Dimensional Stability of Treated Sengon Wood by Nano-Silica of Betung Bamboo Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Wood Samples
2.2. Preparation of Impregnation Solutions
2.3. The Impregnation Process
2.4. Calculation of Dimensional Stability and Oven-Dried Density
- W0 = the oven-dried weight of sample before treatment;
- W1 = the oven-dried sample weight after treatment;
- W2 = the weight of the sample after immersion in water for 24 h;
- V0 = the oven-dried volume of sample before treatment;
- V1 = the oven-dried sample volume after treatment;
- Su = the volume shrinkage of untreated wood;
- St = the volume shrinkage of treated wood;
- B = the weight of the sample before or after treatment;
- V = the volume of the sample before or after treatment.
2.5. Data Analysis Procedure
3. Results
3.1. Characteristics of Impregnated Sengon Wood
3.1.1. SEM-EDX Analysis
3.1.2. XRD Analysis
3.1.3. FTIR Analysis
4. Discussion
4.1. Characteristics of Impregnated Sengon Wood
4.1.1. SEM-EDX Analysis
4.1.2. XRD Analysis
4.1.3. FTIR Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adi, D.S.; Risanto, L.; Damayanti, R.; Rullyati, S.; Dewi, L.M.; Susanti, R.; Dwianto, W.; Hermiati, E.; Watanabe, T. Exploration of Unutilized Fast Growing Wood Species from Secondary Forest in Central Kalimantan: Study on the Fiber Characteristic and Wood Density. Procedia Environ. Sci. 2014, 20, 321–327. [Google Scholar] [CrossRef] [Green Version]
- Szostak, A.; Bidzińska, G.; Ratajczak, E.; Herbeć, M. Biomasa drzewna z upraw drzew szybkorosna{ogonek}cych jako alternatywne źródło surowca drzewnego w Polsce. Drewno 2013, 190, 85–113. [Google Scholar] [CrossRef]
- Bredemeier, M.; Busch, G.; Hartmann, L.; Jansen, M.; Richter, F.; Lamersdorf, N.P. Fast growing plantations for wood production—Integration of ecological effects and economic perspectives. Front. Bioeng. Biotechnol. 2015, 3, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gałazka, A.; Szadkowski, J. Enzymatic hydrolysis of fast-growing poplar wood after pretreatment by steam explosion. Cellul. Chem. Technol. 2021, 55, 637–647. [Google Scholar] [CrossRef]
- Kojima, M.; Yamamoto, H.; Okumura, K.; Ojio, Y.; Yoshida, M.; Okuyama, T.; Ona, T.; Matsune, K.; Nakamura, K.; Ide, Y.; et al. Effect of the lateral growth rate on wood properties in fast-growing hardwood species. J. Wood Sci. 2009, 55, 417–424. [Google Scholar] [CrossRef]
- Rahayu, I.; Darmawan, W.; Nugroho, N.; Nandika, D.; Marchal, R. Demarcation point between juvenile and mature wood in sengon (Falcataria moluccana) and jabon (Antocephalus cadamba). J. Trop. For. Sci. 2014, 26, 331–339. [Google Scholar]
- Martawijaya, A.; Kartasujana, I.; Kadir, K.; Prawira Among, S. Indonesian Wood Atlas Volume 1; Forest Research and Development Agency, Ministry of Forestry Republik of Indonesia: Jakarta, Indonesia, 2005; pp. 1–171.
- [BPS] Central Bureau of Statistics. Statistic of Forestry Production 2019; Central Bureau of Statistics: Jakarta, Indonesia, 2019.
