Longer Growing Seasons Cause Hydrological Regime Shifts in Central European Forests
Abstract
:1. Introduction
1.1. Europe Drought-Regime Shift Caused by Temperature/Transpiration
1.2. Elevational Aspects of Water Scarcity
1.3. Central European Uplands Forests–The Changing Role
1.4. Climate Change Impact Studies
1.5. Forest Management Paradigm Change—From Light Limitation to Water Deficits
1.6. Summary of the Paper Approach
2. Materials and Methods
2.1. Study Area
2.1.1. South Moravian Region (SMR)
2.1.2. The Headwater Study Catchment
2.2. Data Acquisition–Local Data
2.3. Measured Water Balance Components during the 2016 Growing Season
2.4. Data Acquisition–Long-Term Data
2.5. Persist Model Calibration
- 1.
- Firstly, only the period where both measured streamflow and transpiration data were available was modelled (6 April 2016–25 October 2016). Instrumental measurements of temperature, precipitation, transpiration and streamflow from the 2016 field campaign were used to setup and calibrate the model for growing season conditions. A manual calibration was performed to achieve a match of R2 > 0.67 between modelled and observed daily stream flow. Soft calibration [63] based on measured transpiration of deciduous and coniferous stands was used to obtain a guideline of realistic values for the parameter setup. Specifically, simulated maximum daily transpiration values for deciduous trees were kept approximately 1.3 times higher than those for conifers throughout the whole calibration process. This value is an approximation based on expected differences between spruce and beech [64] and our own measurements from 2016, where we observed that deciduous trees transpired 1.48 times more than conifers (238 mm to 161 mm–however, note that the early spring transpiration of conifers was not captured, so the measured difference was probably a little less) (Supplementary Table S1, Figure S2.).
- 2.
- The setup developed in step (1) was used with instrumental measurements of temperature and precipitation to model the whole year (1 January 2016 to 31 December 2016) including the important dormant season of the spring/winter period. It should be noted that no measurements of transpiration or streamflow were available for this part of the year. Transpiration coefficients, initial water depth parameters as well as the water movement through soil buckets were adjusted to simulate a reasonable winter streamflow and still maintain an acceptable fit during the measured growing season streamflow (65% accuracy; R2) while retaining the basic principles defined in step (1) for the transpiration and interception.
- 3.
- The calibrated model from step (2) was then forced using EOBS daily gridded weather data to simulate the long-term water balance from 1950–2018. Again, transpiration coefficient, initial water depth parameters as well as the water movement through soil buckets and water residence time were adjusted to obtain reasonable streamflow throughout the almost 70-year period while still maintaining a good fit with the 2016 observed data. We opted to neglect possible subtle changes in evapotranspiration associated with the temporal evolution of age structure or tree species distribution and used the same parameter values for the whole of the 70-year period simulated.
3. Results
3.1. Long Term Climate Evaluation
3.2. Modelled Data of Long Term Water Balance from Útěchov Reference Catchment
3.3. Long-Term Groundwater Evaluation
3.4. The Hydrological Regime Shift
4. Discussion
4.1. Long-Term Climate Evaluation
4.2. PERSiST Validity-Short Term Measuring Campaign Is Able to Reproduce Long Term Water Balance Changes
4.3. Hydrological Regime Shift
5. Conclusions
Role of the Forests in Regional Hydrological Regime Shift-Transpiration Management Is the Key-Conclusion?
