Soil Bacterial Community Responds to Land-Use Change in Riparian Ecosystems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Vegetation Surveys
2.3. Soil Sampling and Analyses
2.3.1. Soil Sampling and Physicochemical Analyses
2.3.2. Soil DNA Extraction, Sequencing, Operational Taxonomic Unit (zOTU) Identification, and Filtering
2.3.3. Bacterial Functional Composition (Community-Level Physiological Profiles—CLPP)
2.4. Statistical Analyses
3. Results
3.1. Environmental Factors
3.1.1. Vegetation
3.1.2. Soil
3.2. Bacterial Community Taxonomic Composition
3.3. Bacterial Functional Composition (Community-Level Physiological Profiles—CLPP)
3.4. Relationships between Environmental Factors and Bacterial Community Composition
4. Discussion
4.1. Changes in Bacterial Taxonomic Composition with Land Use and Depth
4.2. Changes in Bacterial Functional Composition with Land Use and Depth
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lopes, L.D.; Fernandes, M.F. Changes in microbial community structure and physiological profile in a kaolinitic tropical soil under different conservation agricultural practices. Appl. Soil Ecol. 2020, 152, 103545. [Google Scholar] [CrossRef]
- Potthoff, M.; Steenwerth, K.L.; Jackson, L.E.; Drenovsky, R.E.; Scow, K.M.; Joergensen, R.G. Soil microbial community composition as affected by restoration practices in California grassland. Soil Biol. Biochem. 2006, 38, 1851–1860. [Google Scholar] [CrossRef] [Green Version]
- Yan, D.; Mills, J.G.; Gellie, N.J.; Bissett, A.; Lowe, A.J.; Breed, M.F. High-throughput eDNA monitoring of fungi to track functional recovery in ecological restoration. Biol. Conserv. 2018, 217, 113–120. [Google Scholar] [CrossRef]
- Eilers, K.G.; Debenport, S.; Anderson, S.; Fierer, N. Digging deeper to find unique microbial communities: The strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biol. Biochem. 2012, 50, 58–65. [Google Scholar] [CrossRef]
- McKinley, V. Microbial biomass and activity in soils from virgin prairies compared with prairie restoration, forest and agricultural sites in Illinois. In Proceedings of the Seventeenth North American Prairie Conference: Seeds for the Future, Roots of the Past North Iowa Area Community College, Mason City, IA, USA, 16–20 July 2000; pp. 107–117. [Google Scholar]
- Horwath, W.R. The role of the soil microbial biomass in cycling nutrients. In Microbial Biomass: A Paradigm Shift in Terrestrial Biochemistry; Tate, K.R., Ed.; World Scientific: Hackensack, NJ, USA, 2017; pp. 41–66. [Google Scholar]
- Duchicela, J.; Sullivan, T.S.; Bontti, E.; Bever, J.D. Soil aggregate stability increase is strongly related to fungal community succession along an abandoned agricultural field chronosequence in the Bolivian Altiplano. J. Appl. Ecol. 2013, 50, 1266–1273. [Google Scholar] [CrossRef]
- Rillig, M.C.; Mummey, D.L. Mycorrhizas and soil structure. New Phytol. 2006, 171, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Schlatter, D.C.; Bakker, M.G.; Bradeen, J.M.; Kinkel, L.L. Plant community richness and microbial interactions structure bacterial communities in soil. Ecology 2015, 96, 134–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osborne, C.A.; Zwart, A.B.; Broadhurst, L.M.; Young, A.G.; Richardson, A.E. The influence of sampling strategies and spatial variation on the detected soil bacterial communities under three different land-use types. FEMS Microbiol. Ecol. 2011, 78, 70–79. [Google Scholar] [CrossRef] [Green Version]
- Ren, C.; Liu, W.; Zhao, F.; Zhong, Z.; Deng, J.; Han, X.; Yang, G.; Feng, Y.; Ren, G. Soil bacterial and fungal diversity and compositions respond differently to forest development. Catena 2019, 181, 104071. [Google Scholar] [CrossRef]
