Exploring the Determinants of Urban Green Space Utilization Based on Microblog Check-In Data in Shanghai, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Selection of Dependent Variable
2.3. Data Collection
Quantification of Variables
2.4. Research Design
2.5. Model Selection
Dummy Variables
3. Results
3.1. Yearly Comprehensive Park Utilization Model Results
3.2. Seasonal Comprehensive Park Utilization Model Results
3.3. Monthly Comprehensive Park Utilization Model Results
3.4. Daily Comprehensive Park Utilization Model Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Woolley, H. Urban Open Spaces; Spon Press: London, UK; New York, NY, USA, 2003; pp. 25–36. [Google Scholar]
- Mccormack, G.R.; Rock, M.; Toohey, A.M.; Hignell, D. Characteristics of urban parks associated with park use and physical activity: A review of qualitative research. Health Place 2010, 16, 712–726. [Google Scholar] [CrossRef]
- Akpinar, A. How is quality of urban green spaces associated with physical activity and health? Urban For. Urban Green. 2016, 16, 76–83. [Google Scholar] [CrossRef]
- Moreira, T.C.L.; Polizel, J.L.; Santos, I.; Fiilho, D.F.; Bensenor, I.; Lotufo, P.A.; Mauad, T. Green Spaces, Land Cover, Street Trees and Hypertension in the Megacity of Saõ Paulo. Int. J. Environ. Res. Public Health 2020, 17, 725. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Liu, X.; Gao, W.; Wang, R.Y.; Li, Y.; Tu, W. Emerging social media data on measuring urban park use and their relationship with surrounding areas—A case study of shenzhen. Urban For. Urban Green. 2018, 31, 130–141. [Google Scholar] [CrossRef]
- Waits, J. Urban green space: Is it the next financial frontier? Bus. Perspect. 2008, 19, 36–39. [Google Scholar]
- Garvin, A.; Brands, R.M. Public Parks: The Key to Livable Communities, 1st ed.; W.W. Norton & Co.: New York, NY, USA, 2011; pp. 112–124. [Google Scholar]
- Besenyi, G.M.; Kaczynski, A.T.; Stanis, S.A.; Bergstrom, R.D.; Lightner, J.S.; Hipp, J.A. Planning for health: A community-based spatial analysis of park availability and chronic disease across the lifespan. Health Place 2014, 27, 102–105. [Google Scholar] [CrossRef]
- Ries, A.V.; Voorhees, C.C.; Roche, K.M.; Gittelsohn, J.; Yan, A.F.; Astone, N.M. A quantitative examination of park characteristics related to park use and physical activity among urban youth. J. Adolesc. Health 2009, 45 (Suppl. S3), S64–S70. [Google Scholar] [CrossRef] [PubMed]
- Golicnik, B.; Ward Thompson, C. Emerging relationships between design and use of urban park spaces. Landsc. Urban Plan. 2010, 94, 38–53. [Google Scholar] [CrossRef]
- Senetra, A.; Krzywnicka, I.; Mielke, M. An analysis of the spatial distribution, influence and quality of urban green space—A case study of the Polish city of Tcze. Bull. Geogr. Socio-Econ. Ser. 2018, 42, 129–149. [Google Scholar] [CrossRef] [Green Version]
- Giles-Corti, B.; Broomhall, M.H.; Knuiman, M.; Collins, C.; Douglas, K.; Ng, K.; Lange, A.; Donovan, R.J. Increasing walking: How important is distance to, attractiveness, and size of public open space? Am. J. Prev. Med. 2005, 28 (Suppl. S2), 176. [Google Scholar]
- Whyte, W.H. The Social Life of Small Urban Spaces; Conservation Foundation: Washington, DC, USA, 1980; pp. 42–56. [Google Scholar]