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anders, I.; Stagl, J.; Auer, I.; Pavlik, D. Climate Change in Central and Eastern Europe. In Managing Protected Areas in Central and Eastern Europe under Climate Change; Springer: Dordrecht, The Netherlands, 2014; pp. 17–30. [Google Scholar]
- Moravec, V.; Markonis, Y.; Rakovec, O.; Kumar, R.; Hanel, M. A 250-Year European Drought Inventory Derived From Ensemble Hydrologic Modeling. Geophys. Res. Lett. 2019, 46, 5909–5917. [Google Scholar] [CrossRef]
- Brázdil, R.; Dobrovolný, P.; Trnka, M.; Kotyza, O.; Řezníčková, L.; Valášek, H.; Zahradníček, P.; Štěpánek, P. Droughts in the Czech Lands, 1090–2012 AD. Clim. Past 2013, 9, 1985–2002. [Google Scholar] [CrossRef] [Green Version]
- Brázdil, R.; Trnka, M.; Mikšovský, J.; Řezníčková, L.; Dobrovolný, P. Spring-summer droughts in the Czech Land in 1805–2012 and their forcings. Int. J. Climatol. 2015, 35, 1405–1421. [Google Scholar] [CrossRef]
- Potopová, V.; Boroneanţ, C.; Možný, M.; Soukup, J. Driving role of snow cover on soil moisture and drought development during the growing season in the Czech Republic. Int. J. Clim. 2015, 36, 3741–3758. [Google Scholar] [CrossRef] [Green Version]
- Trnka, M.; Brazdil, R.; Balek, J.; Semeradova, D.; Hlavinka, P.; Možný, M.; Stěpanek, P.; Dobrovolný, P.; Zahradnicek, P.; Dubrovský, M.; et al. Drivers of soil drying in the Czech Republic between 1961 and 2012. Int. J. Clim. 2015, 35, 2664–2675. [Google Scholar] [CrossRef]
- Trnka, M.; Balek, J.; Štěpánek, P.; Zahradníček, P.; Možný, M.; Eitzinger, J.; Žalud, Z.; Formayer, H.; Turňa, M.; Nejedlík, P.; et al. Drought trends over part of Central Europe between 1961 and 2014. Clim. Res. 2016, 70, 143–160. [Google Scholar] [CrossRef] [Green Version]
- Sippel, S.; Forkel, M.; Rammig, A.; Thonicke, K.; Flach, M.; Heimann, M.; Otto, F.E.L.; Reichstein, M.; Mahecha, M. Contrasting and interacting changes in simulated spring and summer carbon cycle extremes in European ecosystems. Environ. Res. Lett. 2017, 12, 75006. [Google Scholar] [CrossRef]
- Samaniego, L.; Thober, S.; Kumar, R.; Wanders, N.; Rakovec, O.; Pan, M.; Zink, M.; Sheffield, J.; Wood, E.F.; Marx, A. Anthropogenic warming exacerbates European soil moisture droughts. Nat. Clim. Chang. 2018, 8, 421–426. [Google Scholar] [CrossRef]
- Buermann, W.; Forkel, M.; O’Sullivan, M.; Sitch, S.; Friedlingstein, P.; Haverd, V.; Jain, A.K.; Kato, E.; Kautz, M.; Lienert, S.; et al. Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature 2018, 562, 110–114. [Google Scholar] [CrossRef] [Green Version]
- Lian, X.; Piao, S.; Li, L.Z.X.; Li, Y.; Huntingford, C.; Ciais, P.; Cescatti, A.; Janssens, I.A.; Peñuelas, J.; Buermann, W.; et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 2020, 6, eaax0255. [Google Scholar] [CrossRef] [Green Version]
- Menzel, A.; Yuan, Y.; Matiu, M.; Sparks, T.; Scheifinger, H.; Gehrig, R.; Estrella, N. Climate change fingerprints in recent European plant phenology. Glob. Chang. Biol. 2020, 26, 2599–2612. [Google Scholar] [CrossRef] [Green Version]
