Assessment of Structural Differences between Water-Extracted and Non-Extracted Hydro-Thermally Treated Spruce Wood by NIR Spectroscopy
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. NIR Spectroscopy
3.2. Principal Component Analysis (PCA)
3.3. Two-Dimensional Correlation Spectroscopy (2D-COS)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, T.C.; Chang, H.T.; Wu, C.L.; Lin, H.Y.; Chang, S.T. Stabilizing effect of extractives on the photo-oxidation of Acacia confusa wood. Polym. Degrad. Stabil. 2010, 95, 1518–1522. [Google Scholar] [CrossRef]
- Mazela, B.; Popescu, C.-M. Solid Wood, in Ch2: Wood as bio-based building materials. In Performance of Bio-Based Building Materials; Jones, D., Brischke, C., Eds.; Wood head Publishing Elsevier: Sawston, UK, 2017; pp. 22–39. [Google Scholar]
- Assor, C.; Placet, V.; Chabbert, B.; Habrant, A.; Lapierre, C.; Pollet, B.; Perre, P. Concomitant changes in viscoelastic properties and amorphous polymers during the hydrothermal treatment of hardwood and softwood. J. Agric. Food Chem. 2009, 57, 6830–6837. [Google Scholar] [CrossRef]
- Fackler, K.; Schwanninger, M. Accessibility of hydroxyl groups of brown-rot degraded spruce wood to heavy water. J. Near Infrared Spectrosc. 2011, 19, 359–368. [Google Scholar] [CrossRef]
- Lekounougou, S.; Kocaefe, D. Comparative study on the durability of heat-treated White Birch (Betula papyrifera) subjected to the attack of brown and white rot fungi. Wood Mater. Sci. Eng. 2012, 7, 101–106. [Google Scholar] [CrossRef]
- Popescu, C.-M.; Gradinariu, P.; Popescu, M.-C. Structural analysis of lime wood biodegraded by white rot fungi through infrared and two dimensional correlation spectroscopy techniques. J. Mol. Struct. 2016, 1124, 78–84. [Google Scholar] [CrossRef]
- Popescu, C.-M.; Navi, P.; Placencia Peña, M.I.; Popescu, M.-C. Evaluation of the structural changes occurring in wood during hydro-thermal and thermal treatment using NIR spectroscopy and principal component analysis. Spectrochim. Acta A 2018, 191, 405–412. [Google Scholar] [CrossRef]
- Zeniya, N.; Obataya, E.; Endo-Ujiie, K.; Matsuo-Ueda, M. Application of time-temperature-humidity superposition to the mass loss of wood through hygrothermally accelerated ageing at 95–140 °C and different relative humidity levels. SN Appl. Sci. 2019, 1, 3. [Google Scholar] [CrossRef]
- Zeniya, N.; Obataya, E.; Endo-Ujiie, K.; Matsuo-Ueda, M. Changes in vibrational properties and colour of spruce wood by hygrothermally accelerated ageing at 95–140 °C and different relative humidity levels. SN Appl. Sci. 2019, 1, 7. [Google Scholar] [CrossRef]
- Popescu, C.-M.; Popescu, M.-C.; Vasile, C. Structural analysis of photodegraded lime wood by means of FT-IR and 2D IR correlation spectroscopy. Int. J. Biol. Macromol. 2011, 48, 667–675. [Google Scholar] [CrossRef]
- Tolvaj, L.; Popescu, C.-M.; Molnar, Z.; Preklet, E. Dependence of the Air Relative Humidity and Temperature on the Photodegradation Processes of Beech and Spruce Wood Species. BioRes 2016, 11, 296–305. [Google Scholar]
- Hill, C.A.S. Wood Modification: Chemical, Thermal and Other Processes; Wiley: Chichester, UK, 2006. [Google Scholar]
