Changes in Soil C, N, and P Concentrations and Stoichiometry in Karst Trough Valley Area under Ecological Restoration: The Role of Slope Aspect, Land Use, and Soil Depth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Measurements
2.3. Statistical Analysis
3. Results
3.1. Soil C, N, and P Concentrations
3.2. Soil C, N, and P Stoichiometry
3.3. Selected Soil Physical and Chemical Variables
3.4. Relationships between Selected Soil Physicochemical Variables and C, N, and P Traits
4. Discussion
4.1. Effects of Slope Aspect, Land Use, and Soil Depth on C, N, and P Concentrations
4.2. Effects of Slope Aspect, Land Use, and Soil Depth on C, N, and P Stoichiometry
4.3. Effects of Slope Aspect, Land Use, and Soil Depth on Selected Physicochemical Properties and Their Linkages with C, N, and P Traits
4.4. Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Finzi, A.C.; Austin, A.T.; Cleland, E.E.; Frey, S.D.; Houlton, B.Z.; Wallenstein, M.D. Responses and feedbacks of coupled biogeochemical cycles to climate change: Examples from terrestrial ecosystems. Front. Ecol. Environ. 2011, 9, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Baquerizo, M.; Maestre, F.T.; Gallardo, A.; Bowker, M.A.; Wallenstein, M.D.; Quero, J.L.; Ochoa, V.; Gozalo, B.; Garcia-Gomez, M.; Soliveres, S.; et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 2013, 502, 672–676. [Google Scholar] [CrossRef] [PubMed]
- Falkengren-Gerup, U.; ten Brink, D.J.; Brunet, J. Land use effects on soil N, P, C and pH persist over 40–80 years of forest growth on agricultural soils. For. Ecol. Manag. 2006, 225, 74–81. [Google Scholar] [CrossRef]
- Ramsar. The Ramsar Convention Manual: A Guide to the Convention on Wetlands (Ramsar, Iran, 1971), 6th ed.; Ramsar Convention Secretariat: Gland, Switzerland, 2013; 110p. [Google Scholar]
- Wang, W.; Sardans, J.; Zeng, C.; Zhong, C.; Li, Y.; Penuelas, J. Responses of soil nutrient concentrations and stoichiometry to different human land uses in a subtropical tidal wetland. Geoderma 2014, 232, 459–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sariyildiz, T.; Anderson, J.M.; Kucuk, M. Effects of tree species and topography on soil chemistry, litter quality, and decomposition in northeast turkey. Soil Biol. Biochem. 2005, 37, 1695–1706. [Google Scholar] [CrossRef]
- Fernández-Romero, M.L.; Lozano-García, B.; Parras-Alcántara, L. Topography and land use change effects on the soil organic carbon stock of forest soils in Mediterranean natural areas. Agric. Ecosyst. Environ. 2014, 195, 1–9. [Google Scholar] [CrossRef]
- Elser, J.J.; Fagan, W.F.; Denno, R.F.; Dobberfuhl, D.R.; Folarin, A.; Huberty, A.; Siemann, E.H. Nutritional constraints in terrestrial and freshwater food webs. Nature 2000, 408, 578. [Google Scholar] [CrossRef]
- Cleveland, C.; Liptzin, D. C: N: P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 2007, 85, 235–252. [Google Scholar] [CrossRef]
- Gao, Y.; He, N.; Yu, G.; Chen, W.; Wang, Q. Long-term effects of different land use types on C, N, and P stoichiometry and storage in subtropical ecosystems: A case study in China. Ecol. Eng. 2014, 67, 171–181. [Google Scholar] [CrossRef]
- Kutiel, P. Slope aspect effect on soil and vegetation in a Mediterranean ecosystem. Isr. J. Bot. 1992, 41, 243–250. [Google Scholar]
