The Effect of LiDAR Sampling Density on DTM Accuracy for Areas with Heavy Forest Cover
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Laser Scanner Data
2.3. Interpolation Algorithms
- For Inverse Distance Weighted: maximum search distance: 40 m (if no observations are within this distance of a grid cell, that cell will not be assigned an elevation value; a high value was used for this parameter to ensure that generated DTMs will have no gaps), maximum points: 8 (if more than 8 points are within the maximum search distance, then only the 8 closest will be used for prediction), weighting function: inverse distance to a power (power was set to the commonly used value of 2; in other words, the weight assigned to an observation decreases with the square of the distance between that observation and the location where a prediction is made).
- For Natural Neighbour: method: Sibson (usually has no significant effect on the interpolation results), minimum weight: 0 (the minimum weight that can be assigned to observations; a positive value ensures that no extrapolation is carried out).
- For Thin-Plate Spline: search range: global (any observations can be used for a prediction, of course with a bias for closer observations), maximum number of nearest points: 8 (the number of nearest observations taken into account for prediction), direction: all directions (does not constrain the selection of closest observations along specific directions such as in quadrants).
2.4. Prediction vs. Validation Data
2.5. Artificial Reduction of Density
2.6. Accuracy of Elevation and Slope Estimates
3. Results
3.1. Elevation Error of Interpolated DTMs
- DTMs interpolated using NN or TPS are very similar in terms of accuracy, with a slight advantage to TPS at all point densities.
- NN/TPS interpolation has a relatively stable rate of accuracy degradation, with errors over 0.25 m doubling over the range of point densities; meanwhile, errors over 0.50 m had an eight-fold increase over that same range.
- DTMs interpolated using IDW have similar accuracies at the higher point densities, but fall behind the other two algorithms after point density is reduced to less than 0.60 points/m2 (60–70% of the initial density).
- The issue described above is due to IDW’s significantly faster rate of accuracy degradation as point density is reduced: errors over 0.25 m increase almost five-fold between the initial and the final point density, while errors over 0.50 m increase approximately 48 times over that range (from approximately 0.6% of the validation points having errors over 0.50 m at the initial point density of 0.89 points/m2, to approximately 52.2% of the validation points at the final point density of 0.09 points/m2).
3.2. Accuracy of Slope Prediction
3.3. Processing Time
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aguilar, F.J.; Agüera, F.; Aguilar, M.A.; Carvajal, F. Effects of terrain morphology, sampling density, and interpolation methods on grid DEM accuracy. Photogramm. Eng. Remote Sens. 2005, 71, 805–816. [Google Scholar] [CrossRef] [Green Version]
- Hodgson, M.E.; Jensen, J.; Raber, G.; Tullis, J.; Davis, B.A.; Thompson, G.; Schuckman, K. An evaluation of lidar-derived elevation and terrain slope in leaf-off conditions. Photogramm. Eng. Remote Sens. 2005, 71, 817–823. [Google Scholar] [CrossRef] [Green Version]