- Popper, R.; Niemz, P.; Eberle, G. Investigations on the sorption and swelling properties of thermally treated wood. Holz. Roh. Wer. 2005, 63, 135–148. [Google Scholar] [CrossRef] [Green Version]
- Kocaefe, D.; Younsi, R.; Chaudry, B.; Kocaefe, Y. Modeling of heat and mass transfer during high temperature treatment of aspen. Wood Sci. Technol. 2006, 40, 371–391. [Google Scholar] [CrossRef]
- Pratiwi, L.A.; Darmawan, W.; Priadi, T.; George, B.; Merlin, A.; Gérardin, C.; Dumarçay, S.; Gérardin, P. Characterization of thermally modified short and long rotation teaks and the effects on coatings performance. Maderas Cienc. Y Tecnol. 2019, 21, 209–222. [Google Scholar] [CrossRef] [Green Version]
- Bekhta, P.; Niemz, P. Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung 2003, 57, 539–546. [Google Scholar] [CrossRef]
- Gökhan, G.; Deniz, A. The influence of mass loss on the mechanical properties of heat-treated black pine wood. Wood Res. Slovak. 2007, 54, 33–42. [Google Scholar]
- Shi, J.L.; Kocaefe, D.; Amburgey, T.; Zhang, J. A comparative study on brown-rot fungus decay and subterranean termite resistance of thermally-modified and ACQ-C-treated wood. Holz. Als. Rohund Werkst. 2007, 65, 353–358. [Google Scholar] [CrossRef]
- Sivrikaya, H.; Can, A.; de Troya, T.; Conde, M. Comparative biological resistance of differently thermal modified wood species against decay fungi, Reticulitermes grassei and Hylotrupes bajulus. Maderas Cienc. Y Tecnol. 2015, 17, 559–570. [Google Scholar] [CrossRef] [Green Version]
- Salman, S.; Thévenon, M.F.; Pétrissans, A.; Dumarçay, S.; Candelier, K.; Gérardin, P. Improvement of the durability of heat-treated wood against termites. Maderas Cienc. Y Tecnol. 2017, 19, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Yildiz, S.; Tomak, E.D.; Yildiz, U.C.; Ustaomer, D. Effect of artificial weathering on the properties of heat treated wood. Polym. Degrad. Stab. 2013, 98, 1419–1427. [Google Scholar] [CrossRef]
- Gérardin, P. New alternatives for wood preservation based on thermal and chemical modification of wood—A review. Ann. For. Sci. 2016, 73, 559–570. [Google Scholar] [CrossRef] [Green Version]
- Wardani, L.; Risnasari, I.; Yasni, H.Y.S. Resistance of jabon timber modified with styrene and methyl methacrylate against drywood termites and subterranean termites. In Proceedings of the 9th Pacific Rim Termite Research Group Conference, Hanoi, Vietnam, 27–28 February 2012; Science and Technics Publishing House: Hanoi, Vietnam, 2012; pp. 73–78. [Google Scholar]
- Hadi, Y.S.; Rahayu, I.S.; Danu, S. Physical and mechanical properties of methyl methacrylate impregnated jabon wood. J. Indian Acad. Wood Sci. 2013, 10, 77–80. [Google Scholar] [CrossRef]
- Hadi, Y.S.; Rahayu, I.S.; Danu, S. Termite resistance of jabon wood impregnated with methyl methacrylate. J. Trop. For. Sci. 2015, 27, 25–29. [Google Scholar]
- Gabrielli, C.P.; Kamke, F.A. Phenol-formaldehyde impregnation of densified wood for improved dimensional stability. Wood Sci. Technol. 2010, 44, 95–104. [Google Scholar] [CrossRef]
- Fukuta, S.; Watanabe, A.; Akahori, Y.; Makita, A.; Imamura, Y.; Sasaki, Y. Bending properties of compressed wood impregnated with phenolic resin through drilled holes. Eur. J. Wood Wood Prod. 2011, 69, 633–639. [Google Scholar] [CrossRef]
- Dong, Y.; Yan, Y.; Wang, K.; Li, J.; Zhang, S.; Xia, C.; Shi, S.Q.; Cai, L. Improvement of water resistance, dimensional stability, and mechanical properties of poplar wood by rosin impregnation. Eur. J. Wood Wood Prod. 2016, 74, 177–184. [Google Scholar] [CrossRef]
- Pfriem, A.; Dietrich, T.; Buchelt, B. Furfuryl alcohol impregnation for improved plasticization and fixation during the densification of wood. Holzforschung 2012, 66, 215–218. [Google Scholar] [CrossRef]
- Esteves, B.; Nunes, L.; Domingos, I.; Pereira, H. Improvement of termite resistance, dimensional stability and mechanical properties of pine wood by paraffin impregnation. Eur. J. Wood Wood Prod. 2014, 72, 609–615. [Google Scholar] [CrossRef] [Green Version]
- Tsioptsias, C.; Panayiotou, C. Thermal stability and hydrophobicity enhancement of wood through impregnation with aqueous solutions and supercritical carbon dioxide. J. Mater. Sci. 2011, 46, 5406–5411. [Google Scholar] [CrossRef]
- Dirna, F.C.; Rahayu, I.; Maddu, A.; Darmawan, W.; Nandika, D.; Prihatini, E. Nanosilica synthesis from betung bamboo sticks and leaves by ultrasonication. Nanotechnol. Sci. Appl. 2020, 13, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Priyanto, A. Synthesis and Application of Silica Derived from Leaves Ash of Betung Bamboo (Dendrocalamus Asper (Schult F.) Backer Ex Heyne) to Reduce Ammonium and Nitrat Content on Liquid Tofu Waste [Undergraduate].; Walisongo Islamic State University: Semarang, Indonesia, 2015. [Google Scholar]
- Dwivedi, V.N.; Singh, N.P.; Das, S.S.; Singh, N.B. A new pozzolanic material for cement industry: Bamboo leaf ash. Int. J. Phys. Sci. 2006, 1, 106–111. [Google Scholar] [CrossRef]
- Dirna, F.C.; Rahayu, I.; Zaini, L.H.; Darmawan, W.; Prihatini, E. Improvement of fast-growing wood species characteristics by MEG and nano SiO2 impregnation. J. Korean Wood Sci. Technol. 2020, 48, 41–49. [Google Scholar] [CrossRef]
- Rahayu, I.; Darmawan, W.; Zaini, L.H.; Prihatini, E. Characteristics of fast-growing wood impregnated with nanoparticles. J. For. Res. 2020, 31, 677–685. [Google Scholar] [CrossRef]
- Dong, Y.; Yan, Y.; Zhang, S.; Li, J. Wood/polymer nanocomposites prepared by impregnation with furfuryl alcohol and Nano-SiO2. BioResources 2014, 9, 6028–6040. [Google Scholar] [CrossRef] [Green Version]
- Eisenreich, S.J.; Looney, B.B.; Thornton, J.D. Airborne organic contaminants in the Great Lakes ecosystem. Environ. Sci. Technol. 1981, 15, 30–38. [Google Scholar] [CrossRef]
- [ATSDR] Agency for Toxic Substances and Disease. Agency Toxicological Profile for Ethylene Glycol and Propylene Glycol; [ATSDR] Agency for Toxic Substances and Disease: Atlanta, GA, USA, 1997; p. 249.
