The European Heat Wave 2018: The Dendroecological Response of Oak and Spruce in Western Germany
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Sites
2.2. Dendroecological Observations
2.3. Climate Data and Statistical Analyses
3. Results
3.1. Radial Growth
3.2. Interannual Growth/Climate Responses
3.3. Diurnal Sap Flow Activity and Radial Stem Variations in 2018
3.4. Physiological Reactions of Trees in 2018
4. Discussion
4.1. Climate/Growth Relationships
4.2. Specific Responses in 2018
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Imbery, F.; Friedrich, K.; Koppe, C.; Janssen, W.; Pfeifroth, U.; Daßler, J.; Bissolli, P. 2018 Wärmster Sommer im Norden und Osten Deutschlands; German Weather Service (DWD): Offenbach a. Main, Germany, 2018; p. 7. [Google Scholar]
- Drouard, M.; Kornhuber, K.; Woollings, T. Disentangling Dynamic Contributions to Summer 2018 Anomalous Weather Over Europe. Geophys. Res. Lett. 2019, 46, 12537–12546. [Google Scholar] [CrossRef]
- Pfleiderer, P.; Schleussner, C.-F.; Kornhuber, K.; Coumou, D. Summer weather becomes more persistent in a 2 °C world. Nat. Clim. Chang. 2019, 9, 666–671. [Google Scholar] [CrossRef]
- Kornhuber, K.; Osprey, S.; Coumou, D.; Petri, S.; Petoukhov, V.; Rahmstorf, S.; Gray, L. Extreme weather events in early summer 2018 connected by a recurrent hemispheric wave-7 pattern. Environ. Res. Lett. 2019, 14, 054002. [Google Scholar] [CrossRef]
- Kornhuber, K.; Coumou, D.; Vogel, E.; Lesk, C.; Donges, J.F.; Lehmann, J.; Horton, R.M. Amplified Rossby waves enhance risk of concurrent heatwaves in major breadbasket regions. Nat. Clim. Chang. 2019, 10, 48–53. [Google Scholar] [CrossRef]
- Albergel, C.; Dutra, E.; Bonan, B.; Zheng, Y.; Munier, S.; Balsamo, G.; de Rosnay, P.; Muñoz–Sabater, J.; Calvet, J.C. Monitoring and forecasting the impact of the 2018 summer heatwave on vegetation. Remote Sens. 2019, 11, 520. [Google Scholar] [CrossRef]
- Buras, A.; Rammig, A.; Zang, C.S. Quantifying impacts of the drought 2018 on European ecosystems in comparison to 2003. Biogeosci. Discuss. 2019, 17, 1655–1672. [Google Scholar] [CrossRef]
- Maes, S.L.; Perring, M.P.; Vanhellemont, M.; Depauw, L.; Bulcke, J.V.D.; Brūmelis, G.; Brunet, J.; Decocq, G.; Ouden, J.D.; Härdtle, W.; et al. Environmental drivers interactively affect individual tree growth across temperate European forests. Glob. Chang. Biol. 2019, 25, 201–217. [Google Scholar] [CrossRef]
- Vitasse, Y.; Bottero, A.; Cailleret, M.; Bigler, C.; Fonti, P.; Gessler, A.; Lévesque, M.; Rohner, B.; Weber, P.; Rigling, A.; et al. Contrasting resistance and resilience to extreme drought and late spring frost in five major European tree species. Glob. Chang. Biol. 2019, 25, 3781–3792. [Google Scholar] [CrossRef]
- Vanhellemont, M.; Sousa-Silva, R.; Maes, S.L.; Bulcke, J.V.D.; Hertzog, L.; De Groote, S.R.; Van Acker, J.; Bonte, D.; Martel, A.; Lens, L.; et al. Distinct growth responses to drought for oak and beech in temperate mixed forests. Sci. Total Environ. 2019, 650, 3017–3026. [Google Scholar] [CrossRef]
