Challenges in the Application of Dendrochemistry in Research on Historical Environmental Pollution in an Old Copper Mining Area
Abstract
:1. Introduction
1.1. Application of Dendrochemistry in Environmental Monitoring
1.2. Pollution in Old Copper Basin
2. Materials and Methods
2.1. Study Area and Tailings’ Characteristics
Archival Research
2.2. Tree-Ring Sampling and Ring-Width Measurements
2.3. Verification of Results
- A (1967–1970), in which the dam failure occurred.
- B (1995–1998), in which Zn and Fe content reached a peak in the tree rings from the Ind. site. The Zn content at the Ind. site is more than 10 times higher than the result obtained at the Control site and nearly three times higher than the average Zn content at the Ind. site during 1959–2014. Moreover, Fe in the Ind. site represents the highest result of all measurements made in this study. It was nearly 48 times the result obtained at the Control site and more than 2 times the average Fe content in the Ind. site from 1959 to 2014.
- C (1999–2000), in which the Al content reached a peak at the tree rings from the Ind. site. Furthermore, the Zn content at the Ind. site was more than 18 times higher than the Control site result and more than two times higher than the average Zn content at the Ind. site from 1959 to 2014. Fe also maintained a high level, its content in the Ind. site was more than six times the Control site result and less than two times the average content in the Ind. site from 1959 to 2014.
- D (2011–2014), in which the Mn content in the Ind. site was the highest of all the samples analysed. It was nearly 32 times higher than the result obtained at the Control site and almost two times higher than the average Mn content at the Ind. site during 1959–2014. Moreover, the Fe content at the Ind. site was more than 172 times higher than the result at the Control site and more than 1.5 times higher than the average Fe content of the Ind. site from 1959 to 2014.
2.4. Statistical Analysis
3. Results
3.1. Cumulative Impact of Copper Mining on Trees in the Old Copper Basin
3.2. Temporal Patterns of Pollution in the Old Copper Basin
3.3. Measurements of Tree-Rings’ Width throughout the Period 1959–2014
3.4. Results’ Verification
4. Discussion
4.1. History of Changes in the Environmental Chemistry of the Old Copper Basin
4.2. Verification of Results
4.3. Challenges in the Application of Dendrochemistry to the Old Copper Basin
5. Conclusions
- The main aim of the research (i) was achieved, i.e., the long-term impact of copper mining in Iwiny was proved by comparing the average content of TEs in tree rings (significant differences were obtained for Mn, Ni, Zn, Cr, Pb, Cu and Fe) and the average TRW from the Ind. and Control site. At the Control site significantly lower element contents were recorded than at the Ind. site. The average width of TRW throughout the analysis period was significantly greater for the Control position, the difference being 0.7 mm.
- The 1967 TSF1 dam failure was not recorded in tree rings as a strong chemical signal or TRW reduction (ii). In Iwiny, soil contamination prevailed, and the main limiting factor was the low bioavailability of the dominant contaminants (Cu, Pb) found in mining wastes and sediments deposited on soils. This was most likely the reason for the lack of a significant increase in TEs content after 1967.
- The factors listed in point 2 were partially modified in 1991 as a result of the remediation of TSF1 and TSF2 through the use of fertilizers and agrotechnical treatments aimed at improving the physical and chemical properties of soils. The lack of new sources of pollution on the Ind. site along with the temporal relationship strongly suggests that the tree rings recorded the chemical signal of the TSF reclamation. Fe and Zn content reached a peak in the 1990s and early 2000s, i.e., already after the end of mining activities in the study area. Additionally, a gradual increase in Mn between 1959 and 2014 was observed. These are essential plant elements of relatively low toxicity. It should be stated that thanks to proper reclamation, a real threat was avoided, i.e., the risk of mobilising large amounts of Cu and Pb deposited in mining waste and sediments on the surrounding soil.
