Tree Morphometric Relationships and Dynamic Elasticity Properties in Tropical Rain Tree (Samanea saman Jacq. Merr)
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
3.1. Morphometric Characteristics
3.2. Relationships between Tree Groth and Morphometric Characteristics
3.3. Dynamic Elasticity of Standing Rain Trees
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Staples, G.W.; Elevitch, C.R. Samanea Saman (Rain Tree); Species Profiles for Pacific Island Agroforestry; Permanent Agriculture Resources (PAR): Holualoa, HI, USA, 2006. [Google Scholar]
- Ow, L.F.; Ghosh, S.; Yusof, M.L.M. Growth of Samanea saman: Estimated Cooling Potential of This Tree in an Urban Environment. Urban For. Urban Green. 2019, 41, 264–271. [Google Scholar] [CrossRef]
- Crook, M.J.; Ennos, A.R. The Anchorage Mechanics of Deep-Rooted Larch Larix europea × japonica. J. Exp. Bot. 1996, 47, 1509–1517. [Google Scholar] [CrossRef] [Green Version]
- Brüchert, T.; Baumgart, S.; Bolte, G. Social Determinants of Older Adults’ Urban Design Preference: A Cross-Sectional Study. Cities Health 2021, 1–15. [Google Scholar] [CrossRef]
- Day, S.D.; Weseman, P.E.; Dickinson, S.B.; Harris, J.R. Contemporary Concepts of Root System Architecture of Urban Trees. Arboric. Urban For. 2010, 36, 149–159. [Google Scholar] [CrossRef]
- Pretzsch, H.; Biber, P.; Uhl, E.; Dahlhausen, J.; Rotzer, T.; Caldentey, J.; Koike, T.; Con, T.; Chavanne, A.; Seifert, T.; et al. Crown Size and Growing Space Requirement of Common Tree Species In Urban Centres, Parks, and Forests. Urban For. Urban Green. 2015, 14, 466–479. [Google Scholar] [CrossRef] [Green Version]
- De Maria, C.; Bomm, B.F.H.; Nesi, J.; Ho, T.L.; Bobrowski, R. Canopy Architecture and Morphometry of Tree Species Used In The Urban Forest. Floresta 2020, 50, 1892–1901. [Google Scholar]
- Bobrowski, R.; Biondi, D. Morfometria De Espécies Florestais Plantadas Nas Calçadas, Revista Da Sociedade Brasileira De Arborização Urbana. Piracicaba 2017, 12, 1–16. [Google Scholar]
- Suchoka, M.; Błaszczyk, M.; Juzwiak, A.; Duriasz, J.; Bohdan, A.; Stolarczyk, J. Transit versus Nature. Depreciation of Environmental Values of the Road Alleys. Case Study: Gamerki-Jonkowo, Poland. Sustainability 2019, 11, 1816. [Google Scholar] [CrossRef] [Green Version]
- Macfarlane, D.W.; Kane, B. Neighbour Effects on Tree Architecture: Functional Trade-Offs Balancing Crown Competitiveness with Wind Resistance. Funct. Ecol. 2017, 31, 1624–1636. [Google Scholar] [CrossRef] [Green Version]
- Peltola, H.M. Mechanical Stability of Trees Under Static Loads. Am. J. Bot. 2006, 93, 1501–1511. [Google Scholar] [CrossRef]
- Achim, A.; Ruel, J.C.; Gardiner, B.A.; Laflamme, G.; Meunier, S. Modelling The Vulnerability of Balsam Fir Forests to Wind Damage. For. Ecol. Manag. 2005, 204, 35–50. [Google Scholar] [CrossRef]
- Ow, L.F.; Harnas, F.R.; Indrawan, I.G.B.; Sahadewa, A.; Sim, E.K.; Rahardjo, H.; Leong, E.C. Tree-Pulling Experiment: An Analysis into The Mechanical Stability of Rain Trees. Trees 2010, 24, 1007–1015. [Google Scholar] [CrossRef]