- Teskey, R.; Wertin, T.; Bauweraerts, I.; Ameye, M.; McGuire, M.A.; Steppe, K. Responses of tree species to heat waves and extreme heat events. Plant Cell Environ. 2015, 38, 1699–1712. [Google Scholar] [CrossRef] [PubMed]
- Cook, E.R.; Seager, R.; Kushnir, Y.; Briffa, K.R.; Büntgen, U.; Frank, D.; Krusic, P.J.; Tegel, W.; Van Der Schrier, G.; Andreu-Hayles, L.; et al. Old World megadroughts and pluvials during the Common Era. Sci. Adv. 2015, 1, e1500561. [Google Scholar] [CrossRef]
- Glaser, R.; Kahle, M. Reconstructions of droughts in Germany since 1500—Combining hermeneutic information and in-strumental records in historical and modern perspectives. Clim. Past. 2020, 16, 1207–1222. [Google Scholar] [CrossRef]
- Hinckley, T.M.; Dougherty, P.M.; Lassoie, J.P.; Roberts, J.E.; Teskey, R.O. A Severe Drought: Impact on Tree Growth, Phenology, Net Photosynthetic Rate and Water Relations. Am. Midl. Nat. 1979, 102, 307. [Google Scholar] [CrossRef]
- Levitt, J. Responses of Plants to Environmental Stresses; Academic Press: New York, NY, USA, 1972; 697p. [Google Scholar]
- Zweifel, R.; Zimmermann, L.; Zeugin, F.; Newbery, D.M. Intra-annual radial growth and water relations of trees: Implications towards a growth mechanism. J. Exp. Bot. 2006, 57, 1445–1459. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, T.C.; Acevedo, E. Plant responses to water deficits, water-use efficiency, and drought resistance. Agric. Meteorol. 1974, 14, 59–84. [Google Scholar] [CrossRef]
- Steppe, K.; De Pauw, D.J.W.; LeMeur, R.; Vanrolleghem, P.A. A mathematical model linking tree sap flow dynamics to daily stem diameter fluctuations and radial stem growth. Tree Physiol. 2006, 26, 257–273. [Google Scholar] [CrossRef] [PubMed]
- Cook, B.I.; Wolkovich, E.M.; Parmesan, C. Divergent responses to spring and winter warming drive community level flowering trends. Proc. Natl. Acad. Sci. USA 2012, 109, 9000–9005. [Google Scholar] [CrossRef]
- Haeni, M.; Zweifel, R.; Eugster, W.; Gessler, A.; Zielis, S.; Bernhofer, C.; Carrara, A.; Grünwald, T.; Havránková, K.; Heinesch, B.; et al. Winter respiratory C losses provide explanatory power for net ecosystem productivity. J. Geophys. Res. Biogeosci. 2016, 122, 243–260. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Schwalm, C.R.; Biondi, F.; Camarero, J.J.; Koch, G.W.; Litvak, M.; Ogle, K.; Shaw, J.D.; Shevliakova, E.; Williams, A.; et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 2015, 349, 528–532. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.; Zhou, X.; Luo, Y.; Li, B.; Aurela, M.; Billesbach, D.; Blanken, P.D.; Bracho, R.; Chen, J.; Fischer, M.; et al. Direct and indirect effects of climatic variations on the interannual variability in net ecosystem exchange across terrestrial ecosystems. Tellus B Chem. Phys. Meteorol. 2016, 68, 30575. [Google Scholar] [CrossRef][Green Version]
- Van Der Maaten-Theunissen, M.; Bümmerstede, H.; Iwanowski, J.; Scharnweber, T.; Wilmking, M.; Van Der Maaten, E. Drought sensitivity of beech on a shallow chalk soil in northeastern Germany—A comparative study. For. Ecosyst. 2016, 3, 24. [Google Scholar] [CrossRef]