- Mccormack, G.R.; Rock, M.; Swanson, K.; Burton, L.; Massolo, A. Physical activity patterns in urban neighborhood parks: Insights from a multiple case study. BMC Public Health 2014, 14, 962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwan, C.P.; Jim, C.Y. Subjective outdoor thermal comfort and urban green space usage in humid-subtropical hong kong. Energy Build. 2018, 173, 150–162. [Google Scholar]
- Hawelka, B.; Sitko, I.; Beinat, E.; Sobolevsky, S.; Kazakopoulos, P.; Ratti, C. Geo-located twitter as proxy for global mobility patterns. Cartogr. Geogr. Inf. Sci. 2014, 41, 260–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steiger, E.; de Albuquerque, J.P.; Zipf, A. An advanced systematic literature review on spatiotemporal analyses of twitter data. Trans. GIS 2015, 19, 809–834. [Google Scholar] [CrossRef]
- Jendryke, M.; Balz, T.; Mcclure, S.C.; Liao, M. Putting people in the picture: Combining big location-based social media data and remote sensing imagery for enhanced contextual urban information in shanghai. Comput. Environ. Urban Syst. 2017, 62, 99–112. [Google Scholar] [CrossRef] [Green Version]
- Noulas, A.; Scellato, S.; Lambiotte, R.; Pontil, M.; Mascolo, C. A tale of many cities: Universal patterns in human urban mobility. PLoS ONE 2011, 7, e37027. [Google Scholar]
- Zhai, S.; Xu, X.; Yang, L. Mapping the popularity of urban restaurants using social media data. Appl. Geogr. 2015, 63, 113–120. [Google Scholar] [CrossRef]
- Livia, H.; Ross, P. Exploring place through user-generated content: Using Flickr to describe city cores. J. Spat. Inf. Sci. 2010, 1, 21–48. [Google Scholar]
- García-Palomares, J.; Gutiérrez, J.; Mínguez, C. Identification of tourist hot spots based on social networks: A comparative analysis of European metropolises using photo-sharing services and gis. Appl. Geogr. 2015, 63, 408–417. [Google Scholar] [CrossRef]
- Fujisaka, T.; Lee, R.; Sumiya, K. Exploring urban characteristics using movement history of mass mobile microbloggers. Elev. Workshop Mob. Comput. Syst. Appl. 2010, 10, 13–18. [Google Scholar]
- Kennedy, L.; Naaman, M.; Ahern, S.; Nair, R.; Rattenbury, T. How flickr helps us make sense of the world: Context and content in community-contributed media collections. In Proceedings of the 15th ACM International Conference on Multimedia, Augsburg, Bavaria, Germany, 23–28 September 2007; pp. 631–640. [Google Scholar]
- Friasmartinez, V.; Soto, V.; Hohwald, H.; Friasmartinez, E. Characterizing Urban Landscapes Using Geolocated Tweets. In Proceedings of the 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing, Amsterdam, The Netherlands, 3–5 September 2012. [Google Scholar]
- Roberts, H.V. Using twitter data in urban green space research: A case study and critical evaluation. Appl. Geogr. 2017, 81, 13–20. [Google Scholar] [CrossRef]
- Agryzkov, T.; Martí, P.; Nolasco-Cirugeda, A.; Serrano-Estrada, L.; Tortosa, L.; Vicent, J.F. Analysing successful public spaces in an urban street network using data from the social networks foursquare and twitter. Appl. Netw. Sci. 2016, 1, 12. [Google Scholar] [CrossRef] [Green Version]
- Roberts, H.; Sadler, J.; Chapman, L. Using twitter to investigate seasonal variation in physical activity in urban green space. Geo Geogr. Environ. 2017, 4, e00041. [Google Scholar] [CrossRef]
- Xu, W. Urban explorations: Analysis of public park usage using mobile GPS data. In Proceedings of the Bloomber Data for Good Exchange Conference, Chicago, IL, USA, 24 September 2017. [Google Scholar]