- Kim, M.; Boldgiv, B.; Singh, D.; Chun, J.; Lkhagva, A.; Adams, J.M. Structure of soil bacterial communities in relation to environmental variables in a semi-arid region of Mongolia. J. Arid Environ. 2013, 89, 38–44. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, C.; Cui, Z.; Qian, W.; Liang, C.; Wang, C. Soil bacterial community restoration along a chronosequence of sand-fixing plantations on moving sand dunes in the Horqin sandy land in northeast China. J. Arid Environ. 2019, 165, 81–87. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, X.; Wu, Y.; Zhang, L.; Cheng, J.; Wei, G.; Lin, Y. Natural revegetation of a semiarid habitat alters taxonomic and functional diversity of soil microbial communities. Sci. Total Environ. 2018, 635, 598–606. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.P.d.A.; Andrade, P.A.M.d.; Bini, D.; Durrer, A.; Robin, A.; Bouillet, J.P.; Andreote, F.D.; Cardoso, E.J.B.N. Shifts in the bacterial community composition along deep soil profiles in monospecific and mixed stands of Eucalyptus grandis and Acacia mangium. PLoS ONE 2017, 12, e0180371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banning, N.C.; Gleeson, D.B.; Grigg, A.H.; Grant, C.D.; Andersen, G.L.; Brodie, E.L.; Murphy, D. Soil microbial community successional patterns during forest ecosystem restoration. Appl. Environ. Microbiol. 2011, 77, 6158–6164. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Cai, A.; Wang, J.; Luo, Y.; Cheng, X.; An, S. Exotic Spartina alterniflora Loisel. Invasion significantly shifts soil bacterial communities with the successional gradient of saltmarsh in eastern China. Plant Soil 2020, 449, 97–115. [Google Scholar] [CrossRef]
- Lange, M.; Eisenhauer, N.; Sierra, C.A.; Bessler, H.; Engels, C.; Griffiths, R.I.; Mellado-Vázquez, P.G.; Malik, A.A.; Roy, J.; Scheu, S. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 2015, 6, 6707. [Google Scholar] [CrossRef]
- Koo, B.J.; Adriano, D.C.; Bolan, N.S.; Barton, C.D. Root Exudates and Microorganisms. In Encyclopedia of Soils in the Environment; Hillel, D., Ed.; Elsevier: Oxford, UK, 2005; pp. 421–428. [Google Scholar] [CrossRef]
- Card, S.; Quideau, S. Microbial community structure in restored riparian soils of the Canadian prairie pothole region. Soil Biol. Biochem. 2010, 42, 1463–1471. [Google Scholar] [CrossRef]
- Nielsen, U.N.; Wall, D.H.; Six, J. Soil biodiversity and the environment. Annu. Rev. Environ. Resour. 2015, 40, 63–90. [Google Scholar] [CrossRef]
- Lu, M.; Ren, Y.; Wang, S.; Kun, T.; Xiangyang, S.; Shuxian, P. Contribution of soil variables to bacterial community composition following land use change in Napahai plateau wetlands. J. Environ. Manag. 2019, 246, 77–84. [Google Scholar] [CrossRef]
- Rodrigues, J.L.; Pellizari, V.H.; Mueller, R.; Baek, K.; Jesus, E.d.C.; Paula, F.S.; Mirza, B.; Hamaoui, G.S.; Tsai, S.M.; Feigl, B. Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proc. Natl. Acad. Sci. USA 2013, 110, 988–993. [Google Scholar] [CrossRef] [Green Version]
- Upton, R.N.; Checinska Sielaff, A.; Hofmockel, K.S.; Xu, X.; Polley, H.W.; Wilsey, B.J. Soil depth and grassland origin cooperatively shape microbial community co-occurrence and function. Ecosphere 2020, 11, e02973. [Google Scholar] [CrossRef] [Green Version]
- Gregory, P.J. Plant Roots: Growth, Activity and Interactions with the Soil; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Churchland, C.; Grayston, S.J. Specificity of plant-microbe interactions in the tree mycorrhizosphere biome and consequences for soil C cycling. Front. Microbiol. 2014, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.; Cheng, X.; Shu, X.; Liu, Y.; Zhang, Q. Linking soil bacterial and fungal communities to vegetation succession following agricultural abandonment. Plant Soil 2018, 431, 19–36. [Google Scholar] [CrossRef]
- Standards Reference Group SERA. National Standards for the Practice of Ecological Restoration in Australia, 2nd ed.; Society for Ecological Restoration Australasia: Hamilton, New Zealand, 2018. [Google Scholar]
- Zhao, M.; Yin, C.; Tao, Y.; Li, C.; Fang, S. Diversity of soil microbial community identified by Biolog method and the associated soil characteristics on reclaimed Scirpus mariqueter wetlands. SN Appl. Sci. 2019, 1, 1408. [Google Scholar] [CrossRef] [Green Version]
- González, E.; Sher, A.A.; Tabacchi, E.; Masip, A.; Poulin, M. Restoration of riparian vegetation: A global review of implementation and evaluation approaches in the international, peer-reviewed literature. J. Environ. Manag. 2015, 158, 85–94. [Google Scholar] [CrossRef]