- Sigua, G.C.; Coleman, S.W.; Albano, J.; Williams, M. Spatial distribution of soil phosphorus and herbage mass in beef cattle pastures: Effects of slope aspect and slope position. Nutr. Cycl. Agroecosyst. 2011, 89, 59–70. [Google Scholar] [CrossRef]
- Gebrelibanos, T.; Assen, M. Effects of slope aspect and vegetation types on selected soil properties in a dryland Hirmi watershed and adjacent agro-ecosystem, northern highlands of Ethiopia. Afr. J. Ecol. 2013, 52, 292–299. [Google Scholar] [CrossRef]
- Åström, M.; Dynesius, M.; Hylander, K.; Nilsson, C. Slope aspect modifies community responses to clear-cutting in Boreal forests. Ecology 2007, 88, 749–758. [Google Scholar] [CrossRef] [Green Version]
- Sidari, M.; Ronzello, G.; Vecchio, G.; Muscolo, A. Influence of slope aspects on soil chemical and biochemical properties in a Pinus laricio forest ecosystem of Aspromonte (Southern Italy). Eur. J. Soil Biol. 2008, 44, 364–372. [Google Scholar] [CrossRef]
- Chu, H.Y.; Xiang, X.J.; Yang, J.; Adams, J.M.; Zhang, K.P.; Li, Y.T.; Shi, Y. Effects of slope aspect on soil bacterial and arbuscular fungal communities in a boreal forest in China. Pedosphere 2016, 26, 226–234. [Google Scholar] [CrossRef]
- Xu, X.F.; Thornton, P.E.; Post, W.M. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Glob. Ecol. Biogeogr. 2013, 22, 737–749. [Google Scholar] [CrossRef]
- Li, T.Y.; Wang, C.Y.; He, B.H.; Liang, C.; Zhang, Y.; Zhang, Y.Q. Soil nutrient concentrations and stoichiometry under different tree-cropping systems in a purple hillslope in southwestern China. Arch. Agron. Soil Sci. 2019, 65, 741–754. [Google Scholar] [CrossRef]
- Powers, J.S. Changes in soil carbon and nitrogen after contrasting land-use transitions in Northeastern Costa Rica. Ecosystems 2004, 7, 134–146. [Google Scholar] [CrossRef]
- Xu, H.; Qu, Q.; Li, P.; Guo, Z.; Wulan, E.; Xue, S. Stocks and stoichiometry of soil organic carbon, total nitrogen, and total phosphorus after vegetation restoration in the Loess Hilly Region, China. Forests 2019, 10, 27. [Google Scholar] [CrossRef] [Green Version]
- Tischer, A.; Potthast, K.; Hamer, U. Land-use and soil depth affect resource and microbial stoichiometry in a tropical mountain rainforest region of southern Ecuador. Oecologia 2014, 175, 375–393. [Google Scholar] [CrossRef]
- Kinoshita, R.; Schindelbeck, R.R.; van Es, H.M. Quantitative soil profile-scale assessment of the sustainability of long-term maize residue and tillage management. Soil Tillage Res. 2017, 174, 34–44. [Google Scholar] [CrossRef]
- Tian, H.; Chen, G.; Zhang, C.; Melillo, J.M.; Hall, C.A. Pattern and variation of C: N: P ratios in China’s soils: A synthesis of observational data. Biogeochemistry 2010, 98, 139–151. [Google Scholar] [CrossRef]
- Liu, X.; Ma, J.; Ma, Z.W.; Li, L.H. Soil nutrient contents and stoichiometry as affected by land use in an agro-pastoral region of northwest China. Catena 2017, 150, 146–153. [Google Scholar] [CrossRef]
- Wang, K.L.; Zhang, C.H.; Chen, H.S.; Yue, Y.M.; Zhang, W.; Zhang, M.Y.; Qi, X.K.; Fu, Z.Y. Karst landscapes of China: Patterns, ecosystem processes and services. Landsc. Ecol. 2019, 34, 2743–2763. [Google Scholar] [CrossRef] [Green Version]