- Zweifel, R.; Sterck, F. A Conceptual Tree Model Explaining Legacy Effects on Stem Growth. Front. For. Glob. Chang. 2018, 1, 9. [Google Scholar] [CrossRef]
- Leuzinger, S.; Zotz, G.; Asshoff, R.; Körner, C. Responses of deciduous forest trees to severe drought in Central Europe. Tree Physiol. 2005, 25, 641–650. [Google Scholar] [CrossRef]
- Zweifel, R.; Eugster, W.; Etzold, S.; Dobbertin, M.; Buchmann, N.; Hasler, R. Link between continuous stem radius changes and net ecosystem productivity of a subalpine Norway spruce forest in the Swiss Alps. New Phytol. 2010, 187, 819–830. [Google Scholar] [CrossRef] [PubMed]
- Weemstra, M.; Eilmann, B.; Sass-Klaassen, U.G.; Sterck, F.J. Summer droughts limit tree growth across 10 temperate species on a productive forest site. For. Ecol. Manag. 2013, 306, 142–149. [Google Scholar] [CrossRef]
- Perkins, D.; Uhl, E.; Biber, P.; Du Toit, B.; Carraro, V.; Rötzer, T.; Pretzsch, H. Impact of Climate Trends and Drought Events on the Growth of Oaks (Quercus robur L. and Quercus petraea (Matt.) Liebl.) within and beyond Their Natural Range. Forests 2018, 9, 108. [Google Scholar] [CrossRef]
- Harvey, J.E.; Smiljanić, M.; Scharnweber, T.; Buras, A.; Cedro, A.; Cruz-García, R.; Drobyshev, I.; Janecka, K.; Jansons, Ā.; Kaczka, R.; et al. Tree growth influenced by warming winter climate and summer moisture availability in northern temperate forests. Glob. Chang. Biol. 2020, 26, 2505–2518. [Google Scholar] [CrossRef] [PubMed]
- Burri, S.; Haeler, E.; Eugster, W.; Haeni, M.; Etzold, S.; Walthert, L.; Braun, S.; Zweifel, R. How did Swiss forest trees respond to the hot summer 2015? Die Erde 2019, 150, 214–229. [Google Scholar]
- Bogena, H.R.; Bol, R.; Borchard, N.; Brüggemann, N.; Diekkrüger, B.; Drüe, C.; Groh, J.; Gottselig, N.; Huismann, J.A.; Lücke, A.; et al. A terrestrial observatory approach to the integrated investigation of the effects of deforestration on water, energy, and matter fluxes. Sci. China Earth Sci. 2015, 58, 61–75. [Google Scholar]
- Friess, N.; Bendix, J.; Brändle, M.; Brandl, R.; Dahlke, S.; Farwig, N.; Freisleben, B.; Holzmann, H.; Meyer, H.; Müller, T.; et al. Introducing Nature 4.0: A sensor network for environmental monitoring in the Marburg Open Forest. Biodivers. Inf. Sci. Stand. 2019, 3, 36389. [Google Scholar] [CrossRef]
- Gottselig, N.; Wiekenkamp, I.; Weihermüller, L.; Brüggemann, N.; Berns, A.E.; Bogena, H.R.; Borchard, N.; Klumpp, E.; Lücke, A.; Missong, A.; et al. A three–dimensional view on soil biogeochemistry: A dataset for a forested headwater catchment. J. Environ. Qual. 2017, 46, 210–218. [Google Scholar] [CrossRef]
- Hessen–Forst. Forstbetriebsbuch; 2017. FE_RPT_000-1.1.2; Stand: Kassel, Germany, 2017; Not Published. [Google Scholar]
- Thomas, F.M.; Rzepecki, A.; Lücke, A.; Wiekenkamp, I.; Rabbel, I.; Pütz, T.; Neuwirth, B. Growth and wood isotopic signature of Norway spruce (Picea abies) along a small-scale gradient of soil moisture. Tree Physiol. 2018, 38, 1855–1870. [Google Scholar] [CrossRef]
- Hurrell, J.W.; Kushnir, Y.; Ottersen, G.; Visbeck, M. An overview of the North Atlantic Oscillation. Climatic significance and environmental impact. Geophys. Monogr. 2003, 134, 1–35. [Google Scholar] [CrossRef]