- ICP-OES is an effective measurement technique for dendrochemical studies of the environmental impact of old copper mining and can be a low-cost alternative to ICP-MS (significant differences were obtained only for Ag, Cd, and Co). However, it has to be considered, that in the case of lower TEs values, the required adequate LOD of the analytes will also dictate the technique of choice.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. The European Green Deal. Brussels 2019. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1576150542719&uri=COM%3A2019%3A640%3AFIN (accessed on 5 March 2021).
- Green Mining Market–Global Industry Analysis, Size, Share, Growth, Trends, and Forecast 2019–2027 Transparency Market Research Report. 2020. Available online: https://www.transparencymarketresearch.com/green-mining-market.html (accessed on 1 March 2019).
- Jordan, G. Mining and Mining Waste: Pressures, Impacts and Responses in the European Union and Candidate Countries. In Mining, Mining Waste and Rrelated Environmental Issues: Problems and Solutions in Central and Eastern European Candidate Countries, 1st ed.; Jordan, G., D’Alessandro, M., Eds.; Office for Official Publications of the European Communities: Luxembourg, 2004; pp. 18–19. [Google Scholar]
- Adiansyah, J.S.; Rosano, M.; Vink, S.; Keir, G. A framework for a sustainable approach to mine tailings management: Disposal strategies. J. Clean. Prod. 2015, 108, 1050–1062. [Google Scholar] [CrossRef] [Green Version]
- Owen, J.R.; Kemp, D.; Lèbre, É.; Svobodova, K.; Pérez Murillo, G. Catastrophic tailings dam failures and disaster risk disclosure. Int. J. Dent. Res. R. 2020, 42, 101361. [Google Scholar] [CrossRef]
- Obenaus-Emler, R.; Falah, M.; Illikainen, M. Assessment of mine tailings as precursors for alkali-activated materials for on-site applications. Constr. Build. Mater. 2020, 246, 118470. [Google Scholar] [CrossRef]
- Kołacz, R.; Spiak, Z.; Czaban, S.; Dobrzański, Z.; Opaliński, S.; Kowalska, N.; Cwynar, P.; Kupczyński, R. Copper and zinc concentrations in plant and animal raw materials collected in the vicinity of the Żelazny most waste treatment tailings pond. J. Elem. 2020, 25, 1423–1434. [Google Scholar] [CrossRef]
- Kossoff, D.; Dubbin, W.E.; Alfredsson, M.; Edwards, S.J.; Macklin, M.G.; Hudson-Edwards, K.A. Mine tailings dams: Characteristics, failure, environmental impacts, and remediation. Appl. Geochem. 2014, 51, 229–245. [Google Scholar] [CrossRef] [Green Version]
- Metsaranta, J.; Beauchemin, S.; Langley, S.; Tisch, B.; Dale, P. Assessing the Long-Term Ecosystem Productivity Benefits and Potential Impacts of Forests Re-Established on a Mine Tailings Site. Forests 2018, 9, 707. [Google Scholar] [CrossRef] [Green Version]
- Górska, M.; Roszyk, E. Wood structure of Scots pine (Pinus sylvestris L.) growing on flotation tailings. Folia For. Pol. Ser. A For. 2019, 61, 112–122. [Google Scholar] [CrossRef]
- Olías, M.; Moral, F.; Galván, L.; Cerón, J.C. Groundwater contamination evolution in the Guadiamar and Agrio aquifers after the Aznalcóllar spill: Assessment and environmental implications. Environ. Monit. Assess. 2012, 184, 3629–3641. [Google Scholar] [CrossRef] [PubMed]
- Dradrach, A.; Szopka, K.; Karczewska, A. Ecotoxicity of Pore Water in Meadow Soils Affected by Historical Spills of Arsenic-Rich Tailings. Minerals 2020, 10, 751. [Google Scholar] [CrossRef]
- Okereafor, G.; Makhatha, E.; Mekuto, L.; Mavumengwana, V. Mobility of Trace Element Contaminants from Abandoned Gold Mine Dump to Stream Waters in an Agricultural Active Area. In Trace Metals in the Environment—New Approaches and Recent Advances; Murillo-Tovar, M.A., Saldarriaga-Noreña, H., Saeid, A., Eds.; IntechOpen: London, UK, 2021; pp. 35–50. [Google Scholar]