- Tiedje, J.M.; Asuming-Brempong, S.; Nüsslein, K.; Marsh, T.L.; Flynn, S.J. Opening the black box of soil microbial diversity. Appl. Soil Ecol. 1999, 13, 109–122. [Google Scholar] [CrossRef]
- Yan, D.; Bissett, A.; Gellie, N.; Mills, J.G.; Lowe, A.J.; Breed, M.F. Soil bacterial community differences along a coastal restoration chronosequence. Plant Ecol. 2020, 221, 795–811. [Google Scholar] [CrossRef]
- Whited, D.C.; Lorang, M.S.; Harner, M.J.; Hauer, F.R.; Kimball, J.S.; Stanford, J.A. Climate, hydrologic disturbance, and succession: Drivers of floodplain pattern. Ecology 2007, 88, 940–953. [Google Scholar] [CrossRef] [Green Version]
- Naiman, R.J.; Decamps, H.; McClain, M.E. Riparia: Ecology, Conservation, and Management of Streamside Communities; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Harner, M.J.; Opitz, N.; Geluso, K.; Tockner, K.; Rillig, M.C. Arbuscular mycorrhizal fungi on developing islands within a dynamic river floodplain: An investigation across successional gradients and soil depth. Aquat. Sci. 2011, 73, 35–42. [Google Scholar] [CrossRef]
- Van Der Nat, D.; Tockner, K.; Edwards, P.J.; Ward, J.; Gurnell, A.M. Habitat change in braided flood plains (Tagliamento, NE-Italy). Freshw. Biol. 2003, 48, 1799–1812. [Google Scholar] [CrossRef]
- Stanford, J.A.; Lorang, M.; Hauer, F. The shifting habitat mosaic of river ecosystems. Int. Ver. Für Theor. Und Angew. Limnol. Verh. 2005, 29, 123–136. [Google Scholar] [CrossRef]
- Nakamura, F.; Shin, N.; Inahara, S. Shifting mosaic in maintaining diversity of floodplain tree species in the northern temperate zone of Japan. For. Ecol. Manag. 2007, 241, 28–38. [Google Scholar] [CrossRef] [Green Version]
- McClain, C.D.; Holl, K.D.; Wood, D.M. Successional models as guides for restoration of riparian forest understory. Restor. Ecol. 2011, 19, 280–289. [Google Scholar] [CrossRef]
- Hansen, B.D.; Reich, P.; Cavagnaro, T.R.; Lake, P. Challenges in applying scientific evidence to width recommendations for riparian management in agricultural Australia. Ecol. Manag. Restor. 2015, 16, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Naiman, R.J.; Decamps, H.; Pollock, M. The role of riparian corridors in maintaining regional biodiversity. Ecol. Appl. 1993, 3, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Cantrell, S.A.; Molina, M.; Lodge, D.J.; Rivera-Figueroa, F.J.; Ortiz-Hernández, M.L.; Marchetti, A.A.; Cyterski, M.J.; Pérez-Jiménez, J.R. Effects of a simulated hurricane disturbance on forest floor microbial communities. For. Ecol. Manag. 2014, 332, 22–31. [Google Scholar] [CrossRef]
- González, G.; Lodge, D.J.; Richardson, B.A.; Richardson, M.J. A canopy trimming experiment in Puerto Rico: The response of litter decomposition and nutrient release to canopy opening and debris deposition in a subtropical wet forest. For. Ecol. Manag. 2014, 332, 32–46. [Google Scholar] [CrossRef]
- Ossola, A.; Aponte, C.; Hahs, A.K.; Livesley, S.J. Contrasting effects of urban habitat complexity on metabolic functional diversity and composition of litter and soil bacterial communities. Urban Ecosyst. 2017, 20, 595–607. [Google Scholar] [CrossRef]
- CSIRO Land and Water. Australian Soil Resource Information System; CSIRO Land and Water: Collingwood, Australia, 2013. [Google Scholar]
- Bureau of Meterology. Climate Statistics for Australian locations; Bureau of Meterology: Melbourne, Australia, 2020. [Google Scholar]
- Cottam, G.; Curtis, J.T. The use of distance measures in phytosociological sampling. Ecology 1956, 37, 451–460. [Google Scholar] [CrossRef]
- Canfield, R.H. Application of the line interception method in sampling range vegetation. J. For. 1941, 39, 388–394. [Google Scholar] [CrossRef]
- Bissett, A.; Fitzgerald, A.; Meintjes, T.; Mele, P.M.; Reith, F.; Dennis, P.G.; Breed, M.F.; Brown, B.; Brown, M.V.; Brugger, J.; et al. Introducing BASE: The biomes of Australian soil environments soil microbial diversity database. GigaScience 2016, 5, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CSBP Lab. CSBP Lab Methods. CSBP Lab: 2 Altona Street, Bibra Lake, WA 6163. 2019. Available online: https://www.csbp.com.au/docs/default-source/csbp-lab/csbp-lab-methods-1118.pdf (accessed on 22 January 2020).