- Geng, X.; Fu, Y.H.; Hao, F.; Zhou, X.; Zhang, X.; Yin, G.; Vitasse, Y.; Piao, S.; Niu, K.; De Boeck, H.J.; et al. Climate warming increases spring phenological differences among temperate trees. Glob. Chang. Biol. 2020, 26, 5979–5987. [Google Scholar] [CrossRef]
- Donnelly, C.; Greuell, W.; Andersson, J.; Gerten, D.; Pisacane, G.; Roudier, P.; Ludwig, F. Impacts of climate change on European hydrology at 1.5, 2 and 3 degrees mean global warming above preindustrial level. Clim. Chang. 2017, 143, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Spinoni, J.; Naumann, G.; Vogt, J. Pan-European seasonal trends and recent changes of drought frequency and severity. Glob. Planet. Chang. 2017, 148, 113–130. [Google Scholar] [CrossRef]
- Spinoni, J.; Vogt, J.V.; Naumann, G.; Barbosa, P.; Dosio, A. Will drought events become more frequent and severe in Europe? Int. J. Climatol. 2018, 38, 1718–1736. [Google Scholar] [CrossRef] [Green Version]
- Langhammer, J.; Bernsteinová, J. Which Aspects of Hydrological Regime in Mid-Latitude Montane Basins Are Affected by Climate Change? Water 2020, 12, 2279. [Google Scholar] [CrossRef]
- Lamačová, A.; Hruška, J.; Kram, P.; Stuchlik, E.; Farda, A.; Chuman, T.; Fottová, D. Runoff trends analysis and future projections of hydrological patterns in small forested catchments. Soil Water Res. 2014, 9, 169–181. [Google Scholar] [CrossRef] [Green Version]
- Vlach, V.; Ledvinka, O.; Matouskova, M. Changing Low Flow and Streamflow Drought Seasonality in Central European Headwaters. Water 2020, 12, 3575. [Google Scholar] [CrossRef]
- Hobbs, J.J. World Regional Geography; Nelson Education Ltd.: Toronto, ON, Canada, 2008. [Google Scholar]
- Neary, D.G.; Ice, G.G.; Jackson, C.R. Linkages between forest soils and water quality and quantity. For. Ecol. Manag. 2009, 258, 2269–2281. [Google Scholar] [CrossRef]
- Postel, S.; Bawa, K.; Kaufman, L.; Peterson, C.H.; Carpenter, S.; Tillman, D.; Dayton, P.; Alexander, S.; Lagerquist, K.; Goulder, L.; et al. The world’s forests and their ecosystem services. In Nature’s Services: Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997; pp. 215–235. [Google Scholar]
- Reyer, C.P.O.; Brouwers, N.; Rammig, A.; Brook, B.; Epila, J.; Grant, R.; Holmgren, M.; Langerwisch, F.; Leuzinger, S.; Lucht, W.; et al. Forest resilience and tipping points at different spatio-temporal scales: Approaches and challenges. J. Ecol. 2015, 103, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Dobor, L.; Hlásny, T.; Rammer, W.; Zimová, S.; Barka, I.; Seidl, R. Is salvage logging effectively dampening bark beetle outbreaks and preserving forest carbon stocks? J. Appl. Ecol. 2020, 57, 67–76. [Google Scholar] [CrossRef]
- Food and Agriculture Organisation (FAO). Global Forest Resources Assessments. Country Reports 2020. Available online: http://www.fao.org/forest-resources-assessment/fra-2020/country-reports/en/ (accessed on 15 January 2021).