- Rabbel, I.; Bogena, H.; Neuwirth, B.; Diekkrüger, B. Using Sap Flow Data to Parameterize the Feddes Water Stress Model for Norway Spruce. Water 2018, 10, 279. [Google Scholar] [CrossRef]
- Speer, J.H. Fundamentals of Tree–Ring Research; The University of Arizona Press: Tucson, AL, USA, 2018; 333p. [Google Scholar]
- Rinn, F. TSAP–Win. In Time Series Analysis and Presentation for Dendrochronology and Related Applications, Version 0.53 for Microsoft Windows; User Reference: Heidelberg, Germany, 2003. [Google Scholar]
- Stokes, M.A.; Smiley, T.L. An Introduction to Tree–Ring Dating; University of Arizona Press: Tucson, AL, USA, 1968; 73p, University of Chicago: Chicago, IL, USA, 1996. [Google Scholar]
- Pilcher, J.R. Sample preparation, cross–dating and measurement. In Methods of Dendrochronology; Applications in the Environmental Sciences; Cook, E.R., Kairiukstis, L.A., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1990; pp. 40–51. [Google Scholar]
- Cropper, J.P. Tree-Ring skeleton plotting by computer. Tree Ring Bull. 1979, 39, 47–59. [Google Scholar]
- Neuwirth, B.; Esper, J.; Schweingruber, F.H.; Winiger, M. Site ecological differences to the climatic forcing of spruce pointer years from the Lötschental, Switzerland. Dendrochronologia 2004, 21, 69–78. [Google Scholar] [CrossRef]
- Neuwirth, B.; Schweingruber, F.H.; Winiger, M. Spatial patterns of central European pointer years from 1901 to 1971. Dendrochronologia 2007, 24, 79–89. [Google Scholar] [CrossRef]
- Jetschke, G.; van der Maaten, E.; van der Maaten–Theunissen, M. Towards the extremes: A critical analysis of pointer year detection methods. Dendrochronologia 2019, 53, 55–62. [Google Scholar] [CrossRef]
- DesLauriers, A.; Anfodillo, T.; Rossi, S.; Carraro, V. Using simple causal modeling to understand how water and temperature affect daily stem radial variation in trees. Tree Physiol. 2007, 27, 1125–1136. [Google Scholar] [CrossRef]
- DesLauriers, A.; Rossi, S.; Turcotte, A.; Morin, H.; Krause, C. A three-step procedure in SAS to analyze the time series from automatic dendrometers. Dendrochronologia 2011, 29, 151–161. [Google Scholar] [CrossRef]
- Granier, A. Une nouvelle méthode pour la mesure du flux de sévebrute dans le tronc des arbres. Ann. Sci. For. 1985, 42, 193–200. [Google Scholar] [CrossRef]
- Granier, A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol. 1987, 3, 309–320. [Google Scholar] [CrossRef]
- Oishi, A.C.; Oren, R.; Stoy, P.C. Estimating components of forest evapotranspiration: A footprint approach for scaling sap flux measurements. Agric. For. Meteorol. 2008, 148, 1719–1732. [Google Scholar] [CrossRef]
- Oishi, A.C.; Hawthorne, D.A.; Oren, R. Science Direct Baseliner: An open–source, interactive tool for processing sap flux data from thermal dissipation probes. SoftwareX 2016, 5, 139–143. [Google Scholar] [CrossRef]
- Rabbel, I.; Diekkrüger, B.; Voigt, H.; Neuwirth, B. Comparing ∆Tmax Determination Approaches for Granier-Based Sapflow Estimations. Sensors 2016, 16, 2042. [Google Scholar] [CrossRef]