- Lane, D. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics; Stackebrandt, E., Goodfellow, M., Eds.; John Wiley & Sons: New York, NY, USA, 1991; Volume 5, pp. 125–175. [Google Scholar]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgar, R.C.; Flyvbjerg, H. Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics 2015, 31, 3476–3482. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [Green Version]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. Waste not, want not: Why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 2014, 10, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peet, R.K. The measurement of species diversity. Annu. Rev. Ecol. Syst. 1974, 5, 285–307. [Google Scholar] [CrossRef]
- Garland, J.L. Analysis and interpretation of community-level physiological profiles in microbial ecology. Fems Microbiol. Ecol. 1997, 24, 289–300. [Google Scholar] [CrossRef]
- Hill, G.; Mitkowski, N.; Aldrich-Wolfe, L.; Emele, L.; Jurkonie, D.; Ficke, A.; Maldonado-Ramirez, S.; Lynch, S.; Nelson, E. Methods for assessing the composition and diversity of soil microbial communities. Appl. Soil Ecol. 2000, 15, 25–36. [Google Scholar] [CrossRef]
- Haack, S.K.; Garchow, H.; Odelson, D.A.; Forney, L.J.; Klug, M.J. Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities. Appl. Environ. Microbiol. 1994, 60, 2483–2493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jałowiecki, Ł.; Chojniak, J.M.; Dorgeloh, E.; Hegedusova, B.; Ejhed, H.; Magnér, J.; Płaza, G.A. Microbial community profiles in wastewaters from onsite wastewater treatment systems technology. PLoS ONE 2016, 11, e0147725. [Google Scholar] [CrossRef]
- Miki, T.; Yokokawa, T.; Ke, P.J.; Hsieh, I.F.; Hsieh, C.h.; Kume, T.; Yoneya, K.; Matsui, K. Statistical recipe for quantifying microbial functional diversity from EcoPlate metabolic profiling. Ecol. Res. 2018, 33, 249–260. [Google Scholar] [CrossRef]
- Garland, J. Potential and limitations of BIOLOG for microbial community analysis. In Microbial Biosystems: New Frontiers, Proceedings of the 8th International Symposium on Microbial Ecology, Halifax, NS, Canada, 9–14 August 1998; Atlantic Canada Society for Microbial Ecology: Halifax, NS, Canada, 1999; pp. 1–7. [Google Scholar]
- Perujo, N.; Romaní, A.M.; Martín-Fernández, J.A. Microbial community-level physiological profiles: Considering whole data set and integrating dynamics of colour development. Ecol. Indic. 2020, 117, 106628. [Google Scholar] [CrossRef]
- Poyraz, N.; Mutlu, M.B. Assessment of Changes in Microbial Communities in Different Operational Units from a Wastewater Treatment Plant. Pol. J. Environ. Stud. 2017, 26. [Google Scholar] [CrossRef]
- Schmitt, H.; Haapakangas, H.; van Beelen, P. Effects of antibiotics on soil microorganisms: Time and nutrients influence pollution-induced community tolerance. Soil Biol. Biochem. 2005, 37, 1882–1892. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. arXiv 2014, arXiv:0.18637/jss.v067.i01. [Google Scholar]
- Lenth, R. Estimated Marginal Means, Aka Least-Squares Means., 1.4.8; R Package. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 30 December 2020).
- Oksanen, J. Multivariate Analysis of Ecological Communities in R: Vegan Tutorial., 43; R Doc. Available online: https://john-quensen.com/wp-content/uploads/2018/10/Oksanen-Jari-vegantutor.pdf (accessed on 30 December 2020).
- RStudio Team. RStudio: Integrated Development Environment for R 1.0.153; RStudio, Inc.: Boston, MA, USA, 2019; Available online: http://www.r-project.org/ (accessed on 30 December 2020).