- Bałazy, R.; Zasada, M.; Ciesielski, M.; Waraksa, P.; Zawiła-Niedźwiecki, T. Forest dieback processes in the Central European Mountains in the context of terrain topography and selected stand attributes. For. Ecol. Manag. 2019, 435, 106–119. [Google Scholar] [CrossRef]
- Linderholm, H.W. Growing season changes in the last century. Agric. For. Meteorol. 2006, 137, 1–14. [Google Scholar] [CrossRef]
- Vitasse, Y.; François, C.; Delpierre, N.; Dufrêne, E.; Kremer, A.; Chuine, I.; Delzon, S. Assessing the effects of climate change on the phenology of European temperate trees. Agric. For. Meteorol. 2011, 151, 969–980. [Google Scholar] [CrossRef]
- Kolář, T.; Giagli, K.; Trnka, M.; Bednářová, E.; Vavrčík, H.; Rybníček, M. Response of the leaf phenology and tree-ring width of European beech to climate variability. Silva Fenn. 2016, 50, 1520. [Google Scholar] [CrossRef] [Green Version]
- Sevanto, S.; Suni, T.; Pumpanen, J.; Grönholm, T.; Kolari, P.; Nikinmaa, E.; Hari, P.; Vesala, T. Wintertime photosynthesis and water uptake in a boreal forest. Tree Physiol. 2006, 26, 749–757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clausnitzer, F.; Köstner, B.; Schwärzel, K.; Bernhofer, C. Relationships between canopy transpiration, atmospheric conditions and soil water availability—Analyses of long-term sap-flow measurements in an old Norway spruce forest at the Ore Mountains/Germany. Agric. For. Meteorol. 2011, 151, 1023–1034. [Google Scholar] [CrossRef]
- Eckhardt, K.; Ulbrich, U. Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. J. Hydrol. 2003, 284, 244–252. [Google Scholar] [CrossRef]
- Hanel, M.; Kašpárek, L.; Peláková, M.; Beran, A.; Vizina, A. Evaluation of Changes in Deficit Volumes: Support for Protection of Localities Suitable for Construction of Reservoirs. In Considering Hydrological Change in Reservoir Planning and Management; Schumann, A., Ed.; IAHS Press: Wallingford, UK, 2013; pp. 187–192. [Google Scholar]
- Neukum, C.; Azzam, R. Impact of climate change on groundwater recharge in a small catchment in the Black Forest, Germany. Hydrogeol. J. 2012, 20, 547–560. [Google Scholar] [CrossRef]
- Farkas, C.; Gelybó, G.; Bakacsi, Z.; Horel, Á.; Hagyó, A.; Dobor, L.; Kása, I.; Tóth, E. Impact of expected climate change on soil water regime under different vegetation conditions. Biologia 2014, 69, 1510–1519. [Google Scholar] [CrossRef]
- Řehoř, J.; Brázdil, R.; Trnka, M.; Řezníčková, L.; Balek, J.; Možný, M. Regional effects of synoptic situations on soil drought in the Czech Republic. Theor. Appl. Climatol. 2020, 141, 1383–1400. [Google Scholar] [CrossRef]
- Hanel, M.; Vizina, A.; Máca, P.; Pavlásek, J. A Multi-Model Assessment of Climate Change Impact on Hydrological Regime in the Czech Republic. J. Hydrol. Hydromech. 2012, 60, 152–161. [Google Scholar] [CrossRef] [Green Version]
- Lamačová, A.; Hruška, J.; Trnka, M.; Štěpánek, P.; Zahradníček, P.; Meitner, J.; Farda, A. Modelling future hydrological pattern in a Bohemian Forest headwater catchment. Silva Gabreta 2018, 24, 47–67. [Google Scholar]
- Dittmar, C.; Zech, W.; Elling, W. Growth variations of common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe—A dendroecological study. For. Ecol. Manag. 2003, 173, 63–78. [Google Scholar] [CrossRef]
- Ritter, E.; Dalsgaard, L.; Einhorn, K.S. Light, temperature and soil moisture regimes following gap formation in a semi-natural beech-dominated forest in Denmark. For. Ecol. Manag. 2005, 206, 15–33. [Google Scholar] [CrossRef]
- Barrette, M.; Thiffault, N.; Barrette, M.; Bélanger, L.; LeDuc, A.; Chalifour, D. Key ecosystem attributes and productivity of boreal stands 20 years after the onset of silviculture scenarios of increasing intensity. For. Ecol. Manag. 2017, 389, 404–416. [Google Scholar]
- Čater, M.; Diaci, J. Divergent response of European beech, silver fir and Norway spruce advance regeneration to increased light levels following natural disturbance. For. Ecol. Manag. 2017, 399, 206–212. [Google Scholar] [CrossRef]
- Bréda, N.; Huc, R.; Granier, A.; Dreyer, E. Temperate forest trees and stands under severe drought: A review of ecophysiological responses, adaptation processes and long-term consequences. Ann. For. Sci. 2006, 63, 625–644. [Google Scholar] [CrossRef] [Green Version]
- Overbeck, M.; Schmidt, M. Modelling infestation risk of Norway spruce by Ips typographus (L.) in the Lower Saxon Harz Mountains (Germany). For. Ecol. Manag. 2012, 266, 115–125. [Google Scholar] [CrossRef]
- Toth, D.; Maitah, M.; Maitah, K.; Jarolínová, V. The Impacts of Calamity Logging on the Development of Spruce Wood Prices in Czech Forestry. Forests 2020, 11, 283. [Google Scholar] [CrossRef] [Green Version]
- European Environment Agency (EEA). European Forest Types. Categories and Types for Sustainable Forest Management Reporting and Policy, 2nd ed.; European Environment Agency: Copenhagen, Denmark, 2007.