- Madejón, P.; Ciadamidaro, L.; Marañón, T.; Murillo, J.M. Long-Term Biomonitoring of Soil Contamination Using Poplar Trees: Accumulation of Trace Elements in Leaves and Fruits. Int. J. Phytoremediation 2013, 15, 602–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watmough, S.A. An evaluation of the use of dendrochemical analyses in environmental monitoring. Environ. Rev. 1997, 5, 181–201. [Google Scholar] [CrossRef]
- Sheppard, P.R.; Ridenour, G.; Witten, M.L. Multiple techniques for researching airborne particulates: A comprehensive case study of Fallon, Nevada. In Airborne Particulates; Cheng, M., Liu, W., Eds.; Nova Science Publishers: New York, NY, USA, 2009; pp. 141–156. [Google Scholar]
- Danek, M.; Bell, T.; Laroque, C.P. Some Considerations In The Reconstruction Of Lead Levels Using Laser Ablation: Lessons From The Design Stage Of An Urban Dendrochemistry Study, St. John’s, Canada. Geochronometria 2015, 42, 217–231. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, A.A.; Klock-Barría, K.; Sheppard, P.R.; Aguilera-Betti, I.; Toledo-Guerrero, I.; Christie, D.A.; Gorena, T.; Gallardo, L.; González-Reyes, Á.; Lara, A.; et al. Multidecadal environmental pollution in a mega-industrial area in central Chile registered by tree rings. Sci. Total Environ. 2019, 696, 133915. [Google Scholar] [CrossRef]
- Binda, G.; Di Iorio, A.; Monticelli, D. The what, how, why, and when of dendrochemistry: (paleo)environmental information from the chemical analysis of tree rings. Sci. Total Environ. 2021, 758, 143672. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, S.B.; Shortle, W.C.; Smith, K.T. Dendroecological applications in air pollution and environmental chemistry: Research needs. Dendrochronologia 2002, 20, 133–157. [Google Scholar] [CrossRef] [Green Version]
- St-Laurent, J.; Saint-Laurent, D.; Duplessis, P.; Hahni, M.; Begin, C. Application of Dendrochronological and Dendrochemical Methods for Dating Contamination Events of the Saint-Francois and Massawippi Riverbanks (Quebec, Canada). Soil Sediment Contam. 2009, 18, 642–668. [Google Scholar] [CrossRef]
- Speer, J.H. Fundamentals of Tree-Ring Research; University of Arizona Press: Tucson, AZ, USA, 2010; pp. 8, 365, 367, 370, 372. [Google Scholar]
- Fritts, H.C. Tree Rings and Climate; Academic Press: New York, NY, USA, 1976; p. 567, (Re-print Blackburn Press, Caldwell, NJ, 2001). [Google Scholar]
- Kalbarczyk, R.; Ziemiańska, M.; Nieróbca, A.; Dobrzańska, J. The Impact of Climate Change and Strong Anthropopressure on the Annual Growth of Scots Pine (Pinus sylvestris L.) Wood Growing in Eastern Poland. Forests 2018, 9, 661. [Google Scholar] [CrossRef] [Green Version]
- Sheppard, P.R.; Speakman, R.J.; Ridenour, G.; Witten, M.L. Temporal variability of tungsten and cobalt in Fallon, Nevada. Environ. Health Perspect. 2007, 115, 715–719. [Google Scholar] [CrossRef] [Green Version]
- Cui, M.; He, X.; Davi, N.; Chen, Z.; Zhang, X.; Peng, J.; Chen, W. Evidence of century-scale environmental changes: Trace element in tree-ring from Fuling Mausoleum Shenyang, China. Dendrochronologia 2013, 31, 1–8. [Google Scholar] [CrossRef]
- Horikawa, K.; Takeda, M.; Kawasaki, K.; Zhang, J. Historical changes in soil acidification inferred from the dendrochemistry of a Tateyama cedar at Bijodaira, Mt. Tateyama, Japan. Geochem. J. 2013, 47, 663–673. [Google Scholar] [CrossRef] [Green Version]
- Jung, R.; Ahn, Y.S. Distribution of Mercury Concentrations in Tree Rings and Surface Soils Adjacent to a Phosphate Fertilizer Plant in Southern Korea. Bull. Environ. Contam. Toxicol. 2017, 99, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Sensuła, B.; Wilczyński, S.; Monin, L.; Allan, M.; Pazdur, A.; Fagel, N. Variations of tree ring width and chemical composition of wood of pine growing in the area nearby chemical factories. Geochronometria 2017, 44, 226–239. [Google Scholar] [CrossRef] [Green Version]