- Kassambara, A.; Mundt, F. Extract and Visualize the Results of Multivariate Data Analyses., 1.0.5. R Package. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 30 December 2020).
- Husson, F.; Josse, J.; Le, S.; Mazet, J. Multivariate Exploratory Data Analysis and Data Mining, 2.2; R Package; RStudio, Inc.: Boston, MA, USA, 2020. [Google Scholar]
- Barber, N.A.; Chantos-Davidson, K.M.; Amel Peralta, R.; Sherwood, J.P.; Swingley, W.D. Soil microbial community composition in tallgrass prairie restorations converge with remnants across a 27-year chronosequence. Environ. Microbiol. 2017, 19, 3118–3131. [Google Scholar] [CrossRef]
- Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 2009, 75, 5111–5120. [Google Scholar] [CrossRef] [Green Version]
- Kielak, A.M.; Barreto, C.C.; Kowalchuk, G.A.; van Veen, J.A.; Kuramae, E.E. The ecology of Acidobacteria: Moving beyond genes and genomes. Front. Microbiol. 2016, 7, 744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tin, H.S.; Palaniveloo, K.; Anilik, J.; Vickneswaran, M.; Tashiro, Y.; Vairappan, C.S.; Sakai, K. Impact of land-use change on vertical soil bacterial communities in Sabah. Microb. Ecol. 2018, 75, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Brundrett, M.C.; Grierson, P.F.; Bennett, L.T.; Weston, C.J. Soils and the below-ground interactions that shape Australian vegetation. In Australian Vegetation, 3rd ed.; Keith, D.A., Ed.; Cambridge University Press: Cambridge, UK, 2017; pp. 156–181. [Google Scholar]
- Hemkemeyer, M.; Dohrmann, A.B.; Christensen, B.T.; Tebbe, C.C. Bacterial preferences for specific soil particle size fractions revealed by community analyses. Front. Microbiol. 2018, 9, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seaton, F.M.; George, P.B.; Lebron, I.; Jones, D.L.; Creer, S.; Robinson, D.A. Soil textural heterogeneity impacts bacterial but not fungal diversity. Soil Biol. Biochem. 2020, 144, 107766. [Google Scholar] [CrossRef]
- Waymouth, V.; Miller, R.E.; Ede, F.; Bissett, A.; Aponte, C. Variation in soil microbial communities: Elucidating relationships with vegetation and soil properties, and testing sampling effectiveness. Plant Ecol. 2020, 221, 837–851. [Google Scholar] [CrossRef]
- Cong, P.; Wang, J.; Li, Y.; Liu, N.; Dong, J.; Pang, H.; Zhang, L.; Gao, Z. Changes in soil organic carbon and microbial community under varying straw incorporation strategies. Soil Tillage Res. 2020, 204, 104735. [Google Scholar] [CrossRef]
- Pedrinho, A.; Mendes, L.W.; Merloti, L.F.; Andreote, F.D.; Tsai, S.M. The natural recovery of soil microbial community and nitrogen functions after pasture abandonment in the Amazon region. Fems. Microbiol. Ecol. 2020, 96, fiaa149. [Google Scholar] [CrossRef]
- Canfora, L.; Bacci, G.; Pinzari, F.; Papa, G.L.; Dazzi, C.; Benedetti, A. Salinity and bacterial diversity: To what extent does the concentration of salt affect the bacterial community in a saline soil? PLoS ONE 2014, 9, e106662. [Google Scholar] [CrossRef] [Green Version]