- Puumalainen, J. Structural, Compositional and Functional Aspects of Forest Biodiversity in Europe. Geneva Timber and Forest Discussion Papers; United Nations Economic Commission for Europe (UNECE): Geneva, Switzerland; Food and Agriculture Organisation (FAO): Rome, Italy, 2001. [Google Scholar]
- Pukkala, T. Plenterwald, Dauerwald, or clearcut? For. Policy Econ. 2016, 62, 125–134. [Google Scholar] [CrossRef]
- Schütz, J.P.; Saniga, M.; Diaci, J.; Vrška, T. Comparing close-to-naturesilviculture with processes in pristine forests: Lessons from Central Europe. Ann. For. Sci. 2006, 73, 911–921. [Google Scholar] [CrossRef] [Green Version]
- Futter, M.N.; Erlandsson, M.A.; Butterfield, D.; Whitehead, P.G.; Oni, S.K.; Wade, A.J. PERSiST: A flexible rainfall-runoff modelling toolkit for use with the INCA family of models. Hydrol. Earth Syst. Sci. 2004, 18, 855–873. [Google Scholar] [CrossRef] [Green Version]
- Czech Hydrometeorological Institute. Available online: https://www.chmi.cz/historicka-data/pocasi/uzemni-srazky?l=en (accessed on 2 July 2021).
- Czech Statistical Institute. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiCpdzsyNDxAhVlg_0HHcObABUQFjAAegQIBRAD&url=https%3A%2F%2Fwww.czso.cz%2Fdocuments%2F11280%2F26041275%2FCR_CZ0640_3.pdf%2F5bfd5887-4a85-4255-8efc-fc71e2da6ff9%3Fversion%3D1.87&usg=AOvVaw3HOgdf5s8cG0NEC_U4kCwF (accessed on 2 July 2021).
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [Green Version]
- Kupec, P.; Libor, Š.; Deutscher, J. Tree species composition influences differences in water use efficiency of upland forested microwatersheds. Eur. J. For. Res. 2018, 137, 477–487. [Google Scholar]
- Deutscher, J.; Holík, L.; Kupec, P.; Marková, I.; Barašová, J.; Divín, J.; Holata, F.; Nezval, O.; Rosíková, J.; Školoud, L.; et al. Estimation of Basic Water-Balance Parameters of the Útěchov Forested Microwatershed. In Proceedings of the SilvaNet–WoodNet 2016: Proceedings Abstracts of Student Scientific Conference, Brno, Czech Republic, 14 November 2016, 1st ed.; Martinek, P., Prouza, M., Čermáková, V., Rozsypálek, J., Eds.; Mendelova Univerzita v Brně: Brno, Czech Republic, 2016; pp. 27–28. [Google Scholar]
- Čermák, J.; Kučera, J.; Nadezhdina, N. Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees 2004, 18, 529–546. [Google Scholar] [CrossRef]
- Haylock, M.R.; Hofstra, N.; Tank, A.K.; Klok, E.J.; Jones, P.; New, M. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res. Space Phys. 2008, 113, D20. [Google Scholar] [CrossRef] [Green Version]
- Deutscher, J.; Kupec, P.; Kučera, A.; Urban, J.; Ledesma, J.L.J.; Futter, M. Ecohydrological consequences of tree removal in an urban park evaluated using open data, free software and a minimalist measuring campaign. Sci. Total. Environ. 2019, 655, 1495–1504. [Google Scholar] [CrossRef]
- Lupon, A.; Ledesma, J.L.J.; Bernal, S. Riparian evapotranspiration is essential to simulate streamflow dynamics and water budgets in a Mediterranean catchment. Hydrol. Earth Syst. Sci. 2018, 22, 4033–4045. [Google Scholar] [CrossRef]