- Cutter, B.E.; Guyette, R.P. Anatomical, Chemical, and Ecological Factors Affecting Tree Species Choice in Dendrochemistry Studies. J. Environ. Qual. 1993, 22, 611–619. [Google Scholar] [CrossRef]
- Nováková, T.; Navrátil, T.; Demers, J.D.; Roll, M.; Rohovec, J. Contrasting tree ring Hg records in two conifer species: Multi-site evidence of species-specific radial translocation effects in Scots pine versus European larch. Sci. Total Environ. 2021, 762, 144022. [Google Scholar] [CrossRef] [PubMed]
- Kohler, M.; Niederberger, J.; Wichser, A.; Bierbaß, P.; Rötzer, T.; Spiecker, H.; Bauhus, J. Using tree rings to reconstruct changes in soil P availability—Results from forest fertilization trials. Dendrochronologia 2019, 54, 11–19. [Google Scholar] [CrossRef]
- Lévy, G.; Bréchet, C.; Becker, M. Element analysis of tree rings in pedunculate oak heartwood: An indicator of historical trends in the soil chemistry, related to atmospheric deposition. Ann. For. Sci. 1996, 53, 685–696. [Google Scholar] [CrossRef] [Green Version]
- Rocha, E.; Gunnarson, B.; Kylander, M.E.; Augustsson, A.; Rindby, A.; Holzkämper, S. Testing the applicability of dendrochemistry using X-ray fluorescence to trace environmental contamination at a glassworks site. Sci. Total Environ. 2020, 720, 137429. [Google Scholar] [CrossRef] [PubMed]
- Odabasi, M.; Tolunay, D.; Kara, M.; Ozgunerge Falay, E.; Tuna, G.; Altiok, H.; Dumanoglu, Y.; Bayram, A.; Elbir, T. Investigation of spatial and historical variations of air pollution around an industrial region using trace and macro elements in tree components. Sci. Total Environ. 2016, 550, 1010–1021. [Google Scholar] [CrossRef]
- Austruy, A.; Yung, L.; Ambrosi, J.P.; Girardclos, O.; Keller, C.; Angeletti, B.; Dron, J.; Chamaret, P.; Chalot, M. Evaluation of historical atmospheric pollution in an industrial area by dendrochemical approaches. Chemosphere 2019, 220, 116–126. [Google Scholar] [CrossRef]
- Brackhage, C.; Hagemeyer, J.; Breckle, S.W.; Greszta, J. Radial distribution patterns of Cd and Zn in stems of Scots pine (Pinus sylvestris L.) trees analyzed 12 years after a contamination event. Water Air Soil Pollut. 1996, 90, 417–428. [Google Scholar] [CrossRef]
- Arteau, J.; Boucher, É.; Poirier, A.; Widory, D. Historical smelting activities in Eastern Canada revealed by Pb concentrations and isotope ratios in tree rings of long-lived white cedars (Thuja occidentalis L.). Sci. Total Environ. 2020, 740, 139992. [Google Scholar] [CrossRef] [PubMed]
- Navrátil, T.; Nováková, T.; Shanley, J.B.; Rohovec, J.; Matoušková, Š.; Vaňková, M.; Norton, S.A. Larch Tree Rings as a Tool for Reconstructing 20th Century Central European Atmospheric Mercury Trends. Environ. Sci. Technol. 2018, 52, 11060–11068. [Google Scholar] [CrossRef] [PubMed]
- Mihaljevič, M.; Ettler, V.; Šebek, O.; Sracek, O.; Kříbek, B.; Kyncl, T.; Majer, V.; Veselovský, F. Lead Isotopic and Metallic Pollution Record in Tree Rings from the Copperbelt Mining–Smelting Area, Zambia. Water Air Soil Pollut. 2011, 216, 657–668. [Google Scholar] [CrossRef]
- Schneider, L.; Allen, K.; Walker, M.; Morgan, C.; Haberle, S. Using Tree Rings to Track Atmospheric Mercury Pollution in Australia: The Legacy of Mining in Tasmania. Environ. Sci. Technol. 2019, 53, 5697–5706. [Google Scholar] [CrossRef]
- Reichl, C.; Schatz, M. World Mining Data. Minerals Production; 2020; Volume 35, p. 119. Available online: https://www.world-mining-data.info/wmd/downloads/PDF/WMD2020.pdf (accessed on 5 March 2019).