- Manaugh, K.; Kreider, T. What is mixed use? Presenting an interaction method for measuring land use mix. J. Transp. Land Use 2013, 6, 63–72. [Google Scholar] [CrossRef]
- Crompton, J.L. The impact of parks on property values: Empirical evidence from the past two decades in the United Sates. Manag. Leis. 2005, 10, 203–218. [Google Scholar] [CrossRef]
- Dunse, N.; White, M.; Dehring, C. Urban Parks, Open Space and Residential Property Values. RICS Res. Pap. Ser. 2007, 7, 9–36. [Google Scholar]
- Chen, C.; Luo, W.; Li, H.; Zhang, D.; Xia, Y. Impact of perception of green space for health promotion on willingness to use parks and actual use among young urban residents. Int. J. Environ. Res. Public Health 2020, 17, 5560. [Google Scholar] [CrossRef]
- Shen, B.L. Study on the eutrophication evaluation for small landscape waters in cities. J. Anhui Agric. Sci. 2011, 39, 14321–14325. [Google Scholar]
- Stoianov, I.; Chapra, S.; Maksimovic, C. A framework linking urban park land use with pond water quality. Urban Water 2000, 2, 47–62. [Google Scholar] [CrossRef]
- Wang, Y.C.; Lin, J.C.; Liu, W.Y.; Lin, C.C.; Ko, S.H. Investigation of visitors’ motivation, satisfaction and cognition on urban forest parks in taiwan. J. For. Res. 2016, 21, 261–270. [Google Scholar] [CrossRef]
- Frank, S.; Fürst, C.; Koschke, L.; Witt, A.; Makeschin, F. Assessment of landscape aesthetics—Validation of a landscape metrics-based assessment by visual estimation of the scenic beauty. Ecol. Indic. 2013, 32, 222–231. [Google Scholar] [CrossRef]
- Gui, Y. Recreation Demand Preference Research of Citizens in Shanghai. Shanghai Urban Plan. Rev. 2016, 3, 102–108. [Google Scholar]
- Liao, C.; Brown, D.; Fei, D.; Long, X.; Chen, D.; Che, S. Big data-enabled social sensing in spatial analysis: Potentials and pitfalls. Trans. GIS 2018, 22, 1351–1371. [Google Scholar] [CrossRef]
No. | District | Park Name | Opening Time | Area (ha) | Park Ranking | Number of Sports Venues | Popularity | Scenic Quality | Water Area (ha) | Green Coverage Ratio (%) |
---|---|---|---|---|---|---|---|---|---|---|
1 | Changning | Zhongshan Park | 1914 | 21.42 | 4 | 1 | 378 | 4.4 | 1.22 | 91 |
2 | Tian Shan Park | 1959 | 6.80 | 4 | 1 | - | 4.3 | 1.67 | 75 | |
3 | Hongkou | Luxun’s Park | 1896 | 28.63 | 4 | 2 | 332 | 4.4 | 3.00 | 85 |
4 | Peace Park | 1958 | 16.34 | 3 | 1 | - | 4.5 | 1.80 | 85 | |
5 | Huangpu | People’s Park | 1952 | 10.00 | 4 | 1 | 495 | 4.4 | 0.08 | 90 |
6 | Fuxing Park | 1909 | 8.89 | 4 | 0 | 217 | 4.5 | 0.30 | 88 | |
7 | Jing’an | Jing’an Park | 1955 | 3.36 | 5 | 0 | 158 | 4.4 | 0.09 | 90 |
8 | Daning Lingshi Park | 2002 | 68.00 | 3 | 2 | 323 | 4.6 | 7.08 | 85 | |
9 | Zhabei Park | 1946 | 6.67 | 4 | 1 | 166 | 4.3 | 0.80 | 85 | |
10 | Pudong | Century Park | 1997 | 140.30 | 5 | 2 | 845 | 4.7 | 27.00 | 80 |
11 | Expo Park | 2010 | 23.00 | 4 | 1 | 196 | 4.4 | 0.70 | 70 | |
12 | Lujiazui Central Park | 1997 | 10.00 | 4 | 1 | - | 4.6 | 0.45 | 90 | |
13 | Putuo | Changfeng Park | 1959 | 36.40 | 5 | 1 | 599 | 4.5 | 14.3 | 55 |
14 | Xuhui | Xujiahui Park | 2001 | 8.66 | 5 | 1 | 185 | 4.4 | 0.4 | 90 |
15 | Guilin Park | 1931 | 3.55 | 4 | 0 | 200 | 4.5 | 0.08 | 90 | |
16 | Yangpu | Yangpu Park | 1957 | 22.00 | 4 | 1 | - | 4.3 | 1.9 | 85 |
17 | Huangxing Park | 2000 | 39.86 | 3 | 2 | 241 | 4.4 | 8 | 75 |
Variable | Variable Name in Models | Quantification of Variables | Mean (Std. Dev.) | Min. (Max.) |
---|---|---|---|---|