- Oudin, L.; Hervieu, F.; Michel, C.; Perrin, C.; Andréassian, V.; Anctil, F.; Loumagne, C. Which potential evapotranspiration input for a lumped rainfall–runoff model?: Part 2—Towards a simple and efficient potential evapotranspiration model for rainfall–runoff modelling. J. Hydrol. 2005, 303, 290–306. [Google Scholar] [CrossRef]
- Crossman, J.; Bussi, G.; Whitehead, P.G.; Butterfield, D.; Lannergård, E.; Futter, M.N. A New, Catchment-Scale Integrated Water Quality Model of Phosphorus, Dissolved Oxygen, Biochemical Oxygen Demand and Phytoplankton: INCA-Phosphorus Ecology (PEco). Water 2021, 13, 723. [Google Scholar] [CrossRef]
- Ledesma, J.L.; Köhler, S.J.; Futter, M.N. Long-term dynamics of dissolved organic carbon: Implications for drinking water supply. Sci. Total. Environ. 2012, 432, 1–11. [Google Scholar] [CrossRef]
- Seibert, J.; Mcdonnell, J. On the dialog between experimentalist and modeler in catchment hydrology: Use of soft data for multicriteria model calibration. Water Resour. Res. 2002, 38, 23-1–23-4. [Google Scholar] [CrossRef]
- Schume, H.; Jost, G.; Hager, H. Soil water depletion and recharge patterns in mixed and pure forest stands of European beech and Norway spruce. J. Hydrol. 2004, 289, 258–274. [Google Scholar] [CrossRef]
- Breda, N.; Granier, A.; Aussenac, G. Effects of thinning on soil and tree water relations, transpiration and growth in an oak forest (Quercus petraea (Matt.) Liebl.). Tree Physiol. 1995, 15, 295–306. [Google Scholar] [CrossRef]
- Alavi, G.; Jansson, P.-E.; Hällgren, J.-E.; Bergholm, J. Interception of a Dense Spruce Forest, Performance of a Simplified Canopy Water Balance Model. Hydrol. Res. 2011, 32, 265–284. [Google Scholar] [CrossRef] [Green Version]
- Treml, P. Nejvěštší sucha na území České Republiky v období let 1875–2010. Meteorol. Zprávy 2011, 64, 168. [Google Scholar]
- Spinoni, J.; Naumann, G.; Vogt, J.; Barbosa, P. The biggest drought events in Europe from 1950 to 2012. J. Hydrol. Reg. Stud. 2015, 3, 509–524. [Google Scholar] [CrossRef]
- Chmielewski, F.M.; Roetzer, T. Response of tree phenology to climate change across Europe. Agric. For. Meteorol. 2001, 108, 101–112. [Google Scholar] [CrossRef]
- Krejza, J.; Cienciala, E.; Světlík, J.; Bellan, M.; Noyer, E.; Horáček, P.; Štěpánek, P.; Marek, M.V. Evidence of climate-induced stress of Norway spruce along elevation gradient preceding the current dieback in Central Europe. Trees 2021, 35, 103–119. [Google Scholar] [CrossRef]
- Brázdil, R.; Kiss, A.; Luterbacher, J.; Nash, D.J.; Řezníčková, L. Documentary data and the study of the past droughts: An overview of the state of the art worldwide. Clim. Past Discuss. 2018, 118, 1–67. [Google Scholar]
- Ledesma, J.L.; Futter, M.N. Gridded climate data products are an alternative to instrumental measurements as inputs to rainfall-runoff models. Hydrol. Process. 2017, 31, 3283–3293. [Google Scholar] [CrossRef] [Green Version]
- Šípek, V.; Hnilica, J.; Vlček, L.; Hnilicová, S.; Tesař, M. Influence of vegetation type and soil properties on soil water dynamics in the Šumava Mountains (Southern Bohemia). J. Hydrol. 2020, 582, 124285. [Google Scholar] [CrossRef]