- Kotarska, I. Mining Waste from Copper Industry in Poland—Balance, Management and Environmental Aspects. Cuprum 2012, 4, 45–63. (In Polish) [Google Scholar]
- Paździora, J. History of KGHM Development Polska Miedź, S.A. Old Copper Basin. In Monograph KGHM Polska Miedź, S.A., 2nd ed.; Piestrzyński, Ed.; KGHM Cuprum Sp. z o.o.: Lubin, Poland, 2007; pp. 15–25. (In Polish) [Google Scholar]
- The State Archive in Wrocław [Org. Archiwum Państwowe we Wrocławiu]. Sanitary condition of the Bóbr River after the flood in Iwiny 1967 [Org. Stan sanitarny rzeki Bóbr po powodzi w Iwinach w 1967 r. Voivodship unit of the State Sanitary Inspection. Reference code: 82/2172/0/1.5/256. (In Polish)
- The State Archive in Wrocław [Org. Archiwum Państwowe we Wrocławiu]. Results of measurements of the radioactivity of water and air after the dam failure in Iwiny, Bolesławiecki District Wyniki pomiarów radioaktywności wód i powietrza atmosferycznego po katastrofie pęknięcia zapory w Iwinach pow. Bolesławiecki. 1967. Voivodship unit of the State Sanitary Inspection. Reference code: 82/2172/0/1.9/501. (In Polish)
- Karczewska, A.; Lizurek, S. Soil Properties In The Valley Of Bobrzyca Creek, 35 Years After A Disasterous Dam Breakage In The Iwiny Tailing Pond. Soil Sci. Annu. 2004, 55, 51–61. (In Polish) [Google Scholar]
- Rybak, J.; Kołwzan, B.; Grabas, K.; Pasternak, G.; Krawczyńska, M. Biological Characteristics of “Wartowice” Post-Flotation Tailings Pond (Lower Silesia, Poland). Arch. Environ. Prot. 2014, 40, 71–86. [Google Scholar] [CrossRef] [Green Version]
- Kuc, P.; Kordas, L.; Lejcuś, K. Phytostabilisation of tailing ponds with use of water absorbing geocomposites and organic and mineral additives. Environ. Prot. Eng. 2019, 45, 71–81. [Google Scholar] [CrossRef]
- Institute of Meteorology and Water Management—National Research Institute Data (IMGW-PIB) from Meteorological Station in Legnica. Available online: https://danepubliczne.imgw.pl/ (accessed on 5 March 2019).