- Rahardjo, H.; Harnas, F.R.; Indrawana, I.G.B.; Leong, E.C.; Tan, P.Y.; Fong, Y.K.; Ow, L.F. Understanding The Stability of Samanea saman Trees through Tree Pulling, Analytical Calculations and Numerical Models. Urban For. Urban Green. 2014, 13, 355–364. [Google Scholar]
- Niklas, K.J. Tree Biomechanics with Special Reference to Tropical Trees. Tree Physiol. 2016, 6, 414–435. [Google Scholar]
- Niklas, K.J. The Elastic Moduli and Mechanics of Populus Tremuloides (Salicaceae) Petioles in Bending and Torsion. Am. J. Bot. 1991, 78, 989–996. [Google Scholar] [CrossRef]
- Brüchert, F.; Gero, B.; Speck, T. The Mechanics of Norway Spruce [Picea abies (L.) Karst]: Mechanical Properties of Standing Trees from Different Thinning Regimes. For. Ecol. Manag. 2000, 135, 45–62. [Google Scholar] [CrossRef]
- Burcham, D.C.; Autio, W.R.; James, K.; Sadeghi, Y.M.; Kane, B. Effect of Pruning Type and Severity on Vibration Properties and Mass of Senegal Mahogany (Khaya senegalensis) and Rain Tree (Samanea saman). Trees 2019, 34, 213–228. [Google Scholar] [CrossRef]
- Wang, X.; Ross, R.J.; McClellan, M.; Barbour, R.J.; Erickson, J.R.; Forsman, J.W.; McGinnis, G.D. Nondestructive Evaluation of Standing Trees With A Stress Wave Method. Wood Fiber Sci. 2001, 33, 522–533. [Google Scholar]
- Carson, S.D.; Cown, D.J.; McKinley, R.B.; Moore, J.R. Effects of Site, Silviculture and Seedlot on Wood Density and Estimated Wood Stiffness in Radiata Pine at Mid-Rotation. New Zealand. J. For. Sci. 2014, 44, 26. [Google Scholar]
- Madhoushi, M.; Boskabadi, Z. Relationship Between the Dynamic and Static Modulus of Elasticity in Standing Trees and Sawn Lumbers of Paulownia fortune Planted in Iran. Cienc. Y Technol. 2019, 21, 35–44. [Google Scholar] [CrossRef]
- Llana, D.F.; Short, I.; Harte, A.M. Use of Non-Destructive Test Methods on Irish Hardwood Standing Trees and Small-Diameter Round Timber For Prediction of Mechanical Properties. Ann. For. Sci. 2020, 77, 1–13. [Google Scholar] [CrossRef]
- Kurnia, I. Study of bird species diversity for the development of birdwatching tourism at IPB Dramaga Campus. Bachelor’s Thesis, Faculty of Forestry, IPB University, Bogor, Indonesia, 2003. (In Indonesia). [Google Scholar]
- Mubin, N.; Harahap, I.S.; Giyanto. Diversity of Subterranean Termites (Blattodea: Termitoidea) on Various Types Habitat Around IPB University Campus, Bogor, Indonesia. HPT Trop. 2019, 19, 158–169. [Google Scholar] [CrossRef]
- Batala, E.; Tsitoni, T. Street Tree Health Assessment System: A Tool for Study of Urban Greenery. Int. J. Sustain. Dev. Plan. 2009, 4, 345–356. [Google Scholar] [CrossRef]
- Coombes, A.; Martin, J.; Slater, D. Defining the Allometry of Stem and Crown Diameter of Urban Trees. Urban For. Urban Green. 2019, 44, 126421. [Google Scholar] [CrossRef]
- Velsvoski, N.; Andonovski, V.; Vasilevski, K. Research on The Development and Structure of The Crown of Old-Growth Beech Trees on Maleshevski mountains. In Proceedings of the 5th Congress of The Ecologists of Macedonia 2017, Ohrid, North Macedonia, 19–22 October 2016. [Google Scholar]
- Krajnc, L.; Farrelly, N.; Harte, A.M. The Influence of Crown and Stem Characteristics on Timber Quality in Softwoods. For. Ecol. Manag. 2019, 435, 8–17. [Google Scholar] [CrossRef]