- Graf, A.; Bogena, H.R.; Drüe, C.; Hardelauf, H.; Putz, T.; Heinemann, G.; Vereecken, H. Spatiotemporal relations between water budget components and soil water content in a forested tributary catchment. Water Resour. Res. 2014, 50, 4837–4857. [Google Scholar] [CrossRef]
- Koubaa, A.; Isabel, N.; Zhang, S.Y.; Beaulieu, J.; Bousquet, J. Transition from juvenile to mature wood in black spruce (Picea mariana (Mill.) B.S.P.). Wood Fiber Sci. 2005, 37, 445–455. [Google Scholar]
- Babst, F.; Carrer, M.; Poulter, B.; Urbinati, C.; Neuwirth, B.; Frank, D. 500 years of regional forest growth variability and links to climatic extreme events in Europe. Environ. Res. Lett. 2012, 7, 045705. [Google Scholar] [CrossRef]
- Russo, S.; Sillmann, J.; Fischer, E.M. Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ. Res. Lett. 2015, 10, 124003. [Google Scholar] [CrossRef]
- Friedrichs, D.A.; Trouet, V.; Büntgen, U.; Frank, D.C.; Esper, J.; Neuwirth, B.; Löffler, J. Species-specific climate sensitivity of tree growth in Central-West Germany. Trees 2009, 23, 729–739. [Google Scholar] [CrossRef]
- Fischer, S.; Neuwirth, B. Klimasensitivität der Douglasie in Eifel und Kellerwald [Climate sensitivityof Douglas–fir in Eifel and Kellerwald]. Allg. Forst Jagdztg. 2012, 183, 23–32. [Google Scholar]
- Van der Maaten–Theunissen, M.; Kahle, H.P.; van der Maaten, E. Drought sensitivity of Norway spruce is higher than that of silver fir along an altitudinal gradient in southwestern Germany. Ann. For. Sci. 2013, 70, 185–193. [Google Scholar] [CrossRef]
- Lebourgeois, C.; Rathgeber, B.K.; Ulrich, E. Sensitivity of French temperate coniferous forests to climate variability and extreme events (Abies alba, Picea abies and Pinus sylvestris). J. Veg. Sci. 2010, 21, 364–376. [Google Scholar] [CrossRef]
- Lévesque, M.; Rigling, A.; Bugmann, H.; Weber, P.; Brang, P. Growth response of five co-occurring conifers to drought across a wide climatic gradient in Central Europe. Agric. For. Meteorol. 2014, 197, 1–12. [Google Scholar] [CrossRef]
- Büntgen, U.; Frank, D.C.; Schmidhalter, M.; Neuwirth, B.; Seifert, M.; Esper, J. Growth/climate response shift in a long subalpine spruce chronology. Trees 2005, 20, 99–110. [Google Scholar] [CrossRef]
- Hartl-Meier, C.; Zang, C.; Dittmar, C.; Esper, J.; Göttlein, A.; Rothe, A. Vulnerability of Norway spruce to climate change in mountain forests of the European Alps. Clim. Res. 2014, 60, 119–132. [Google Scholar] [CrossRef]
- Ponocná, T.; Spyt, B.; Kaczka, R.; Büntgen, U.; Treml, V. Growth trends and climate responses of Norway spruce along ele-vational gradients in East–Central Europe. Trees 2016, 30, 14. [Google Scholar] [CrossRef]
- Rybníček, M.; Čermák, P.; Prokop, O.; Žid, T.; Trnka, M.; Kolář, T. Oak (Quercus spp.) response to climate differs more among sites than among species in central Czech Republic. Dendrobiology 2016, 75, 55–65. [Google Scholar] [CrossRef]
- Kolář, T.; Čermák, P.; Trnka, M.; Žid, T.; Rybníček, M. Temporal changes in the climate sensitivity of Norway spruce and European beech along an elevation gradient in Central Europe. Agric. For. Meteorol. 2017, 239, 24–33. [Google Scholar] [CrossRef]