- Li, D.J.; Wen, L.; Yang, L.Q.; Luo, P.; Xiao, K.; Chen, H.; Zhang, W.; He, X.Y.; Chen, H.S.; Wang, K.L. Dynamics of soil organic carbon and nitrogen following agricultural abandonment in a karst region. J. Geophys. Res. Biogeosci. 2017, 122, 230–242. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, P.; Zhu, T.; Li, Q.; Cao, J. The characteristics of soil C, N, and P stoichiometric ratios as affected by geological background in a Karst Graben Area, Southwest China. Forests 2019, 10, 601. [Google Scholar] [CrossRef] [Green Version]
- Li, D.J.; Wen, L.; Zhang, W.; Yang, L.Q.; Xiao, K.C.; Chen, H.; Wang, K.L. Afforestation effects on soil organic carbon and nitrogen pools modulated by lithology. For. Ecol. Manag. 2017, 400, 85–92. [Google Scholar] [CrossRef]
- Zou, X.G.; Yang, Y.; Xu, G.; Tian, N.; You, X.H.; He, Z.L.; Tian, H.M.; Zeng, Z.Z. Chemical characteristics of surface spring in the rehabilitation area of karst rock desertification: A case study at Laoquan in the Pepper planting area of Ganxi Town, Youyang County, Chongqing City, China. Earth Environ. 2018, 46, 524–533, (In Chinese with Abstract in English). [Google Scholar]
- You, X.H.; Yang, Y.; Xu, G.; Zou, X.G.; Zeng, Z.Z. Comparison of the soil moisture variations of inclined slope in Longtan Karst Trough Area, Chongqing, China. Mt. Res. 2019, 37, 53–61, (In Chinese with Abstract in English). [Google Scholar]
- Wang, H.S.; Xiong, K.N.; Zhang, F.M. Mechanism study on effects of terrain on soil erosion of Karst slope. Bull. Soil Water Conserv. 2015, 35, 1–7, (In Chinese with Abstract in English). [Google Scholar]
- Liu, M.; Han, G.L.; Zhang, Q. Effects of agricultural abandonment on soil aggregation, soil organic carbon storage and stabilization: Results from observation in a small karst catchment, Southwest China. Agric. Ecosyst. Environ. 2020, 288, 106719. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; Page, A.L., Ed.; ASA Publications: Madison, WI, USA, 1982; pp. 539–577. [Google Scholar]
- Institute of Soil Sciences; Chinese Academy of Sciences (ISSCAS). Physical and Chemical Analysis Methods of Soils; Shanghai Science Technology Press: Shanghai, China, 1978. (In Chinese) [Google Scholar]
- Jiang, L.; He, Z.S.; Liu, J.F.; Xing, C.; Gu, X.G.; Wei, C.S.; Zhu, J.; Wang, X.L. Elevation gradient altered soil C, N, and P stoichiometry of Pinus taiwanensis Fores on Daiyun Mountain. Forests 2019, 10, 1089. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.Y.; Feng, Q.; Holden, N.M.; Cao, J.J. Variation in soil organic carbon by slope aspect in the middle of the Qilian Mountains in the upper Heihe River Basin, China. Catena 2016, 147, 308–314. [Google Scholar] [CrossRef]
- Gelsomino, A.; Badalucco, L.; Landi, L.; Cacco, G. Soil carbon, nitrogen and phosphorus dynamics as affected by solarization alone or combined with organic amendment. Northwest Sci. 2006, 279, 307–325. [Google Scholar] [CrossRef]
- Marion, G.M.; Black, C.H. Potentially available nitrogen and phosphorus along a chaparral fire cycle Chronosequence. Soil Sci. Soc. Am. J. 1988, 52, 1155–1162. [Google Scholar] [CrossRef]
- Zhang, Q.; Yao, B.H.; Wang, C.; Kang, Y.K.; Guo, H.L.; Yang, J.; Yang, Y.B.; Su, J.H. Soil physical and chemical characteristics and microbial proportions in an alpine meadow with different slopes. Acta Ecol. Sin. 2019, 39, 3167–3174, (In Chinese with Abstract in English). [Google Scholar]
- Gong, X.; Brueck, H.; Giese, K.M.; Zhang, L.; Sattelmacher, B.; Lin, S. Slope aspect has effects on productivity and species composition of hilly grassland in the Xilin River Basin, Inner Mongolia, China. J. Arid. Environ. 2008, 72, 483–493. [Google Scholar] [CrossRef]