- Werno, M. History of KGHM Development Polska Miedź, S.A. Closed Storage Sites. In Monograph KGHM Polska Miedź, S.A., 2nd ed.; Piestrzyński, Ed.; KGHM Cuprum Sp. z o.o.: Lubin, Poland, 2007; pp. 571–578. (In Polish) [Google Scholar]
- De Coninck, A.S.; Karam, A. Impact of organic amendments on aerial biomass production, and phytoavailability and fractionation of copper in a slightly alkaline copper mine tailing. Int. J. Min. Reclam. Environ. 2008, 22, 247–264. [Google Scholar] [CrossRef]
- The State Archive in Wrocław, Bolesławiec Branch. [Org. Archiwum Państwowe we Wrocławiu Oddział w Bolesławcu] Assumptions for the general action plan for the liquidation of the consequences of the disaster in the Bobrzyca river valley, Iwiny [Org. Założenia do generalnego planu działania likwidacji skutków katastrofy w dolinie rzeki Bobrzycy, Iwiny], The Supreme Audit Office Wrocław Branch. Reference code: 86/75/0/-/1877. (In Polish)
- Cook, E.R.; Holmes, R.L. Users Manual for ARSTAN (version 44h3); Laboratory of Tree-Ring Research, University of Arizona: Tucson, AZ, USA, 1986. [Google Scholar]
- Mortvedt, J.J.; Gilkes, R.J. Zinc Fertilizers. In Zinc in Soils and Plants; Robson, A.D., Ed.; Springer: Dordrecht, The Netherlands, 1993; pp. 33–44. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2011; pp. 104–106, 109, 119, 202, 205, 219, 221, 281, 283, 286. [Google Scholar]
- Li, T.; Lü, S.; Ji, Y.; Qi, T.; Liu, M. A biodegradable Fe-fertilizer with high mechanical property and sustainable release for potential agriculture and horticulture applications. New J. Chem. 2018, 42, 19129–19136. [Google Scholar] [CrossRef]
- Hall, G.S. Multielemental analysis of tree-rings by proton induced x-ray (PIXE) and gamma ray emission (PIGE). In Proceedings of the International Symposium on Ecological Aspects of Tree-Ring Analysis, Marymount College, Tarrytown, NY, USA, 17–21 August 1986; Jacoby, G.C., Hornbeck, J.W., Eds.; U.S. Department of Commerce: Washington, DC, USA, 1987. [Google Scholar]
- Hagemeyer, J.; Lohrie, K. Distribution of Cd and Zn in annual xylem rings of young spruce trees [Picea abies (L.) Karst.] grown in contaminated soil. Trees 1995, 9, 195–199. [Google Scholar] [CrossRef]
- Durand, M.; Rose, C.; Dupouey, J.-L.; Legout, A.; Ponton, S. Do tree rings record changes in soil fertility? Results from a Quercus petraea fertilization trial. Sci. Total Environ. 2020, 712, 136148. [Google Scholar] [CrossRef]
- Zhang, X. The history of pollution elements in Zhengzhou, China recorded by tree rings. Dendrochronologia 2019, 54, 71–77. [Google Scholar] [CrossRef]
- Barin, J.S.; Mello, P.A.; Mesko, M.F.; Duarte, F.A.; Flores, E.M.M. Determination of elemental impurities in pharmaceutical products and related matrices by ICP-based methods: A review. Anal. Bioanal. Chem. 2016, 408, 4547–4566. [Google Scholar] [CrossRef]
- Wilschefski, S.; Baxter, M. Inductively Coupled Plasma Mass Spectrometry: Introduction to Analytical Aspects. Clin. Biochem. Rev. 2019, 40, 115–133. [Google Scholar] [CrossRef] [PubMed]
- Simon, E.; Baranyai, E.; Braun, M.; Cserháti, C.; Fábián, I.; Tóthmérész, B. Elemental concentrations in deposited dust on leaves along an urbanization gradient. Sci. Total Environ. 2014, 490, 514–520. [Google Scholar] [CrossRef] [Green Version]