- Legg, M.; Bradley, S. Measurement of Stiffness of Standing Trees and Felled Logs Using Acoustics: A Review. J. Acoust. Soc. Am. 2016, 139, 588–604. [Google Scholar] [CrossRef] [Green Version]
- Ross, R.J. Nondestructive Evaluation of Wood; Department of Agriculture, Forest Service: Madison, WI, USA, 2015. [Google Scholar]
- Simic, K.; Gendvilas, V.; O’Reilly, C.; Harte, A.M. Predicting Structural Timber Grade-Determining Properties Using Acoustic and Density Measurements on Young Sitka Spruce Trees and Logs. Holzforschung 2019, 73, 139–149. [Google Scholar] [CrossRef]
- Adeyemi, A.A.; Jimoh, S.O.; Adesoye, P.O. Crown Ratio Models for Tropical Raindorest Species in Oban Division of The Cross River National Park, Nigeria. J. Agric. Soc. Res. 2013, 13, 63–76. [Google Scholar]
- Picard, N.; Saint-Andre, L.; Henry, M. Manual for Building Tree Volume and Biomass Allometric Equations: Form Field Measurement to Prediction; FAO/CIRAD: Paris, France, 2012. [Google Scholar]
- Schutz, J.P. The Selection Forest and Other Forms of Structured and Mixed Forests; Parey Buchverlag: Berlin, Germany, 2001. [Google Scholar]
- Holdaway, M.R. Modelling Tree Crown Ratio. For. Chron. 1986, 62, 451–455. [Google Scholar] [CrossRef] [Green Version]
- Poudel, K.P.; Avery, S.; Granger, J.J. Live Crown Ratio Models for Loblolly Pine (Pinus taeda) with Beta Regression. Forests 2021, 12, 1409. [Google Scholar] [CrossRef]
- Hasenauer, H.; Monserud, R.A. A Crown Ratio Model for Austrian forests. For. Ecol. Manag. 1996, 84, 49–60. [Google Scholar] [CrossRef]
- Ritchie, M.W.; Hann, D.W. Equations for Predicting Height to Crown Base for Fourteen Tree Species in SW Oregon. Research Paper 50; Forest Research Laboratory, Oregon State University: Corvallis, OR, USA, 1987; p. 14. [Google Scholar]
- Zhao, D.; Kane, M.; Borders, B. Crown Ratio and Relative Spacing Relationships for Loblolly Pine Plantations. Open J. For. 2012, 2, 110–115. [Google Scholar] [CrossRef]
- Nandika, D.; Kusuma, H.; Kusumawardhani, D.T.; Rumiyati, E.; Tata; Karlinasari, L.; Siregar, I.Z. Health asessment of large and old trees in Ragunan Zoo, Jakarta. IOP Conf. Ser. Mater. Sci. Eng. 2020, 935, 102072. [Google Scholar] [CrossRef]
- Onilude, Q.A.; Adesoye, P.O. Relationship Between Tree Slenderness Coefficient and Tree Growth Characteristics of Triplochiton Scleroxylon K.Schum Stands In Ibadan Metropolis. Obeche J. 2007, 25, 6–23. [Google Scholar]
- Mattheck, C.; Breloer, H. The Body Language of Trees, A Handbook for Failure Analysis; HMSO, Department of Environment, HMSO Publications Centre: London, UK, 1994; 260p. [Google Scholar]
- Navratil, S.; Brace, L.G.; Sauder, E.A.; Lux, S. Silvicultural and Harvesting Options to Favor Immature White Spruce and Aspen Regenerationi in Boreal Mixed Woods; Report; Canadian Forest Service: Northwest Region: Edmonton, AB, Canada, 1994. [Google Scholar]
- Wang, Y.; Titus, S.J.; Lemay, V.M. Relationship Between Tree Slenderness Coefficients and Tree or Stand Characteristics for Major species in Boreal Mixed Forest. Can. J. For. Res. 1998, 28, 1171–1183. [Google Scholar] [CrossRef]
- Kaźmierczak, K.; Jędraszak, A. The Influence of Crown Length On Tree Stability. Žmogaus Ir Gamt. Sauga 2014, 42–44. [Google Scholar]