- Beullens, J.; Velde, D.V.D.; Nyssen, J. Impact of slope aspect on hydrological rainfall and on the magnitude of rill erosion in Belgium and northern France. Catena 2014, 114, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, M.T.; Humphreys, G.S. Slope aspect, slope length and slope inclination controls of shallow soils vegetated by sclerophyllous heath-links to long-term landscape evolution. Geomorphology 2006, 76, 347–362. [Google Scholar] [CrossRef]
- Wang, M.M.; Chen, H.S.; Zhang, W.; Wang, K.L. Influencing factors on soil nutrients at different scales in a karst area. Catena 2019, 175, 411–420. [Google Scholar] [CrossRef]
- Mariotte, P.; Mehrabi, Z.; Bezemer, T.M.; De Deyn, G.B.; Kulmatiski, A.; Drigo, B.; Veen, G.G.; van der Heijden, M.G.A.; Kardol, P. Plant-soil feedback: Bridging natural and agricultural sciences. Trends Ecol. Evol. 2018, 33, 129–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Withers, P.J.A.; Hodgkinson, R.A. The effect of farming practices on phosphorus transfer to a headwater stream in England. Agric. Ecosyst. Environ. 2009, 131, 347–355. [Google Scholar] [CrossRef]
- Luo, X.Z.; Hou, E.Q.; Chen, J.Q.; Li, J.; Zhang, L.L.; Zang, X.W.; Wen, D.Z. Dynamics of carbon, nitrogen, and phosphorus stocks and stoichiometry resulting from conversion of primary broadleaf forest to plantation and secondary forest in subtropical China. Catena 2020, 193, 104606. [Google Scholar] [CrossRef]
- Hartmann, J.; Moosdorf, N.; Lauerwald, R.; Hinderer, M.; West, A.J. Global chemical weathering and associated P-release—The role of lithology, temperature and soil properties. Chem. Geol. 2014, 363, 145–163. [Google Scholar] [CrossRef]
- Bui, E.N.; Henderson, B.L. C: N: P stoichiometry in Australian soils with respect to vegetation and environmental factors. Plant Soil 2013, 373, 553–568. [Google Scholar] [CrossRef]
- Geroy, I.J.; Gribb, M.M.; Marshall, H.P.; Chandler, D.G.; Benner, S.G.; McNamara, J.P. Aspect influences on soil water retention and storage. Hydrol. Process. 2011, 25, 3836–3842. [Google Scholar] [CrossRef]
- Mohammadi, J.; Motaghian, M.H. Spatial prediction of soil aggregate stability and aggregate-associated organic carbon content at the catchment scale using Geostatistical techniques. Pedosphere 2011, 21, 389–399. [Google Scholar] [CrossRef]
- Pulleman, M.M.; Six, J.; Breemen, N.V.; Jongmans, A.G. Soil organic matter distribution and microaggregate characteristics as affected by agricultural management and earthworm activity. Eur. J. Soil Sci. 2005, 56, 453–467. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.Y.; Jansen, B.; Absalah, S.; van Hall, R.L.; Kalbitz, K.; Cammeraat, E.L.H. Lithology—And climate-controlled soil aggregate-size distribution and organic carbon stability in the Peruvian Andes. Soil 2020, 6, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.M.; Chen, H.S.; Zhang, W.; Wang, K.L. Soil nutrients and stoichiometric ratios as affected by land use and lithology at county scale in karst area, southwest China. Sci. Total Environ. 2018, 619–620, 1299–1307. [Google Scholar] [CrossRef]
- Zhao, F.; Sun, J.; Ren, C.J.; Kang, D.; Deng, J.; Han, X.H.; Yang, G.H.; Feng, Y.Z.; Ren, G.X. Land use change influences soil C, N, and P stoichiometry under ‘Grain-to-Green Program’ in China. Sci. Rep. 2015, 5, 10195. [Google Scholar]