- Čermák, P.; Kolář, T.; Žid, T.; Trnka, M.; Rybníček, M. Norway spruce responses to drought forcing in area affected by forest decline. For. Syst. 2019, 28, e016. [Google Scholar] [CrossRef]
- Friedrichs, D.A.; Büntgen, U.; Frank, D.C.; Esper, J.; Neuwirth, B.; Löffler, J. Complex climate controls on 20th century oak growth in Central-West Germany. Tree Physiol. 2008, 29, 39–51. [Google Scholar] [CrossRef]
- Drobyshev, I.; Niklasson, M.; Eggertsson, O.; Linderson, H.; Sonesson, K. Influence of annual weather on growth of pedunculate oak in southern Sweden. Ann. For. Sci. 2008, 65, 512. [Google Scholar] [CrossRef]
- Härdtle, W.; Niemeyer, T.; Assmann, T.; Aulinger, A.; Fichtner, A.; Lang, A.; Leuschner, C.; Neuwirth, B.; Pfister, L.; Quante, M.; et al. Climate responses of tree–ring width and d13C signatures of sessile oak (Quercus petraea Liebl.) on soils with contrasting water supply. Plant. Ecol. 2013, 214, 1147–1156. [Google Scholar] [CrossRef]
- Scharnweber, T.; Manthey, M.; Wilmking, M. Differential radial growth patterns between beech (Fagus sylvatica L.) and oak (Quercus robur L.) on periodically waterlogged soils. Tree Physiol. 2013, 33, 425–437. [Google Scholar] [CrossRef] [PubMed]
- García-Suárez, A.; Butler, C.; Baillie, M. Climate signal in tree-ring chronologies in a temperate climate: A multi-species approach. Dendrochronologia 2009, 27, 183–198. [Google Scholar] [CrossRef]
- Wazny, T.; Eckstein, D. Dendrochronological signal of oak (Quercus spp.) in Poland. Dendrochronologia 1991, 9, 181–191. [Google Scholar]
- Bronisz, A.; Bijak, S.; Bronisz, K.; Zasada, M. Climate influence on radial increment of oak (Quercus spp.) in central Poland. Geochronometria 2012, 39, 276–284. [Google Scholar] [CrossRef]
- Nechita, C.; Popa, I.; Eggertsson, Ó. Climate response of oak (Quercus spp.), an evidence of a bioclimatic boundary induced by the Carpathians. Sci. Total Environ. 2017, 599, 1598–1607. [Google Scholar] [CrossRef]
- Torres-Ruiz, J.M.; Kremer, A.; Murphy, M.R.C.; Brodribb, T.; Lamarque, L.J.; Truffaut, L.; Bonne, F.; Ducousso, A.; Delzon, S. Genetic differentiation in functional traits among European sessile oak populations. Tree Physiol. 2019, 39, 1736–1749. [Google Scholar] [CrossRef] [PubMed]
- Ellenberg, H.; Leuschner, C. Vegetation Mitteleuropas mit den Alpen in Ökologischer, Dynamischer und Historischer Sicht, 6th ed.; Ulmer Verlag: Stuttgart, Germany, 2010; 1357p. [Google Scholar]
- Rybníček, M.; Čermák, P.; Kolář, T.; Žid, T. Growth responses of Norway spruce (Picea abies (L.) Karst.) to the climate in the south-eastern part of the Českomoravská Upland (Czech Republic). Geochronometria 2012, 39, 149–157. [Google Scholar] [CrossRef]
- Fischer, S.; Neuwirth, B. Vulnerability of Trees to Climate Events in Temperate Forests of West Germany. ISRN For. 2013, 2013, 201360. [Google Scholar] [CrossRef][Green Version]
- Čejková, A.; Poláková, S. Growth responses of sessile oak to climate and hydrological regime in the Zbytka Nature Reserve, Czech Republic. Geochronometria 2012, 39, 285–294. [Google Scholar] [CrossRef]