- Sandberg, D.; Haller, P.; Navi, P. Thermo-hydro and thermo-hydro-mechanical wood processing: An opportunity for future environmentally friendly wood products. Wood Mater. Sci. Eng. 2013, 8, 64–88. [Google Scholar] [CrossRef]
- Esteves, B.M.; Pereira, H.M. Wood modification by heat treatment: A review. BioRes 2009, 4, 370–404. [Google Scholar] [CrossRef]
- Candelier, K.; Chaouch, M.; Dumarcay, S.; Pétrissans, A.; Pétrissans, M.; Gérardin, P. Utilization of thermodesorption coupled to GC-MS to study stability of different wood species to thermodegradation. J. Anal. Appl. Pyrol. 2011, 92, 376–383. [Google Scholar] [CrossRef]
- Matsuo, M.; Yokoyama, M.; Umemura, K.; Sugiyama, J.; Kawai, S.; Gril, J.; Kubodera, S.; Mitsutani, T.; Ozaki, H.; Sakamoto, M.; et al. Ageing of wood: Analysis of color changes during natural ageing and heat treatment. Holzforschung 2011, 65, 361–368. [Google Scholar] [CrossRef]
- Endo, K.; Obataya, E.; Zeniya, N.; Matsuo, M. Effects of heating humidity on the physical properties of hydrothermal treated spruce wood. Wood Sci. Technol. 2016, 50, 1161–1179. [Google Scholar] [CrossRef]
- Bekhta, P.; Niemz, P. Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung 2003, 57, 539–546. [Google Scholar] [CrossRef]
- Borrega, M.; Kärenlampi, P.P. Mechanical behavior of heat-treated spruce (Picea abies) wood at constant moisture content and ambient humidity. Holz. Roh. Werkst. 2008, 66, 63–69. [Google Scholar] [CrossRef]
- Borrega, M.; Kärenlampi, P.P. Hygroscopicity of heat-treated Norway spruce (Picea abies) wood. Eur. J. Wood Prod. 2010, 68, 233–235. [Google Scholar] [CrossRef][Green Version]
- Popescu, C.-M.; Popescu, M.-C. A near infrared spectroscopic study of the structural modifications of lime (Tilia cordata Mill.) wood during hydro-thermal treatment. Spectrochim. Acta A 2013, 115, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Zeniya, N.; Endo-Ujiie, K.; Obataya, E.; Nakagawa-Izumi, A.; Matsuo-Ueda, M. Effects of water-soluble extractives on the vibrational properties and color of hygrothermally treated spruce wood. Wood Sci. Technol. 2019, 53, 151–164. [Google Scholar] [CrossRef]
- Schwanninger, M.; Rodrigues, J.C.; Fackler, K. A review of band assignments in near infrared spectra of wood and wood components. J. Near Infrared Spectrosc. 2011, 19, 287–308. [Google Scholar] [CrossRef]
- Meder, R.; Thumm, A.; Bier, H. Venner stiffness predicted by NIR spectroscopy calibrated using mini-LVL test panels. Holz als Roh- und Werkstoff 2002, 60, 159–164. [Google Scholar] [CrossRef]
- Schwanninger, M.; Hinterstoisser, B.; Gierlinger, N.; Wimmer, R.; Hnager, J. Application of Fourier Transform Near Infrared Spectroscopy (FT-NIR) to thermally modified wood. Holz als Roh- und Werkstoff 2004, 62, 483–485. [Google Scholar] [CrossRef]
- Via, B.K.; Zhou, C.; Acquah, G.; Jiang, W.; Eckhardt, L. Near Infrared Spectroscopy Calibration for Wood Chemistry: Which Chemometric Technique Is Best for Prediction and Interpretation? Sensors 2014, 14, 13532–13547. [Google Scholar] [CrossRef]
- dos Santos Grasel, F.; Flôres Ferrão, M.; Wolf, C.R. Development of methodology for identification the nature of the polyphenolic extracts by FTIR associated with multivariate analysis. Spectrochim. Acta A 2016, 153, 94–101. [Google Scholar] [CrossRef]