- Lim, K.; Treitz, P.; Wulder, M.; St-Onge, B.; Flood, M. LiDAR remote sensing of forest structure. Prog. Phys. Geog. 2003, 27, 88–106. [Google Scholar] [CrossRef] [Green Version]
- Bauwens, S.; Bartholomeus, H.; Calders, K.; Lejeune, P. Forest Inventory with Terrestrial LiDAR: A Comparison of Static and Hand-Held Mobile Laser Scanning. Forests 2016, 7, 127. [Google Scholar] [CrossRef] [Green Version]
- Maguya, A.S.; Junttila, V.; Kauranne, T. Adaptive algorithm for large scale dtm interpolation from lidar data for forestry applications in steep forested terrain. ISPRS J. Photogramm. Remote Sens. 2013, 85, 74–83. [Google Scholar] [CrossRef]
- Hyde, P.; Dubayah, R.; Walker, W.; Blair, J.B.; Hofton, M.; Hunsaker, C. Mapping forest structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM+, Quickbird) synergy. Remote Sens. Environ. 2006, 102, 63–73. [Google Scholar] [CrossRef]
- Moe, K.; Owari, T.; Furuya, N.; Hiroshima, T. Comparing Individual Tree Height Information Derived from Field Surveys, LiDAR and UAV-DAP for High-Value Timber Species in Northern Japan. Forests 2020, 11, 223. [Google Scholar] [CrossRef] [Green Version]
- Yoga, S.; Bégin, J.; Daigle, G.; Riopel, M.; St-Onge, B. A Generalized Lidar-Based Model for Predicting the Merchantable Volume of Balsam Fir of Sites Located along a Bioclimatic Gradient in Quebec, Canada. Forests 2018, 9, 166. [Google Scholar] [CrossRef] [Green Version]
- Hill, A.; Breschan, J.; Mandallaz, D. Accuracy Assessment of Timber Volume Maps Using Forest Inventory Data and LiDAR Canopy Height Models. Forests 2014, 5, 2253–2275. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Chiang, T.; Teo, T. Fusion of LIDAR data and high resolution images for forest canopy modelling. In Proceedings of the 26th Asian Conference on Remote Sensing, Hanoi, Vietnam, 7–11 November 2005. [Google Scholar]
- Lee, A.C.; Lucas, R.M. A LiDAR-derived canopy density model for tree stem and crown mapping in Australian forests. Remote Sens. Environ. 2007, 111, 493–518. [Google Scholar] [CrossRef]
- Means, J.E.; Means, J.E.; Acker, S.A.; Fitt, O.J.; Renslow, M.; Emerson, L.; Hendrix, C.J. Predicting Forest Stand Characteristics with Airborne Laser Scanning LIDAR. Photogramm. Eng. Remote Sens. 2000, 66, 1367–1372. [Google Scholar]
- Vastaranta, M.; Kantola, T.; Lyytikäinen-Saarenmaa, P.; Holopainen, M.; Kankare, V.; Wulder, M.A.; Hyyppä, J.; Hyyppä, H. Area-based mapping of defoliation of scots pine stands using airborne scanning LiDAR. Remote Sens. 2013, 5, 1220–1234. [Google Scholar] [CrossRef] [Green Version]
- Barnes, C.; Balzter, H.; Barrett, K.; Eddy, J.; Milner, S.; Suárez, J. Individual tree crown delineation from airborne laser scanning for diseased larch forest stands. Remote Sens. 2017, 9, 231. [Google Scholar] [CrossRef] [Green Version]
- Solberg, S.; Næsset, E.; Lange, H.; Bollandsås, O.M. Remote sensing of forest health. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 36. [Google Scholar]
- Rubén Fernández de Villarán, S.J.; Domingo-Santos, J.M. The role of gis and lidar as tools for sustainable forest management. GIS Overv. Appl. 2018, 1, 124–148. [Google Scholar]