- Skalák, P.; Farda, A.; Zahradnicek, P.; Trnka, M.; Hlásny, T.; Stepanek, P. Projected shift of Köppen-Geiger zones in the central Europe: A first insight into the implications for ecosystems and the society. Int. J. Clim. 2018, 38, 3595–3606. [Google Scholar] [CrossRef]
- Bachmair, S.; Tanguy, M.; Hannaford, J.; Stahl, K. How well do meteorological indicators represent agricultural and forest drought across Europe? Environ. Res. Lett. 2018, 13, 34042. [Google Scholar] [CrossRef]
- Geβler, A.; Keitel, C.; Nahm, M.; Rennenberg, H. Water Shortage Affects the Water and Nitrogen Balance in Central European Beech Forests. Plant Biol. 2004, 6, 289–298. [Google Scholar] [CrossRef]
- Ellison, D.N.; Futter, M.; Bishop, K. On the forest cover–water yield debate: From demand-to supply-side thinking. Glob. Chang. Biol. 2012, 18, 806–820. [Google Scholar] [CrossRef] [Green Version]
- Frank, D.; Poulter, B.; Saurer, M.; Esper, J.; Huntingford, C.; Helle, G.; Treydte, K.; Zimmermann, N.; Schleser, G.H.; Ahlström, A.; et al. Water-use efficiency and transpiration across European forests during the Anthropocene. Nat. Clim. Chang. 2015, 5, 579–583. [Google Scholar] [CrossRef] [Green Version]
- Netherer, S.; Panassiti, B.; Pennerstorfer, J.; Matthews, B. Acute Drought Is an Important Driver of Bark Beetle Infestation in Austrian Norway Spruce Stands. Front. For. Glob. Chang. 2019, 2, 39. [Google Scholar] [CrossRef] [Green Version]
- Trnka, M.; Balek, J.; Možný, M.; Cienciala, E.; Čermák, P.; Semerádová, D.; Jurečka, F.; Hlavinka, P.; Štěpánek, P.; Farda, A.; et al. Observed and expected changes in wildfire-conducive weather and fire events in peri-urban zones and key nature reserves of the Czech Republic. Clim. Res. 2020, 82, 33–54. [Google Scholar] [CrossRef]
- Klisz, M.; Puchałka, R.; Netsvetov, M.; Prokopuk, Y.; Vítková, M.; Sádlo, J.; Matisons, R.; Mionskowski, M.; Chakraborty, D.; Olszewski, P.; et al. Variability in climate-growth reaction of Robinia pseudoacacia in Eastern Europe indicates potential for acclimatisation to future climate. For. Ecol. Manag. 2021, 492, 119194. [Google Scholar] [CrossRef]
- Vanclay, J.K. Allowable Cut in Forest Management. In Tropical Forestry Handbook; Pancel, L., Köhl, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kupec, P.; Deutscher, J.; Futter, M. Longer Growing Seasons Cause Hydrological Regime Shifts in Central European Forests. Forests 2021, 12, 1656. https://doi.org/10.3390/f12121656
Kupec P, Deutscher J, Futter M. Longer Growing Seasons Cause Hydrological Regime Shifts in Central European Forests. Forests. 2021; 12(12):1656. https://doi.org/10.3390/f12121656
Chicago/Turabian StyleKupec, Petr, Jan Deutscher, and Martyn Futter. 2021. "Longer Growing Seasons Cause Hydrological Regime Shifts in Central European Forests" Forests 12, no. 12: 1656. https://doi.org/10.3390/f12121656
APA StyleKupec, P., Deutscher, J., & Futter, M. (2021). Longer Growing Seasons Cause Hydrological Regime Shifts in Central European Forests. Forests, 12(12), 1656. https://doi.org/10.3390/f12121656