- Rietz, D.; Haynes, R. Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biol. Biochem. 2003, 35, 845–854. [Google Scholar] [CrossRef]
- Tripathi, S.; Kumari, S.; Chakraborty, A.; Gupta, A.; Chakrabarti, K.; Bandyapadhyay, B.K. Microbial biomass and its activities in salt-affected coastal soils. Biol. Fertil. Soils 2006, 42, 273–277. [Google Scholar] [CrossRef]
- Aponte, C.; Marañón, T.; García, L.V. Microbial C, N and P in soils of Mediterranean oak forests: Influence of season, canopy cover and soil depth. Biogeochemistry 2010, 101, 77–92. [Google Scholar] [CrossRef] [Green Version]
- Aponte, C.; Matías, L.; González-Rodríguez, V.; Castro, J.; García, L.V.; Villar, R.; Marañón, T. Soil nutrients and microbial biomass in three contrasting Mediterranean forests. Plant Soil 2014, 380, 57–72. [Google Scholar] [CrossRef]
- Sparling, G. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Soil Res. 1992, 30, 195–207. [Google Scholar] [CrossRef]
- Lugtenberg, B.; Kamilova, F. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 2009, 63, 541–556. [Google Scholar] [CrossRef] [Green Version]
- Tian, Q.; Wang, X.; Wang, D.; Wang, M.; Liao, C.; Yang, X.; Liu, F. Decoupled linkage between soil carbon and nitrogen mineralization among soil depths in a subtropical mixed forest. Soil Biol. Biochem. 2017, 109, 135–144. [Google Scholar] [CrossRef]
- Goberna, M.; Insam, H.; Klammer, S.; Pascual, J.; Sanchez, J. Microbial community structure at different depths in disturbed and undisturbed semiarid Mediterranean forest soils. Microb. Ecol. 2005, 50, 315–326. [Google Scholar] [CrossRef]
Site Characteristic | Yarra River | Little Yarra River | Main Creek | Myrniong Creek | Spring Creek | Whitehorse Creek |
---|---|---|---|---|---|---|
Latitude (°) | −37.690414 | −38.447583 | −38.447583 | −38.447583 | −37.733553 | −37.692834 |
Longitude (°) | 145.837033 | 144.931250 | 144.931250 | 144.931250 | 144.311455 | 144.350005 |
Mean Annual Maximum Temp. (°C) b | 19 | 17 | 17 | 17 | 17 | 17 |
Mean Annual Minimum Temp. (°C) b | 7 | 11 | 11 | 11 | 8 | 8 |
Elevation (m) c | 217 | 120 | 54 | 493 | 232 | 236 |
Annual Rainfall (mm) | 1463 | 1006 | 752 | 854 | 680 | 680 |
Average Slope (%) c | 6 | 8 | 33 | 17 | 11 | 9 |
Australian Soil Classification a | Chromosols | Chromosol | Tenosols, Ferrosols | Kandosols | Kurosols | Kurosols |
Year of Revegetation | 2010 | 2008 | 2011 | 2011 | 2011 | 2014 |
Revegetation age at sampling time (years) | 7 | 9 | 6 | 6 | 6 | 3 |
Strata/Variable | Abbreviations Used C | Land Use | GLM p Value | ||
---|---|---|---|---|---|
Pasture (P) | Revegetated (RV) | Remnant (RM) | |||
Ground cover | |||||
Bare ground (%) | BG | 9.4 (5.1) | 7.6 (2.2) | 11.7 (5.2) | 0.79 |
Litter (%) | L | 35.3 (7.5) | 29.2 (11) | 20.5 (11.7) | 0.43 |
Richness—exotic species | GC_Exotic | 7.5 (0.5) b | 5.0 (1) b | 2.8 (0.9) a | 0.00 |
Richness—native species A | GC_Native | 1.8 (0.7) c | 5.2 (1.1) b | 7.3 (1.3) a | 0.04 |
Total cover (%) | GC_TC | 50.3 (9.6) | 62.9 (10) | 66.7 (10) | 0.32 |
Sub—canopy | |||||