- Wulder, M.A.; Bater, C.W.; Coops, N.C.; Hilker, T.; White, J.C. The role of LiDAR in sustainable forest management. For. Chron. 2008, 84, 807–826. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Hu, X.; Chen, W.; Hong, Y.; Yang, M. Airborne LiDAR remote sensing for individual tree forest inventory using trunk detection-aided mean shift clustering techniques. Remote Sens. 2018, 10, 1078. [Google Scholar] [CrossRef] [Green Version]
- Lindberg, E.; Hollaus, M. Comparison of methods for estimation of stem volume, stem number and basal area from airborne laser scanning data in a hemi-boreal forest. Remote Sens. 2012, 4, 1004–1023. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Shen, X.; Cao, L.; Wang, G.; Cao, F. Assessment of Individual Tree Detection and Canopy Cover Estimation using Unmanned Aerial Vehicle based Light Detection and Ranging (UAV-LiDAR) Data in Planted Forests. Remote Sens. 2019, 11, 908. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Cao, L.; She, G. Estimating forest structural parameters using canopy metrics derived from airborne LiDAR data in subtropical forests. Remote Sens. 2017, 9, 940. [Google Scholar] [CrossRef] [Green Version]
- Bater, C.W.; Coops, N.C. Evaluating error associated with lidar-derived DEM interpolation. Comput. Geosci. 2009, 35, 289–300. [Google Scholar] [CrossRef]
- Hodgson, M.E.; Bresnahan, P. Accuracy of airborne LiDAR-derived elevation. Photogramm. Eng. Remote Sens. 2004, 70, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, F.J.; Mills, J.P.; Delgado, J.; Aguilar, M.A.; Negreiros, J.G.; Pérez, J.L. Modelling vertical error in LiDAR-derived digital elevation models. ISPRS J. Photogramm. Remote Sens. 2010, 65, 103–110. [Google Scholar] [CrossRef]
- Raber, G.T.; Jensen, J.R.; Hodgson, M.E.; Tullis, J.A.; Davis, B.A.; Berglund, J. Impact of LiDAR nominal post-spacing on DEM accuracy and flood zone delineation. Photogramm. Eng. Remote Sens. 2007, 73, 793–804. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, F.J.; Mills, J.P. Accuracy assessment of lidar-derived digital elevation models. Photogramm. Rec. 2008, 23, 148–169. [Google Scholar] [CrossRef]
- Kraus, K.; Karel, W.; Briese, C.; Mandlburger, G. Local accuracy measures for digital terrain models. Photogramm. Rec. 2006, 21, 342–354. [Google Scholar] [CrossRef]
- Hu, P.; Liu, X.; Hu, H. Accuracy assessment of digital elevation models based on approximation theory. Photogramm. Eng. Remote Sens. 2009, 75, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Zimmerman, D.; Pavlik, C.; Ruggles, A.; Armstrong, M.P. An experimental comparison of ordinary and universal kriging and inverse distance weighting. Math. Geol. 1999, 31, 375–390. [Google Scholar] [CrossRef]
- Chen, C.; Li, Y. A Fast Global Interpolation Method for Digital Terrain Model Generation from Large LiDAR-Derived Data. Remote Sens. 2019, 11, 1324. [Google Scholar] [CrossRef] [Green Version]
- Chaplot, V.; Darboux, F.; Bourennane, H.; Leguédois, S.; Silvera, N.; Phachomphon, K. Accuracy of interpolation techniques for the derivation of digital elevation models in relation to landform types and data density. Geomorphology 2006, 77, 126–141. [Google Scholar] [CrossRef]