- Ige, P.O. Relationship Between Tree Slenderness Coefficient and Tree Or Stand Growth Characteristics For Triplochiton scleroxylon K.Schum stands in Oniganbari forest reserve, Nigeria. J. For. Res. Manag. 2017, 14, 166–180. [Google Scholar]
- Kontogiannia, A.; Tsitsonia, T.; Goudelis, G. An index based on silvicultural knowledge for tree stability assessment and improved ecological function in urban ecosystems. Ecol. Eng. 2011, 37, 914–919. [Google Scholar]
- Adeyemi, A.A.; Adesoye, P.O. Tree Slenderness Coefficient and Percent Canopy Cover in Oban Group Forest, Nigeria. J. Nat. Sci. Res. 2016, 6, 9–17. [Google Scholar]
- Mattheck, C.; Bethge, K.; Kappel, R.; Mueller, P.; Tesari, I. Failure Modes for Trees and Related Criteria. In Proceedings of the International Conference “Wind Effects on Trees”, Karlsruhe, Germany, 16–18 September 2003; University of Karlsruhe: Karlsruhe, Germany, 2003; pp. 1–12. [Google Scholar]
- Ragula, A.; Chandra, K.K. Tree Species Suitable for Roadside Afforestation and Carbon Sequestration in Bilaspur, India. Carbon Manag. 2020, 11, 369–380. [Google Scholar] [CrossRef]
- Buba, T. Relationships Between Stem Diameter at Breast Height (DBH), Tree Height, Crown Length, and Crown Ratio Of Vitellaria Paradoxa CF Gaertn In The Nigerian Guinea Savanna. Afr. J. Biotechnol. 2013, 12, 3441–3446. [Google Scholar]
- Troxel, B.; Piana, M.; Ashton, M.S.; Murphy-duning, C. Relationships Between Bole and Crown Size For Young Urban Trees in The Northeastern USA. Urban For. Urban Green. 2013, 12, 144–153. [Google Scholar] [CrossRef]
- Monteiro, V.; Doick, K.J.; Handley, P. Allometric relationships for urban trees in Great BritainMadalena. Urban For. Urban Green. 2016, 19, 223–236. [Google Scholar] [CrossRef]
- Dey, T.; Ahmed, S.; Islam, M.A. Relationship of Tree Height-Diameter at Breast Height (DBH) and Crown Diameter- DBH of Acacia auriculiformis Plantation. Asian J. For. 2021, 5, 71–75. [Google Scholar]
- Ogana, F.N.; Ercali, I. Modelling Height-Diameter Relationships In Complex Tropical Rain Forest Ecosystems Using Deep Learning Algorithms. J. For. Res. 2021, 1–16. [Google Scholar] [CrossRef]
- Stoffberg, G.; van Rooyen, M.; van der Linde, M.; Groeneveld, H. Modeling Dimensional Growth Of Three Street Tree Species In The Urban Forest of The City of Tshwane, South Africa. South. For. 2009, 71, 273–277. [Google Scholar] [CrossRef]
- Goelz, J.C.G. Open-Grown Crown Radius of Eleven Bottom-Land Hardwood Species: Prediction and Use in Assessing Stocking. South. J. Appl. For. 1996, 20, 156–161. [Google Scholar] [CrossRef] [Green Version]
- Krajnc, L.; Farrelly, N.; Harte, A.M. Evaluating Timber Quality in Larger-Diameter Standing Trees: Rethinking The use of Acoustic Velocity. Holzforsschung 2019, 73, 797–806. [Google Scholar] [CrossRef]
- Lindström, H.; Reale, M.; Grekin, M. Using Non-destructive Testing to Assess Modulus of Elasticity of Pinus sylvestris trees. Scand. J. For. Res. 2009, 24, 247–257. [Google Scholar] [CrossRef]
- Searles, G. Acoustic Segregation and Structural Timber Production. Ph.D. Thesis, Edinburgh Napier University, Edinburgh, Scotlandb, 2012. [Google Scholar]
