 24–33. [Google Scholar] [CrossRef]
- Čermák, P.; Kolář, T.; Žid, T.; Trnka, M.; Rybníček, M. Norway spruce responses to drought forcing in area affected by forest decline. For. Syst. 2019, 28, e016. [Google Scholar] [CrossRef] [Green Version]
- Friedrichs, D.A.; Büntgen, U.; Frank, D.C.; Esper, J.; Neuwirth, B.; Löffler, J. Complex climate controls on 20th century oak growth in Central-West Germany. Tree Physiol. 2008, 29, 39–51. [Google Scholar] [CrossRef] [Green Version]
- Drobyshev, I.; Niklasson, M.; Eggertsson, O.; Linderson, H.; Sonesson, K. Influence of annual weather on growth of pedunculate oak in southern Sweden. Ann. For. Sci. 2008, 65, 512. [Google Scholar] [CrossRef] [Green Version]
- Härdtle, W.; Niemeyer, T.; Assmann, T.; Aulinger, A.; Fichtner, A.; Lang, A.; Leuschner, C.; Neuwirth, B.; Pfister, L.; Quante, M.; et al. Climate responses of tree–ring width and d13C signatures of sessile oak (Quercus petraea Liebl.) on soils with contrasting water supply. Plant. Ecol. 2013, 214, 1147–1156. [Google Scholar] [CrossRef]
- Scharnweber, T.; Manthey, M.; Wilmking, M. Differential radial growth patterns between beech (Fagus sylvatica L.) and oak (Quercus robur L.) on periodically waterlogged soils. Tree Physiol. 2013, 33, 425–437. [Google Scholar] [CrossRef] [PubMed]
- García-Suárez, A.; Butler, C.; Baillie, M. Climate signal in tree-ring chronologies in a temperate climate: A multi-species approach. Dendrochronologia 2009, 27, 183–198. [Google Scholar] [CrossRef] [Green Version]
- Wazny, T.; Eckstein, D. Dendrochronological signal of oak (Quercus spp.) in Poland. Dendrochronologia 1991, 9, 181–191. [Google Scholar]
- Bronisz, A.; Bijak, S.; Bronisz, K.; Zasada, M. Climate influence on radial increment of oak (Quercus spp.) in central Poland. Geochronometria 2012, 39, 276–284. [Google Scholar] [CrossRef] [Green Version]
- Nechita, C.; Popa, I.; Eggertsson, Ó. Climate response of oak (Quercus spp.), an evidence of a bioclimatic boundary induced by the Carpathians. Sci. Total Environ. 2017, 599, 1598–1607. [Google Scholar] [CrossRef]
- Torres-Ruiz, J.M.; Kremer, A.; Murphy, M.R.C.; Brodribb, T.; Lamarque, L.J.; Truffaut, L.; Bonne, F.; Ducousso, A.; Delzon, S. Genetic differentiation in functional traits among European sessile oak populations. Tree Physiol. 2019, 39, 1736–1749. [Google Scholar] [CrossRef] [PubMed]
- Ellenberg, H.; Leuschner, C. Vegetation Mitteleuropas mit den Alpen in Ökologischer, Dynamischer und Historischer Sicht, 6th ed.; Ulmer Verlag: Stuttgart, Germany, 2010; 1357p. [Google Scholar]
- Rybníček, M.; Čermák, P.; Kolář, T.; Žid, T. Growth responses of Norway spruce (Picea abies (L.) Karst.) to the climate in the south-eastern part of the Českomoravská Upland (Czech Republic). Geochronometria 2012, 39, 149–157. [Google Scholar] [CrossRef]
- Fischer, S.; Neuwirth, B. Vulnerability of Trees to Climate Events in Temperate Forests of West Germany. ISRN For. 2013, 2013, 201360. [Google Scholar] [CrossRef] [Green Version]