- Weng, Q. An Evaluation of Spatial Interpolation Accuracy of Elevation data. In Progress in Spatial Data Handling; Riedl, A., Kainz, W., Elmes, G.A., Eds.; Springer: Berlin, Germany, 2006; pp. 805–824. [Google Scholar]
- Erdogan, S. A comparison of interpolation methods for producing digital elevation models at the field scale. Earth Surf. Process. Landf. 2009, 34, 366–376. [Google Scholar] [CrossRef]
- Ismail, Z.; Abdul Khanan, M.F.; Omar, F.Z.; Abdul Rahman, M.Z.; Mohd Salleh, M.R. Evaluating Error of LiDar Derived DEM Interpolation for Vegetation Area. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 42. [Google Scholar] [CrossRef] [Green Version]
- Arun, P.V. A comparative analysis of different DEM interpolation methods. Egypt. J. Remote Sens. Space Sci. 2013, 16, 133–139. [Google Scholar]
- Stereńczak, K.; Ciesielski, M.; Balazy, R.; Zawiła-Niedźwiecki, T. Comparison of various algorithms for DTM interpolation from LIDAR data in dense mountain forests. Eur. J. Remote Sens. 2016, 49, 599–621. [Google Scholar] [CrossRef]
- Guo, Q.; Li, W.; Yu, H.; Alvarez, O. Effects of topographic variability and lidar sampling density on several DEM interpolation methods. Photogramm. Eng. Remote Sens. 2010, 76, 701–712. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, Z.; Peterson, J.; Chandra, S. The effect of LiDAR data density on DEM accuracy. In Proceedings of the International Congress on Modelling and Simulation (MODSIM07), Christchurch, New Zealand, 10–13 December 2007; Oxley, L., Kulasiri, D., Eds.; Modelling and Simulation Society of Australia and New Zealand Inc.: Christchurch, New Zealand, 2007; pp. 1363–1369. [Google Scholar]
- Cățeanu, M.; Ciubotaru, A. Accuracy of Ground Surface Interpolation from Airborne Laser Scanning (ALS) Data in Dense Forest Cover. ISPRS Int. J. Geo-Inf. 2020, 9, 224. [Google Scholar] [CrossRef] [Green Version]
- Su, J.; Bork, E. Influence of vegetation, slope, and lidar sampling angle on DEM accuracy. Photogramm. Eng. Remote Sens. 2006, 72, 1265–1274. [Google Scholar] [CrossRef]
- Cățeanu, M.; Arcadie, C. ALS for terrain mapping in forest environments: An analysis of lidar filtering algorithms. EARSeL eProceedings 2017, 16, 9–20. [Google Scholar]
- Anderson, E.S.; Thompson, J.A.; Austin, R.E. LIDAR density and linear interpolator effects on elevation estimates. Int. J. Remote Sens. 2005, 26, 3889–3900. [Google Scholar] [CrossRef]
- Anderson, E.S.; Thompson, J.A.; Crouse, D.A.; Austin, R.E. Horizontal resolution and data density effects on remotely sensed LIDAR-based DEM. Geoderma 2006, 132, 406–415. [Google Scholar] [CrossRef]
- Meng, X.; Currit, N.; Zhao, K. Ground filtering algorithms for airborne LiDAR data: A review of critical issues. Remote Sens. 2010, 2, 833–860. [Google Scholar] [CrossRef] [Green Version]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists; John Wiley & Sons, Ltd.: Chichester, UK, 2007; pp. 37–38. [Google Scholar]
- Mitas, L.; Mitasova, H. Spatial interpolation. Geogr. Inf. Syst. Princ. Tech. Manag. Appl. 1999, 1, 481–492. [Google Scholar]
- Shepard, D. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 23rd National Conference of the Association for Computing Machinery, Princeton, NJ, USA, 27–29 August 1968; pp. 517–524. [Google Scholar]