- Becker, M.; Nieminen, T.M.; Gérémia, F. Short–term variations and long–term changes in oak productivity in northeastern France. Ann. Sci. For. 1994, 51, 477–492. [Google Scholar] [CrossRef]
- Schweingruber, F.H.; Nogler, P. Synopsis and climatological interpretation of Central European tree–ring sequences. Bot. Helv. 2003, 113, 125–143. [Google Scholar]
- Larcher, W. Physiological Plant Ecology; Springer: Berlin, Germany, 1995; 513p. [Google Scholar]
- Barbaroux, C.; Breda, N. Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiol. 2002, 22, 1201–1210. [Google Scholar] [CrossRef]
- Heinrich, I.; Balanzategui, D.; Bens, O.; Blume, T.; Brauer, A.; Dietze, E.; Gottschalk, P.; Güntner, A.; Harfenmeister, K.; Helle, G.; et al. System Erde. GFZ J. 2019, 9, 38–48. [Google Scholar] [CrossRef]
- Dietrich, L.; Zweifel, R.; Kahmen, A. Daily stem diameter variations can predict the canopy water status of mature temperate trees. Tree Physiol. 2018, 38, 941–952. [Google Scholar] [CrossRef]
- Hoch, G.; Richter, A.; Körner, C. Non-structural carbon compounds in temperate forest trees. Plant Cell Environ. 2003, 26, 1067–1081. [Google Scholar] [CrossRef]
- Bréda, N.; Granier, A. Intra- and interannual variations of transpiration, leaf area index and radial growth of a sessile oak stand (Quercus petraea). Ann. Sci. For. 1996, 53, 521–536. [Google Scholar] [CrossRef]
Site | Coordinates Long./lat. [°] | Species | Chrono [Year] | MSL [Year] | AGR [mm] | Elev. [m a.s.l.] | Asp. [°] | Slope [%] | Temp. [°C] | Prec. [mm] |
---|---|---|---|---|---|---|---|---|---|---|
EIF | 6.331/50.505 | PCAB | 1958 | 60 | 3.78 | 610 | 90 | 10.5 | 12.5 | 484 |
UWM | 8.684/50.842 | QUPE | 1959 | 155 | 1.41 | 270 | 230 | 32.5 | 14.0 | 77.6 |
EIF | UWM | |||||
---|---|---|---|---|---|---|
Time Period | Temp. Annual Mean [°C] | Prec. Annual Sum [mm] | Prec. Seasonal * Sum [mm] | Temp. Annual Mean [°C] | Prec. Annual Sum [mm] | Prec. Seasonal * Sum [mm] |
1981–2010 | 8.0 | 859 | 468 | 9.6 | 666 | 462 |
2018 DWD–Station | 9.5 | 589 | 298 | 10.9 | 540 | 319 |
2018 Local station | 8.5 | 1003 | 448 | 9.8 | 287 | 102 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neuwirth, B.; Rabbel, I.; Bendix, J.; Bogena, H.R.; Thies, B. The European Heat Wave 2018: The Dendroecological Response of Oak and Spruce in Western Germany. Forests 2021, 12, 283. https://doi.org/10.3390/f12030283
Neuwirth B, Rabbel I, Bendix J, Bogena HR, Thies B. The European Heat Wave 2018: The Dendroecological Response of Oak and Spruce in Western Germany. Forests. 2021; 12(3):283. https://doi.org/10.3390/f12030283
Chicago/Turabian StyleNeuwirth, Burkhard, Inken Rabbel, Jörg Bendix, Heye R. Bogena, and Boris Thies. 2021. "The European Heat Wave 2018: The Dendroecological Response of Oak and Spruce in Western Germany" Forests 12, no. 3: 283. https://doi.org/10.3390/f12030283
APA StyleNeuwirth, B., Rabbel, I., Bendix, J., Bogena, H. R., & Thies, B. (2021). The European Heat Wave 2018: The Dendroecological Response of Oak and Spruce in Western Germany. Forests, 12(3), 283. https://doi.org/10.3390/f12030283