- Čejková, A.; Poláková, S. Growth responses of sessile oak to climate and hydrological regime in the Zbytka Nature Reserve, Czech Republic. Geochronometria 2012, 39, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Becker, M.; Nieminen, T.M.; Gérémia, F. Short–term variations and long–term changes in oak productivity in northeastern France. Ann. Sci. For. 1994, 51, 477–492. [Google Scholar] [CrossRef] [Green Version]
- Schweingruber, F.H.; Nogler, P. Synopsis and climatological interpretation of Central European tree–ring sequences. Bot. Helv. 2003, 113, 125–143. [Google Scholar]
- Larcher, W. Physiological Plant Ecology; Springer: Berlin, Germany, 1995; 513p. [Google Scholar]
- Barbaroux, C.; Breda, N. Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiol. 2002, 22, 1201–1210. [Google Scholar] [CrossRef]
- Heinrich, I.; Balanzategui, D.; Bens, O.; Blume, T.; Brauer, A.; Dietze, E.; Gottschalk, P.; Güntner, A.; Harfenmeister, K.; Helle, G.; et al. System Erde. GFZ J. 2019, 9, 38–48. [Google Scholar] [CrossRef]
- Dietrich, L.; Zweifel, R.; Kahmen, A. Daily stem diameter variations can predict the canopy water status of mature temperate trees. Tree Physiol. 2018, 38, 941–952. [Google Scholar] [CrossRef]
- Hoch, G.; Richter, A.; Körner, C. Non-structural carbon compounds in temperate forest trees. Plant Cell Environ. 2003, 26, 1067–1081. [Google Scholar] [CrossRef]
- Bréda, N.; Granier, A. Intra- and interannual variations of transpiration, leaf area index and radial growth of a sessile oak stand (Quercus petraea). Ann. Sci. For. 1996, 53, 521–536. [Google Scholar] [CrossRef] [Green Version]
Site | Coordinates Long./lat. [°] | Species | Chrono [Year] | MSL [Year] | AGR [mm] | Elev. [m a.s.l.] | Asp. [°] | Slope [%] | Temp. [°C] | Prec. [mm] |
---|---|---|---|---|---|---|---|---|---|---|
EIF | 6.331/50.505 | PCAB | 1958 | 60 | 3.78 | 610 | 90 | 10.5 | 12.5 | 484 |
UWM | 8.684/50.842 | QUPE | 1959 | 155 | 1.41 | 270 | 230 | 32.5 | 14.0 | 77.6 |
EIF | UWM | |||||
---|---|---|---|---|---|---|
Time Period | Temp. Annual Mean [°C] | Prec. Annual Sum [mm] | Prec. Seasonal * Sum [mm] | Temp. Annual Mean [°C] | Prec. Annual Sum [mm] | Prec. Seasonal * Sum [mm] |
1981–2010 | 8.0 | 859 | 468 | 9.6 | 666 | 462 |
2018 DWD–Station | 9.5 | 589 | 298 | 10.9 | 540 | 319 |
2018 Local station | 8.5 | 1003 | 448 | 9.8 | 287 | 102 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neuwirth, B.; Rabbel, I.; Bendix, J.; Bogena, H.R.; Thies, B. The European Heat Wave 2018: The Dendroecological Response of Oak and Spruce in Western Germany. Forests 2021, 12, 283. https://doi.org/10.3390/f12030283
Neuwirth B, Rabbel I, Bendix J, Bogena HR, Thies B. The European Heat Wave 2018: The Dendroecological Response of Oak and Spruce in Western Germany. Forests. 2021; 12(3):283. https://doi.org/10.3390/f12030283
Chicago/Turabian StyleNeuwirth, Burkhard, Inken Rabbel, Jörg Bendix, Heye R. Bogena, and Boris Thies. 2021. "The European Heat Wave 2018: The Dendroecological Response of Oak and Spruce in Western Germany" Forests 12, no. 3: 283. https://doi.org/10.3390/f12030283
APA StyleNeuwirth, B., Rabbel, I., Bendix, J., Bogena, H. R., & Thies, B. (2021). The European Heat Wave 2018: The Dendroecological Response of Oak and Spruce in Western Germany. Forests, 12(3), 283. https://doi.org/10.3390/f12030283