Number of check-ins | Count | Sina microblog check-ins | 157.23 (262.29) | 0 (4327) |
Green coverage ratio | Green | The vertical projection area of vegetation in each park. (%) | 82.23 (9.011) | 55 (90) |
Ticket price | Ticket fee | Ticket price (yuan) | 0.71 (2.37) | 0 (10) |
Area of park | Area | Area of each park. (ha) | 26.54 (32.70) | 3.36 (140.3) |
Area of water | Water | Area of water bodies in each park. (ha) | 4.05 (6.823) | 0.08 (27) |
Popularity (Baidu Index) | Baidu | Over a certain period of time, the average number of internet users searched park names through Baidu. | 333.63 (196.24) | 158 (845) |
Number of subway stations | 400 Station | Number of subway stations in the 400-metre buffer zone around the park. | 1.06 (0.540) | 0 (2) |
Number of bus stations | Bus | Number of bus stops in the 400-metre buffer zone around the park. | 3.18 (1.724) | 0 (6) |
Average housing prices | Average HP400 | Average housing prices in the 400-metre buffer zone around the park. (Yuan/m2) | 78,627.31 (12,563.05) | 62,416 (103,308) |
Area of commercial land | ComArea | The area occupied by commercial office in the 400-m buffer zone around the park. (ha) | 20.94 (17.74) | 4 (72) |
Scenic quality | Beauty | Scores given for the landscape effect of the comprehensive park can be divided into 5 levels: extremely poor (1 point), poor (2 points), general (3 points), good (4 points) and great (5 points). | 4.447 (0.11) | 4.3 (4.7) |
Park ranking | Star | Parks are classified into two-star, three-star, four-star and five-star by Shanghai Greening and Appearance Bureau. | 4.06 (0.64) | 3 (5) |
Number of sports venues | Sports Number | The number of sports and fitness venues in each park, including trails, basketball courts, tennis courts, football courts and other sports venues (1 point per item). | 1.06 (0.64) | 0 (2) |
Number of roads | Road | The number of roads in the 400-metre buffer zone around each park. | 16 (6.78) | 5 (34) |
Model Form | Without Dummy Variable | With Dummy Variable | ||||
---|---|---|---|---|---|---|
Linear | Log-Linear | Linear | Log-Linear | |||
Yearly model | Total | Adjusted R2 | 0.29 | 0.47 | 0.35 | 0.56 |
Residuals | −117.86 | 0.12 | −117.86 | −0.05 | ||
Average | 1805.80 | 6.85 | 1805.80 | 6.85 | ||
Workday | Adjusted R2 | 0.36 | 0.49 | 0.47 | 0.60 | |
Residuals | −46.67 | −0.22 | −47.14 | −0.22 | ||
Average | 748.32 | 5.92 | 1805.80 | 6.85 | ||
Weekend | Adjusted R2 | 0.22 | 0.44 | 0.30 | 0.44 | |
Residuals | −65.57 | 0.65 | −65.57 | 0.65 | ||
Average | 1057.48 | 6.32 | 1805.80 | 6.85 | ||
Seasonal model | Total | Adjusted R2 | 0.25 | 0.65 | 0.34 | 0.65 |
Residuals | 0.00 | 0.00 | −23.83 | 0.18 | ||
Average | 478.92 | 5.43 | 478.92 | 5.43 | ||
Workday | Adjusted R2 | 0.19 | 0.64 | 0.29 | 0.71 | |
Residuals | −4.07 | 0.00 | −4.09 | 0.00 | ||
Average | 281.92 | 4.90 | 281.92 | 4.90 | ||
Weekend | Adjusted R2 | 0.28 | 0.62 | 0.38 | 0.72 | |
Residuals | −11.63 | 0.00 | −10.08 | 0.00 | ||
Average | 196.32 | 4.47 | 196.32 | 4.47 | ||
Monthly model | Total | Adjusted R2 | 0.23 | 0.60 | 0.32 | 0.70 |
Residuals | 0.00 | 0.00 | 0.00 | 0.00 | ||
Average | 157.23 | 4.24 | 157.23 | 4.24 | ||
Workday | Adjusted R2 | 0.16 | 0.56 | 0.21 | 0.67 | |
Residuals | 0.00 | 0.00 | −1.51 | 0.00 | ||
Average | 92.76 | 3.72 | 92.76 | 3.72 | ||
Weekend | Adjusted R2 | 0.24 | 0.55 | 0.32 | 0.68 | |
Residuals | 0.00 | 0.00 | 0.00 | 0.00 | ||
Average | 64.35 | 3.31 | 64.35 | 3.31 |