Richness—Acacia spp. B | SC_Acacia | 0.0 (0) b | 1.0 (2.2) ab | 0.7 (5) a | 0.07 |
Total cover (%) | SC_TC | 0.0 (0) c | 32.4 (3.7) b | 52.5 (9.1) a | 0.00 |
Total richness—native and exotic species | SC_TR | 0.0 (0) b | 4.4 (1.1) a | 4 (0.7) a | 0.00 |
Canopy | |||||
Average basal area (m2 ha−1) B | BA | 0 (0) b | 86.7 (42) a | 48.2 (11.5) a | 0.04 |
Average basal area of Eucalyptus spp. (m2 ha−1) B | BA_Euc | 0.00 (0.00) b | 0.08 (0.04) a | 0.22 (0.06) a | 0.00 |
Average point to plant distance (m) | APPD | 50.2 (0.56) c | 22.8 (2.74) b | 10.5 (1.59) a | 0.00 |
Relative density (stems ha−1) B | RD | 0 (0) c | 0.7 (0.1) b | 0.9 (0.0) a | 0.00 |
Abundance—Eucalyptus spp. B | C_Euc | 0.0 (0) b | 3.0 (0.8) a | 2.8 (0.7) a | 0.01 |
Total density (trees ha−1) | C_Den | 0 (0) b | 403 (158) a | 261 (98) a | 0.04 |
Total richness B | C_Rich | 0.0 (0) b | 3.0 (0.9) a | 3.4 (0.6) a | 0.01 |
All strata | |||||
Richness | 9.39 (0.94) b | 21.7 (5.30) a | 22.4 (2.28) a | 0.00 | |
Multivariate PERMANOVA | b | a | a | 0.00 |
Variable | Abbreviations Used C | Depth (cm) | Land Use | GLM p Value and Pairwise Differences | ||||
---|---|---|---|---|---|---|---|---|
Pasture (P) | Revegetated (RV) | Remnant (RM) | L | D | L × D | |||
pH (H2O) | pH | 0–10 | 4.93 | 4.85 | 4.13 | 0.00 P b, RV b, RM a | 0.80 | 0.49 |
20–30 | 4.78 | 4.93 | 4.27 | |||||
Electrical conductivity (ds m−1) B | Conductivity | 0–10 | 0.39 (0.05) | 0.55 (0.18) | 0.41 (0.04) | 0.24 | 0.20 | 0.77 |
20–30 | 0.34 (0.05) | 0.41 (0.05) | 0.36 (0.07) | |||||
NH4+-N (mg kg−1) A | NH4-N | 0–10 | 30.7 (4.89) | 22.7 (6.14) | 28.8 (7.96) | 0.24 | 0.00 | 0.73 |
20–30 | 20.5 (6.47) | 17.2 (4.46) | 12.3 (2.93) | |||||
NO3− N (mg kg−1) | NO3-N | 0–10 | 5.68 (2.33) | 3.55 (1.56) | 4.18 (1.59) | 0.11 | 1.00 | 0.09 |
20–30 | 5.18 (1.98) | 6.88 (3.05) | 1.37 (0.54) | |||||
Available phosphorus (mg kg−1) | P | 0–10 | 35.8 (8.62) | 24.5 (5.26) | 17.2 (3.06) | 0.03 P b, RV ab, RM a | 0.03 | 0.50 |
20–30 | 20.3 (5.60) | 17.3 (5.11) | 13.0 (4.16) | |||||
Organic carbon (%) | C | 0–10 | 3.56 (0.48) | 2.68 (0.36) | 3.03 (0.52) | 0.88 | 0.02 | 0.24 |
20–30 | 2.10 (0.40) | 2.58 (0.35) | 2.31 (0.60) | |||||
Total nitrogen (mg kg−1) | N | 0–10 | 36.4 (6.96) | 26.2 (6.96) | 33 (9.30) | 0.42 | 0.03 | 0.37 |
20–30 | 25.7 (8.38) | 24.0 (7.24) | 13.7 (2.84) | |||||
Sulphur (mg kg−1) | S | 0–10 | 34.2 (5.04) | 57.2 (27.5) | 25.7 (5.88) | 0.06 | 0.34 | 1.00 |
20–30 | 22.8 (6.53) | 46.2 (28.1) | 16.7 (2.75) | |||||
Boron (mg kg−1) B | B | 0–10 | 0.91 (0.36) | 0.96 (0.25) | 0.95 (0.15) | 0.91 | 0.09 | 0.80 |
20–30 | 0.79 (0.37) | 0.78 (0.25) | 0.60 (0.13) | |||||
Copper (mg kg−1) | Cu | 0–10 | 1.43 (0.20) | 1.50 (0.18) | 1.25 (0.24) | 0.07 | 0.24 | 0.79 |
20–30 | 1.40 (0.06) | 1.32 (0.16) | 1.13 (0.13) | |||||
Aluminum (meq 100 g−1) | Al | 0–10 | 0.83 (0.46) | 0.75 (0.41) | 1.68 (0.65) | 0.00 P b, RV b, RM a | 0.62 | 0.50 |
20–30 | 1.12 (0.52) | 0.91 (0.53) | 1.49 (0.48) | |||||
Calcium (meq 100 g−1) B | Ca | 0–10 | 8.91 (3.80) | 8.31 (4.20) | 3.60 (0.97) | 0.01 P b, RV b, RM a | 0.07 | 0.94 |