- Sibson, R. A brief description of natural neighbour interpolation. In Interpreting Multivariate Data; Barnett, V., Ed.; Wiley: New York, NY, USA, 1981; pp. 21–36. [Google Scholar]
- Donato, G.; Belongie, S. Approximate thin plate spline mappings. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2002; pp. 21–31. [Google Scholar]
- Davis, B.M. Uses and abuses of cross-validation in geostatistics. Math. Geol. 1987, 19, 241–248. [Google Scholar] [CrossRef]
- Voltz, M.; Webster, R. A comparison of kriging, cubic splines and classification for predicting soil properties from sample information. J. Soil Sci. 1990, 41, 473–490. [Google Scholar] [CrossRef]
- Declercq, F.A.N. Interpolation methods for scattered sample data: Accuracy, spatial patterns, processing time. Cartogr. Geogr. Inf. Syst. 1996, 23, 128–144. [Google Scholar] [CrossRef]
- Smith, S.L.; Holland, D.A.; Longley, P.A. Quantifying Interpolation Errors in Urban Airborne Laser Scanning Models. Geogr. Anal. 2005, 37, 200–224. [Google Scholar] [CrossRef]
- Li, Z. On the measure of digital terrain model accuracy. Photogramm. Rec. 1988, 12, 873–877. [Google Scholar] [CrossRef]
- Maceachren, A.M.; Davidson, J.V. Sampling and isometric mapping of continuous geographic surfaces. Am. Cartogr. 1987, 14, 299–320. [Google Scholar] [CrossRef]
- Lazzaro, D.; Montefusco, L.B. Radial basis functions for the multivariate interpolation of large scattered data sets. J. Comput. Appl. Math. 2002, 140, 521–536. [Google Scholar] [CrossRef] [Green Version]
- Sterenczak, K.; Moskalik, T. Use of LIDAR-based digital terrain model and single tree segmentation data for optimal forest skid trail network. iForest-Biogeosci. For. 2014, 8, 661. [Google Scholar] [CrossRef] [Green Version]
- Treitz, P.; Lim, K.; Woods, M.; Pitt, D.; Nesbitt, D.; Etheridge, D. LiDAR Sampling Density for Forest Resource Inventories in Ontario, Canada. Remote Sens. 2012, 4, 830–848. [Google Scholar] [CrossRef] [Green Version]
Ground Point Density (Points/m2) | Mean Signed Error (m) | Maximum Unsigned Error (m) | Std. Dev. of Unsigned Errors (m) | P95 of Unsigned Errors (m) | RMSE (m) |
---|---|---|---|---|---|
Interpolation algorithm: Inverse Distance Weighted (IDW) | |||||
0.89 | −0.0039 | 4.35 | 0.11 | 0.31 | 0.15 |
0.80 | −0.0041 | 4.33 | 0.12 | 0.33 | 0.16 |
0.71 | −0.0052 | 4.38 | 0.14 | 0.37 | 0.18 |
0.62 | −0.0049 | 4.38 | 0.15 | 0.40 | 0.19 |
0.53 | −0.0048 | 4.32 | 0.16 | 0.45 | 0.22 |
0.45 | −0.0050 | 4.17 | 0.18 | 0.49 | 0.24 |
0.36 | −0.0051 | 3.88 | 0.20 | 0.54 | 0.26 |
0.27 | −0.0054 | 4.04 | 0.21 | 0.59 | 0.28 |
0.18 | −0.0043 | 4.63 | 0.30 | 0.85 | 0.40 |
0.09 | −0.0041 | 7.31 | 0.46 | 10.31 | 0.62 |
Interpolation algorithm: Natural Neighbour (NN) | |||||
0.89 | −0.0012 | 3.91 | 0.11 | 0.33 | 0.17 |
0.80 | −0.0013 | 4.03 | 0.11 | 0.34 | 0.17 |
0.71 | −0.0014 | 4.03 | 0.11 | 0.34 | 0.17 |
0.62 | −0.0016 | 4.47 | 0.11 | 0.34 | 0.17 |
0.53 | −0.0018 | 4.47 | 0.12 | 0.35 | 0.18 |
0.45 | −0.0017 | 4.24 | 0.12 | 0.35 | 0.18 |
0.36 | −0.0015 | 3.80 | 0.12 | 0.36 | 0.18 |
0.27 | −0.0016 | 3.80 | 0.12 | 0.37 | 0.19 |
0.18 | −0.0023 | 3.26 | 0.14 | 0.41 | 0.21 |
0.09 | −0.0001 | 4.66 | 0.19 | 0.50 | 0.27 |
Interpolation algorithm: Thin-Plate Spline (TPS) | |||||
0.89 | −0.0017 | 6.13 | 0.11 | 0.33 | 0.17 |
0.80 | −0.0019 | 6.35 | 0.11 | 0.33 | 0.17 |