- Noda, I. Generalized two-dimensional correlation method applied to infrared, Raman, and other types of spectroscopy. Appl. Spectrosc. 1993, 47, 1329–1336. [Google Scholar] [CrossRef]
- Czarnecki, M.A. Interpretation of Two-Dimensional Correlation Spectra: Science or Art? Appl. Spectrosc. 1998, 52, 1583–1590. [Google Scholar] [CrossRef]
- Noda., I.; Ozaki., Y. Two Dimensional Correlation Spectroscopy: Applications in Vibrational and Optical Spectroscopy; John Wiley & Sons Ltd.: Chichester, UK, 2004. [Google Scholar]
- Popescu, C.-M.; Popescu, M.-C.; Singurel, G.; Vasile, C.; Argyropoulos, D.S.; Willför, S. Spectral characterization of Eucalyptus wood. Appl. Spectrosc. 2007, 61, 1168–1177. [Google Scholar] [CrossRef]
- Wanga, C.; Xianga, B.; Zhanga, W. Application of two-dimensional near-infrared (2D-NIR) correlation spectroscopy to the discrimination of three species of Dendrobium. J. Chemometrics. 2009, 23, 463–470. [Google Scholar] [CrossRef]
- Workman, J., Jr.; Weyer, L. Practical Guide to Interpretive Near-Infrared Spectroscopy; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Basch, A.; Wasserman, T.; Lewin, M. Near-Infrared Spectrum of cellulose: A new method for obtaining crystallinity ratios. J. Polym. Sci. Polym. Chem. 1974, 12, 1143–1156. [Google Scholar] [CrossRef]
- Vasile, C.; Popescu, M.-C.; Stoleriu, A.; Gosselink, R. Thermal characterization of lignins. In New Trends in Natural and Synthetic Polymer Science; Vasile, C., Zaikov, G.E., Eds.; Nova Science Publishers Inc.: New York, NY, USA, 2006; pp. 135–163. [Google Scholar]
- Hatakeyama, H. Thermal Analysis. In Methods in Lignin Chemistry; Lin, S.Y., Dence, C.W., Eds.; Springer: Berlin, Germany, 1992; p. 200. [Google Scholar]
- Inagaki, T.; Matsuo, M.; Tsuchikawa, S. NIR spectral–kinetic analysis for thermally degraded Sugi (Cryptomeria japonica) wood. Appl. Phys. A 2016, 122, 208. [Google Scholar] [CrossRef]
- Watanabe, A.; Morita, S.; Ozaki, Y. Temperature dependent structural changes in hydrogen bonds in microcrystalline cellulose studied by infrared and near-infrared spectroscopy with perturbation-correlation moving-window two-dimensional correlation analysis. Appl. Spectrosc. 2006, 60, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Mitsui, K.; Inagaki, T.; Tsuchikawa, S. Monitoring of hydroxyl groups in wood during heat treatment using NIR spectroscopy. Biomacromol 2008, 9, 286–288. [Google Scholar] [CrossRef]
- Bächle, H.; Zimmer, B.; Windeisen, E.; Wegener, G. Evaluation of thermally modified beech and spruce wood and their properties by FT-NIR spectroscopy. Wood Sci. Technol. 2010, 44, 421–433. [Google Scholar] [CrossRef]
- Akgul, M.; Gumuskaya, E.; Korkut, S. Crystalline structure of heat-treated Scots pine [Pinus sylvestris L.] and Uludağ fir [Abies nordmanniana (Stev.) subsp. bornmuelleriana (Mattf.)] wood. Wood Sci. Technol. 2007, 41, 281–289. [Google Scholar] [CrossRef]
- Conner, A.H. Kinetic modeling of hardwood prehydrolysis. Part I: Xylan removal by water prehydrolysis. Wood Fiber. Sci. 1984, 16, 268–277. [Google Scholar]
- Garrote, G.; Dominguez, H.; Parajó, J.C. Study of the deacetylation of hemicelluloses during the hydrothermal processing of Eucalyptus wood. Holz als Roh- und Werkstoff 2001, 59, 53–59. [Google Scholar] [CrossRef]
Band Position | Assignment |
---|---|
4559 | combination band of C-H and C=O stretching vibration associated to lignin |