- Pretzsch, H.; Rais, A. Wood Quality in Complex Forests VersusEven-Aged Monocultures: Review and Perspectives. Wood Sci. Technol. 2016, 50, 1–36. [Google Scholar] [CrossRef]
Tree Growth and Morphometric Characteristics | Unit | Min | Max | Average | SD | CV |
---|---|---|---|---|---|---|
Diameter at breast height-dbh (d) | cm | 35.70 | 116.00 | 61.50 | 18.54 | 0.30 |
Tree height (h) | m | 11.50 | 30.00 | 18.80 | 4.09 | 0.22 |
Crown length (hcr) | m | 7.00 | 24.00 | 12.60 | 3.65 | 0.29 |
Live crown ratio (LCR) | % | 40.00 | 82.22 | 66.24 | 8.97 | 0.14 |
Slenderness (S) | - | 18.97 | 50.42 | 32.07 | 7.74 | 0.24 |
Mean crown diameter (DCR) | m | 12.18 | 27.97 | 19.86 | 4.42 | 0.22 |
Horizontal projection of the crown (PCR) | m | 116.36 | 613.90 | 324.72 | 143.82 | 0.44 |
Dim | Tree Growth Characteristics | Morphometrics Characteristics | ||||||
---|---|---|---|---|---|---|---|---|
d | h | hcr | LCR | Slenderness | DCR | PCR | ||
1 | 0.9936 | 0.4618 | 0.9928 | 0.8915 | 0.2372 | 0.3557 | 0.5002 | 0.4888 |
2 | 0.9629 | 0.8869 | 0.1197 | 0.0321 | −0.094 | −0.9199 | 0.5675 | 0.5727 |
Stem Characteristics (n = 50) | Unit | Min | Max | Average | SD | CV |
---|---|---|---|---|---|---|
Wood density () | g∙cm−3 | 0.60 | 0.88 | 0.78 | 0.06 | 0.08 |
Moisture content ) | % | 82.80 | 370.59 | 136.55 | 66.75 | 0.49 |
Stress wave velocity ) | m∙s−1 | 1787.72 | 3334.53 | 2503.12 | 378.74 | 0.15 |
Dynamic modulus of elasticity (Ed) | GPa | 3.30 | 11.49 | 6.62 | 1.99 | 0.30 |
d | h | hcr | LCR | Slenderness | DCR | PCR | SWV | Ed | |
---|---|---|---|---|---|---|---|---|---|
d | 1 | ||||||||
h | 0.565 | 1 | |||||||
hcr | 0.436 | 0.883 | 1 | ||||||
LCR | 0.029 | 0.223 | 0.645 | 1 | |||||
Slenderness | −0.622 | 0.245 | 0.240 | 0.070 | 1 | ||||
DCR | 0.714 | 0.559 | 0.443 | 0.050 | −0.347 | 1 | |||
PCR | 0.713 | 0.548 | 0.420 | 0.020 | −0.341 | 0.995 | 1 | ||
SWV | −0.071 | 0.088 | −0.054 | −0.231 | 0.231 | −0.067 | −0.070 | 1 | |
Ed | −0.081 | 0.082 | −0.056 | −0.229 | 0.234 | −0.068 | −0.071 | 0.997 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karlinasari, L.; Adzkia, U.; Puspitasari, T.; Nandika, D.; Nugroho, N.; Syafitri, U.D.; Siregar, I.Z. Tree Morphometric Relationships and Dynamic Elasticity Properties in Tropical Rain Tree (Samanea saman Jacq. Merr). Forests 2021, 12, 1711. https://doi.org/10.3390/f12121711
Karlinasari L, Adzkia U, Puspitasari T, Nandika D, Nugroho N, Syafitri UD, Siregar IZ. Tree Morphometric Relationships and Dynamic Elasticity Properties in Tropical Rain Tree (Samanea saman Jacq. Merr). Forests. 2021; 12(12):1711. https://doi.org/10.3390/f12121711
Chicago/Turabian StyleKarlinasari, Lina, Ulfa Adzkia, Tiara Puspitasari, Dodi Nandika, Naresworo Nugroho, Utami Dyah Syafitri, and Iskandar Z. Siregar. 2021. "Tree Morphometric Relationships and Dynamic Elasticity Properties in Tropical Rain Tree (Samanea saman Jacq. Merr)" Forests 12, no. 12: 1711. https://doi.org/10.3390/f12121711
APA StyleKarlinasari, L., Adzkia, U., Puspitasari, T., Nandika, D., Nugroho, N., Syafitri, U. D., & Siregar, I. Z. (2021). Tree Morphometric Relationships and Dynamic Elasticity Properties in Tropical Rain Tree (Samanea saman Jacq. Merr). Forests, 12(12), 1711. https://doi.org/10.3390/f12121711