0.71 | −0.0023 | 6.16 | 0.11 | 0.34 | 0.17 |
0.62 | −0.0027 | 7.13 | 0.12 | 0.34 | 0.18 |
0.53 | −0.0033 | 7.42 | 0.12 | 0.35 | 0.18 |
0.45 | −0.0031 | 3.81 | 0.12 | 0.35 | 0.18 |
0.36 | −0.0034 | 4.00 | 0.12 | 0.36 | 0.18 |
0.27 | −0.0036 | 4.14 | 0.12 | 0.36 | 0.19 |
0.18 | −0.0055 | 4.56 | 0.14 | 0.41 | 0.21 |
0.09 | −0.0035 | 5.12 | 0.18 | 0.50 | 0.26 |
Ground Point Density (Points/m2) | Mean Signed Error (deg) | Maximum Unsigned Error (deg) | Std. Dev. of Unsigned Errors (deg) | P95 of Unsigned Errors (deg) | RMSE (deg) |
---|---|---|---|---|---|
Interpolation algorithm: Inverse Distance Weighted (IDW) | |||||
0.89 | −3.57 | 49.05 | 4.59 | 14.09 | 6.47 |
0.80 | −3.62 | 50.32 | 4.68 | 14.39 | 6.67 |
0.71 | −3.68 | 52.14 | 4.87 | 15.11 | 7.07 |
0.62 | −3.71 | 50.00 | 4.96 | 15.45 | 7.25 |
0.53 | −3.78 | 50.15 | 5.16 | 16.12 | 7.66 |
0.45 | −3.75 | 50.15 | 5.31 | 16.76 | 7.97 |
0.36 | −3.76 | 51.30 | 5.48 | 17.23 | 8.30 |
0.27 | −3.77 | 54.18 | 5.64 | 17.84 | 8.65 |
0.18 | −3.39 | 50.28 | 6.32 | 20.28 | 10.06 |
0.09 | −2.78 | 56.57 | 7.07 | 22.90 | 11.58 |
Interpolation algorithm: Natural Neighbour (NN) | |||||
0.89 | −0.01 | 10.66 | 0.43 | 1.24 | 0.62 |
0.80 | −0.02 | 10.66 | 0.49 | 1.39 | 0.70 |
0.71 | −0.02 | 13.43 | 0.63 | 1.77 | 0.88 |
0.62 | −0.02 | 13.43 | 0.70 | 1.98 | 0.98 |
0.53 | −0.02 | 23.21 | 0.85 | 2.41 | 1.19 |
0.45 | −0.03 | 23.21 | 0.94 | 2.70 | 1.32 |
0.36 | −0.03 | 22.41 | 1.05 | 3.01 | 1.48 |
0.27 | −0.04 | 23.55 | 1.18 | 3.37 | 1.66 |
0.18 | −0.09 | 26.23 | 1.64 | 4.71 | 2.33 |
0.09 | −0.14 | 27.24 | 2.12 | 6.03 | 3.02 |
Interpolation algorithm: Thin-Plate Spline (TPS) | |||||
0.89 | 0.00 | 55.75 | 1.23 | 3.19 | 1.67 |
0.80 | 0.00 | 55.75 | 1.25 | 3.24 | 1.69 |
0.71 | 0.01 | 36.64 | 1.25 | 3.36 | 1.72 |
0.62 | 0.01 | 37.28 | 1.26 | 3.42 | 1.75 |
0.53 | 0.02 | 25.26 | 1.31 | 3.64 | 1.83 |
0.45 | 0.03 | 25.46 | 1.36 | 3.80 | 1.91 |
0.36 | 0.03 | 27.31 | 1.42 | 4.01 | 2.00 |
0.27 | 0.01 | 35.54 | 1.49 | 4.17 | 2.11 |
0.18 | −0.01 | 35.83 | 1.90 | 5.29 | 2.69 |
0.09 | 0.00 | 42.32 | 2.38 | 6.66 | 3.37 |
Point Density (% of Initial Density) | IDW Interpolation Time (min) | NN Interpolation Time (min) | TPS Interpolation Time (min) |
---|---|---|---|
100 | 5.6 | 3.3 | 38.1 |
90 | 5.0 | 3.1 | 34.6 |
80 | 4.6 | 3.0 | 28.3 |
70 | 3.7 | 2.8 | 25.3 |
60 | 3.0 | 2.5 | 20.1 |
50 | 2.6 | 3.0 | 17.2 |
40 | 2.3 | 2.3 | 14.3 |
30 | 1.9 | 2.0 | 11.5 |
20 | 1.1 | 1.6 | 6.1 |
10 | 0.6 | 1.1 | 3.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cățeanu, M.; Ciubotaru, A. The Effect of LiDAR Sampling Density on DTM Accuracy for Areas with Heavy Forest Cover. Forests 2021, 12, 265. https://doi.org/10.3390/f12030265
Cățeanu M, Ciubotaru A. The Effect of LiDAR Sampling Density on DTM Accuracy for Areas with Heavy Forest Cover. Forests. 2021; 12(3):265. https://doi.org/10.3390/f12030265
Chicago/Turabian StyleCățeanu, Mihnea, and Arcadie Ciubotaru. 2021. "The Effect of LiDAR Sampling Density on DTM Accuracy for Areas with Heavy Forest Cover" Forests 12, no. 3: 265. https://doi.org/10.3390/f12030265
APA StyleCățeanu, M., & Ciubotaru, A. (2021). The Effect of LiDAR Sampling Density on DTM Accuracy for Areas with Heavy Forest Cover. Forests, 12(3), 265. https://doi.org/10.3390/f12030265