20–30 | 6.93 (4.58) | 6.65 (3.86) | 2.38 (0.81) | |||||
Magnesium (meq 100 g−1) | Mg | 0–10 | 1.86 (0.46) | 1.88 (0.32) | 1.41 (0.23) | 0.17 | 0.35 | 0.97 |
20–30 | 1.58 (0.52) | 1.72 (0.43) | 1.22 (0.46) | |||||
Potassium (meq 100 g−1) | K | 0–10 | 0.34 (0.08) | 0.25 (0.05) | 0.41 (0.12) | 0.60 | 0.40 | 0.45 |
20–30 | 0.22 (0.05) | 0.31 (0.13) | 0.30 (0.15) | |||||
Sodium (meq 100 g−1) | Na | 0–10 | 0.26 (0.07) | 0.27 (0.05) | 0.21 (0.04) | 0.39 | 0.15 | 0.79 |
20–30 | 0.33 (0.12) | 0.42 (0.17) | 0.26 (0.11) | |||||
Iron (mg kg−1) | Fe | 0–10 | 301 (54.3) | 247 (64.6) | 282 (63.0) | 0.69 | 0.00 | 0.78 |
20–30 | 193 (38.3) | 189 (45.3) | 204 (61.8) | |||||
Manganese (mg kg−1) | Mn | 0–10 | 30.3 (6.14) | 30.8 (8.36) | 29.6 (9.98) | 0.60 | 0.00 | 0.68 |
20–30 | 12.6 (3.16) | 22.4 (7.64) | 13.4 (3.50) | |||||
Zinc (mg kg−1) | Zn | 0–10 | 3.41 (0.89) | 3.18 (0.56) | 2.58 (0.63) | 0.20 | 0.21 | 0.63 |
20–30 | 2.37 (0.77) | 3.24 (1.02) | 1.57 (0.41) | |||||
Clay (%) (<2 µm) | Clay | 0–10 | 20.7 (3.80) | 16.2 (2.76) | 18.9 (3.75) | 0.00 P b, RV a, RM ab | 0.23 | 0.87 |
20–30 | 19.8 (3.23) | 15.5 (2.26) | 16.9 (3.16) | |||||
Silt (%) (2–20 µm) A | Silt | 0–10 | 22.5 (3.30) | 16.2 (2.17) | 15.9 (3.54) | 0.00 P b, RV a, RM a | 0.66 | 0.90 |
20–30 | 23.9 (2.85) | 15.4 (1.04) | 15.7 (3.84) | |||||
Sand (%) (20–2000 µm) | Sand | 0–10 | 56.7 (5.95) | 67.6 (2.34) | 65.3 (6.82) | 0.00 P b, RV a, RM a | 0.66 | 0.90 |
20–30 | 56.2 (4.57) | 69.2 (1.55) | 67.4 (6.94) | |||||
Soil moisture (%) A | 0–10 | 1.11 (0.15) | 1.10 (0.12) | 1.20 (0.07) | 0.57 | - | - | |
Bulk density (g cm−3) B | 0–10 | 5.6 (4.92) | 0.76 (0.05) | 0.67 (0.07) | 0.07 | - | - | |
Multivariate PERMANOVA | 0.78 | 0.16 | 1.00 |
Land-Use Pair | F Value | p Value |
---|---|---|
Bacterial taxonomic composition | ||
RM v. P | 2.15 | 0.03 |
RM v. RV | 1.42 | 0.09 |
RV v. P | 0.92 | 0.52 |
Bacterial functional composition (AWCD) | ||
RM v. P | 0.24 | 0.80 |
RM v. RV | 1.87 | 0.17 |
RV v. P | 1.78 | 0.20 |
Bacterial functional composition (AUC) | ||
RM v. P | 0.19 | 0.43 |
RM v. RV | 4.66 | 0.03 |
RV v. P | 3.79 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waymouth, V.; Miller, R.E.; Kasel, S.; Ede, F.; Bissett, A.; Aponte, C. Soil Bacterial Community Responds to Land-Use Change in Riparian Ecosystems. Forests 2021, 12, 157. https://doi.org/10.3390/f12020157
Waymouth V, Miller RE, Kasel S, Ede F, Bissett A, Aponte C. Soil Bacterial Community Responds to Land-Use Change in Riparian Ecosystems. Forests. 2021; 12(2):157. https://doi.org/10.3390/f12020157
Chicago/Turabian StyleWaymouth, Vicky, Rebecca E. Miller, Sabine Kasel, Fiona Ede, Andrew Bissett, and Cristina Aponte. 2021. "Soil Bacterial Community Responds to Land-Use Change in Riparian Ecosystems" Forests 12, no. 2: 157. https://doi.org/10.3390/f12020157
APA StyleWaymouth, V., Miller, R. E., Kasel, S., Ede, F., Bissett, A., & Aponte, C. (2021). Soil Bacterial Community Responds to Land-Use Change in Riparian Ecosystems. Forests, 12(2), 157. https://doi.org/10.3390/f12020157