- [BS] British Standard. Methods of Testing Small Clear Specimen of Timber. BS 373:1957. In Annual Book of BS Standard; British Standard Institution: London, UK, 1957. [Google Scholar]
- Hill, C.A.S. Wood Modification: Chemical, Thermal and Other Processes; Wiley Series in Renewable Resources; Wiley: Chichester, UK, 2006; ISBN 9780470021729. [Google Scholar]
- Rowell, R.M.; Ellis, W.D. Determination of dimensional stabilization of wood using the water-soak method. Wood Fiber 1978, 10, 104–111. [Google Scholar]
- Pandey, K.K. A Study of Chemical Structure of Soft and Hardwood and Wood Polymers by FTIR Spectroscopy. J. Appl. Polym. Sci. 1999, 71, 1969–1975. [Google Scholar] [CrossRef]
- Sukirno, E.; Shofiyani, A. Nurlina. Fabrication of si/pva/peg composit membrane derived from silica of singkup stone for reducing solution phosphat ion contentration. J. Equatoria.l Chem. 2017, 6, 1–9. [Google Scholar]
- Patil, R.C.; Dongre, R.; Meshram, J. Preparation of silica powder from rice husk. Agric. Eng. Int. CIGR J. 2017, 19, 158–161. [Google Scholar]
Treatment | MEG 50% (mL) | Nano-Silica (g) |
---|---|---|
MEG | 1000 | 0 |
MNano-Silica 0.5% | 1000 | 5 |
MNano-Silica 0.75% | 1000 | 7.5 |
MNano-Silica 1% | 1000 | 10 |
Treatment | WPG (%) | ASE (%) | WU (%) | BE (%) | Oven-dried Density (g/cm3) |
---|---|---|---|---|---|
MEG | 27.18 a (±3.42) | 53.28 a (±6.73) | 101.68 d (±1.91) | 2.89 a (±0.84) | 0.38 a (±0.02) |
MNano-Silica 0.5% | 44.61 b (±2.29) | 72.98 b (±3.88) | 76.16 c (±3.30) | 4.85 b (±0.63) | 0.42 a (±0.15) |
MNano-Silica 0.75% | 50.20 c (±1.43) | 83.36 c (±4.19) | 67.99 b (±2.81) | 9.78 c (±0.94) | 0.42 a (±0.03) |
MNano-Silica 1% | 58.03 d (±2.39) | 87.69 c (±6.15) | 56.34 a (±3.88) | 10.85 c (±1.37) | 0.46 b (±0.01) |
Treatment | Silicon (wt. %) |
---|---|
MEG | 0 |
MNano-Silica 0.5% | 0.35 |
MNano-Silica 0.75% | 0.59 |
MNano-Silica 1% | 0.62 |
Treatment | Crystallinity Degree (%) |
---|---|
MEG | 24.00 |
MNano-Silica 0.5% | 27.94 |
MNano-Silica 0.75% | 30.79 |
MNano-Silica 1% | 29.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahayu, I.; Dirna, F.C.; Maddu, A.; Darmawan, W.; Nandika, D.; Prihatini, E. Dimensional Stability of Treated Sengon Wood by Nano-Silica of Betung Bamboo Leaves. Forests 2021, 12, 1581. https://doi.org/10.3390/f12111581
Rahayu I, Dirna FC, Maddu A, Darmawan W, Nandika D, Prihatini E. Dimensional Stability of Treated Sengon Wood by Nano-Silica of Betung Bamboo Leaves. Forests. 2021; 12(11):1581. https://doi.org/10.3390/f12111581
Chicago/Turabian StyleRahayu, Istie, Fitria Cita Dirna, Akhiruddin Maddu, Wayan Darmawan, Dodi Nandika, and Esti Prihatini. 2021. "Dimensional Stability of Treated Sengon Wood by Nano-Silica of Betung Bamboo Leaves" Forests 12, no. 11: 1581. https://doi.org/10.3390/f12111581