- McGroddy, M.E.; Daufresne, T.; Hedin, L.O. Scaling of C: N: P stoichiometry in forests worldwide: Implications of terrestrial Redfield-type ratios. Ecology 2004, 85, 2390–2401. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Hou, G.; Liu, M.; Wei, T.X.; Sun, J. Degradation induces changes in the soil C: N: P stoichiometry of alpine steppe on the Tibetan Plateau. J. Mt. Sci. 2019, 16, 2348–2360. [Google Scholar] [CrossRef]
Aspect | Land Use | Elevation (m) | Dominant Plants |
---|---|---|---|
East-Facing Slope | SF | 432–548 | Pinus massoniana (L.), Populus L., Cunninghamia lanceolata (L.) Hook. |
PF | 433–547 | Zanthoxylum bungeanum Maxim, Conyza canadensis (L.) Cronq, Eleusine indica (L.) Gaertn. | |
GL | 435–546 | Oxalis corniculata (L.), Ophiopogon bodinieri Levl, Miscanthus sinensis Anderss, Rubus coreanus Miq. | |
West-Facing Slope | SF | 382–505 | Cunninghamia lanceolata (L.) Hook, Liquidambar formosana Hance, Populus L. |
PF | 381–503 | Zanthoxylum bungeanum Maxim, Conyza canadensis (L.) Cronq, Eleusine indica (L.) Gaertn. | |
GL | 380–501 | Oxalis corniculata (L.), Ophiopogon bodinieri Levl, Miscanthus sinensis Anderss, Eleusine indica (L.) Gaertn. |
Source | Soil BD | Porosity | Sand | Silt | Clay |
---|---|---|---|---|---|
Aspect | 0.013 | 0.010 | 0.299 | 0.744 | 0.335 |
Land use | 0.343 | 0.299 | 0.099 | 0.544 | 0.262 |
Aspect × land use | 0.690 | 0.633 | 0.676 | 0.883 | 0.583 |
Variable | pH | 1000–250 μm | 250–50 μm | <50 μm | BD | Porosity | Sand | Silt | Clay |
---|---|---|---|---|---|---|---|---|---|
C | −0.276 | 0.663 ** | −0.480 * | −0.573 * | −0.913 * | 0.906 * | −0.043 | −0.116 | 0.151 |
N | −0.340 | 0.550 * | −0.514 * | −0.430 | −0.797 | 0.792 | −0.246 | 0.002 | 0.391 |
P | −0.321 | −0.349 | 0.336 | 0.270 | 0.425 | −0.394 | −0.002 | 0.137 | −0.093 |
C:N | 0.276 | 0.028 | 0.421 | −0.199 | 0.092 | −0.074 | 0.734 | −0.485 | −0.832 * |
C:P | −0.067 | 0.642 ** | −0.642 ** | −0.485 * | −0.748 | 0.744 | 0.144 | −0.232 | −0.066 |
N:P | −0.093 | 0.615 ** | −0.647 ** | −0.453 | −0.743 | 0.739 | 0.071 | −0.185 | 0.018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Zeng, J.; He, B.; Chen, Z. Changes in Soil C, N, and P Concentrations and Stoichiometry in Karst Trough Valley Area under Ecological Restoration: The Role of Slope Aspect, Land Use, and Soil Depth. Forests 2021, 12, 144. https://doi.org/10.3390/f12020144
Li T, Zeng J, He B, Chen Z. Changes in Soil C, N, and P Concentrations and Stoichiometry in Karst Trough Valley Area under Ecological Restoration: The Role of Slope Aspect, Land Use, and Soil Depth. Forests. 2021; 12(2):144. https://doi.org/10.3390/f12020144
Chicago/Turabian StyleLi, Tianyang, Jiangmin Zeng, Binghui He, and Zhanpeng Chen. 2021. "Changes in Soil C, N, and P Concentrations and Stoichiometry in Karst Trough Valley Area under Ecological Restoration: The Role of Slope Aspect, Land Use, and Soil Depth" Forests 12, no. 2: 144. https://doi.org/10.3390/f12020144
APA StyleLi, T., Zeng, J., He, B., & Chen, Z. (2021). Changes in Soil C, N, and P Concentrations and Stoichiometry in Karst Trough Valley Area under Ecological Restoration: The Role of Slope Aspect, Land Use, and Soil Depth. Forests, 12(2), 144. https://doi.org/10.3390/f12020144