Model | Yearly | Seasonal | Monthly | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Non-Std. Coeff. | Standard Coeff. | t | Sig. | Non-Std. Coeff. | Standard Coeff. | t | Sig. | Non-Std. Coeff. | Standard Coeff. | t | Sig. | |
B | β | B | β | B | β | |||||||
(constant) | 1.982 | - | 2.420 | 0.018 | −39.368 | - | −7.768 | 0.000 | −85.494 | - | −22.027 | 0.000 |
SportsNumber | 1.240 | 0.690 | 6.244 | 0.000 | 1.394 | 0.727 | 14.746 | 0.000 | 4.861 | 2.528 | 23.756 | 0.000 |
AverageHP400 | 0.000048 | 0.476 | 4.383 | 0.000 | 0.000092 | 0.754 | 12.729 | 0.000 | −0.000027 | −0.254 | −3.446 | 0.001 |
Park Ranking | - | - | - | - | - | - | - | - | 5.334 | 2.495 | 17.294 | 0.000 |
Road | −0.062 | −0.359 | −3.964 | 0.000 | −0.077 | −0.418 | −9.858 | 0.000 | −0.257 | −1.376 | −21.567 | 0.000 |
2015 | −0.774 | −0.220 | −2.844 | 0.006 | −0.924 | −0.234 | −6.872 | 0.000 | −1.037 | −0.262 | −13.446 | 0.000 |
2014 | −0.755 | −0.215 | −2.774 | 0.007 | −0.788 | −0.200 | −5.863 | 0.000 | −0.936 | −0.238 | −12.184 | 0.000 |
ComArea | 0.023 | 0.298 | 3.429 | 0.001 | 0.051 | 0.626 | 11.013 | 0.000 | 0.011 | 0.129 | 2.784 | 0.005 |
Bus | - | - | - | −0.491 | −0.631 | −8.521 | 0.000 | 0.419 | 0.533 | 6.439 | 0.000 | |
400Station | 0.691 | 0.324 | 3.914 | 0.000 | 0.914 | 0.402 | 10.648 | 0.000 | 4.483 | 1.938 | 21.321 | 0.000 |
2016 | - | - | - | - | −0.551 | −0.140 | −4.098 | 0.000 | −0.552 | −0.140 | −7.185 | 0.000 |
October | - | - | - | - | 0.476 | 0.086 | 4.183 | 0.000 | ||||
Beauty | - | - | - | - | 8.628 | 0.622 | 7.757 | 0.000 | 14.110 | 1.009 | 20.076 | 0.000 |
Ticketfee | - | - | - | - | −0.405 | −0.774 | −8.717 | 0.000 | −0.324 | −0.617 | −8.409 | 0.000 |
Water | −0.035 | −0.203 | −2.091 | 0.040 | - | - | - | - | −0.728 | −3.919 | −17.506 | 0.000 |
Baidu Index | - | - | - | - | - | - | - | - | 0.012 | 1.595 | 15.914 | 0.000 |
Spring | - | - | - | - | - | - | - | - | 0.269 | 0.082 | 4.025 | 0.000 |
2012 | - | - | - | - | - | - | - | - | −0.277 | −0.070 | −3.582 | 0.000 |
Autumn | - | - | - | - | - | - | - | - | 0.227 | 0.065 | 2.861 | 0.004 |
January | - | - | - | - | - | - | - | - | −0.305 | −0.079 | −3.221 | 0.001 |
2018 | - | - | 0.279 | 0.055 | 2.902 | 0.004 | ||||||
February | - | - | - | - | - | - | - | - | −0.214 | −0.041 | −2.198 | 0.028 |
Winter | - | - | - | - | −0.427 | −0.122 | −3.560 | 0.000 | - | - | - | - |
Summer | - | - | - | - | −0.343 | −0.104 | −3.070 | 0.002 | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D.; Long, X.; Li, Z.; Liao, C.; Xie, C.; Che, S. Exploring the Determinants of Urban Green Space Utilization Based on Microblog Check-In Data in Shanghai, China. Forests 2021, 12, 1783. https://doi.org/10.3390/f12121783
Chen D, Long X, Li Z, Liao C, Xie C, Che S. Exploring the Determinants of Urban Green Space Utilization Based on Microblog Check-In Data in Shanghai, China. Forests. 2021; 12(12):1783. https://doi.org/10.3390/f12121783
Chicago/Turabian StyleChen, Dan, Xuewen Long, Zhigang Li, Chuan Liao, Changkun Xie, and Shengquan Che. 2021. "Exploring the Determinants of Urban Green Space Utilization Based on Microblog Check-In Data in Shanghai, China" Forests 12, no. 12: 1783. https://doi.org/10.3390/f12121783
APA StyleChen, D., Long, X., Li, Z., Liao, C., Xie, C., & Che, S. (2021). Exploring the Determinants of Urban Green Space Utilization Based on Microblog Check-In Data in Shanghai, China. Forests, 12(12), 1783. https://doi.org/10.3390/f12121783