4632 | combination bands of Car-H and C=O stretching vibration associated to lignin and extractives |
4676 | C-H and C=O stretching vibration associated to hemicelluloses |
4756 | O-H and C-H deformation and O-H stretching vibrations in cellulose and hemicelluloses |
4816 | O-H and C-H deformation vibrations in cellulose and hemicelluloses |
4878 | C=O stretching vibration associated to hemicelluloses |
5092 | combination bands of O-H and C-H stretching vibration |
5140 | O-H groups involved in strong intramolecular hydrogen bonds and 2nd overtone of C=O stretching vibration mainly in hemicelluloses |
5216 | |
5315 |
Band Position | Assignment |
---|---|
5667 | 1st overtone of C-H stretching vibration in carbohydrates and lignin |
5720 | 1st overtone of C-H groups in hemicelluloses |
5796 | 1st overtone of C-H stretching in lignin |
5880 | 1st overtone of C-H stretching in lignin and CH2 groups in cellulose |
5972 | Car-H stretching vibration in lignin |
6136 | 1st overtone of O-H stretching vibration in cellulose |
6283 | 1st overtone of O-H stretching vibration in cellulose, strongly bonded O-H groups in crystalline regions and Iβ phase |
6418 | 1st overtone of O-H stretching vibration of the O(6)-H(6)…O(3)’ intermolecular H-bonds in cellulose |
6464 | 1st overtone of O-H stretching vibration of the O(3)-H(3)…O(5) intramolecular H-bonds in cellulose (crystalline regions C1) |
6647 | 1st overtone of O-H stretching vibration of the O(6)-H(6)…O(3)’ intermolecular H-bonds in cellulose |
6708 | 1st overtone of O-H stretching vibration of the O(3)-H(3)…O(5) intramolecular H-bonds in cellulose and glucomannan |
6753 | weakly hydrogen bonded OH groups of cellulose O(6)-H(6), 1st overtone of O-H stretching vibration in semi-crystalline cellulose |
6908 | phenolic O-H groups of lignin with intramolecular H-bonding to an ether group in ortho position and to extractives |
5667 | 1st overtone of C-H stretching vibration in carbohydrates and lignin |
5720 | 1st overtone of C-H groups in hemicelluloses |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popescu, C.-M.; Zeniya, N.; Endo, K.; Genkawa, T.; Matsuo-Ueda, M.; Obataya, E. Assessment of Structural Differences between Water-Extracted and Non-Extracted Hydro-Thermally Treated Spruce Wood by NIR Spectroscopy. Forests 2021, 12, 1689. https://doi.org/10.3390/f12121689
Popescu C-M, Zeniya N, Endo K, Genkawa T, Matsuo-Ueda M, Obataya E. Assessment of Structural Differences between Water-Extracted and Non-Extracted Hydro-Thermally Treated Spruce Wood by NIR Spectroscopy. Forests. 2021; 12(12):1689. https://doi.org/10.3390/f12121689
Chicago/Turabian StylePopescu, Carmen-Mihaela, Nanami Zeniya, Kaoru Endo, Takuma Genkawa, Miyuki Matsuo-Ueda, and Eiichi Obataya. 2021. "Assessment of Structural Differences between Water-Extracted and Non-Extracted Hydro-Thermally Treated Spruce Wood by NIR Spectroscopy" Forests 12, no. 12: 1689. https://doi.org/10.3390/f12121689
APA StylePopescu, C.-M., Zeniya, N., Endo, K., Genkawa, T., Matsuo-Ueda, M., & Obataya, E. (2021). Assessment of Structural Differences between Water-Extracted and Non-Extracted Hydro-Thermally Treated Spruce Wood by NIR Spectroscopy. Forests, 12(12), 1689. https://doi.org/10.3390/f12121689