- Minganti, V.; Drava, G.; Giordani, P.; Malaspina, P.; Modenesi, P. Human contribution to trace elements in urban areas as measured in holm oak (Quercus ilex L.) bark. Environ. Sci. Pollut. Res. 2016, 23, 12467–12473. [Google Scholar] [CrossRef]
- Krutul, D.; Zielenkiewicz, T.; Zawadzki, J.; Radomski, A.; Antczak, A.; Drożdżek, M. Influence Of Urban Environment Originated Heav Y Metal Pollution On The Extractives And Mineral Substances Content In Bark And Wood Of Oak (Quercus Robur L.). Wood Res. 2014, 59, 177–190. [Google Scholar]
- Krutul, D.; Zielenkiewicz, T.; Zawadzki, J.; Radomski, A.; Antczak, A.; Drożdżek, M. Influence Of Urban Agglomeration Environmental Pollution On Content Of Chosen Metals In Bark, Roots And Wood Of Norway Maple (Acer Platanoides L.). Wood Res. 2018, 63, 741–754. [Google Scholar]
- Vaganov, E.A.; Grachev, A.M.; Shishov, V.V.; Panyushkina, I.P.; Leavitt, S.W.; Knorre, A.A.; Chebykin, E.P.; Menyailo, O.V. Elemental composition of tree rings: A new perspective in biogeochemistry. Dokl. Biol. Sci. 2013, 453, 375–379. [Google Scholar] [CrossRef]
- Turkyilmaz, A.; Sevik, H.; Isinkaralar, K.; Cetin, M. Use of tree rings as a bioindicator to observe atmospheric heavy metal deposition. Environ. Sci. Pollut. Res. 2019, 26, 5122–5130. [Google Scholar] [CrossRef]
- Smith, K.T.; Shortle, W.C. Tree ring biology and dendrochemistry. In Tree Rings, Environment and Humanity, Proceedings of an International Conference, Tucson, AZ, USA, 17-21 May 1994; Dean, J.S., Meko, D.M., Swetnam, T.W., Eds.; Radiocarbon: Tucson, AZ, USA, 1996; pp. 629–635. [Google Scholar]
- Penninckx, V.; Glineur, S.; Gruber, W.; Herbauts, J.; Meerts, P. Radial variations in wood mineral element concentrations: A comparison of beech and pedunculate oak from the Belgian Ardennes. Ann. For. Sci. 2001, 58, 253–260. [Google Scholar] [CrossRef]
- Bukata, A.R.; Kyser, T.K. Tree-ring elemental concentrations in oak do not necessarily passively record changes in bioavailability. Sci. Total Environ. 2008, 390, 275–286. [Google Scholar] [CrossRef]
- Cocozza, C.; Ravera, S.; Cherubini, P.; Lombardi, F.; Marchetti, M.; Tognetti, R. Integrated biomonitoring of airborne pollutants over space and time using tree rings, bark, leaves and epiphytic lichens. Urban For. Urban Green. 2016, 17, 177–191. [Google Scholar] [CrossRef]
- Perone, A.; Cocozza, C.; Cherubini, P.; Bachmann, O.; Guillong, M.; Lasserre, B.; Marchetti, M.; Tognetti, R. Oak tree-rings record spatial-temporal pollution trends from different sources in Terni (Central Italy). Environ. Pollut. 2018, 233, 278–289. [Google Scholar] [CrossRef]
- Rybníček, M.; Vavrčík, H.; Hubený, R. Determination of the number of sapwood annual rings in oak in the region of southern Moravia. J. For. Sci. 2012, 52, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Guyette, R.P.; Cutter, B.E.; Henderson, G.S. Long-term correlations between mining activity and levels of lead and cadmium in tree-rings of eastern red-cedar. J. Environ. Qual. 1991, 20, 146–150. [Google Scholar] [CrossRef]
- McBride, M.B.; Bouldin, D.R. Long-Term Reactions of Copper (II) in a Contaminated Calcareous Soil. Soil Sci. Soc. Am. J. 1984, 48, 56–59. [Google Scholar] [CrossRef]
- Varennes, A.; Torres, M.O. Remediation of a long-term copper-contaminated soil using a polyacrylate polymer. Soil Use Manag. 2006, 15, 230–232. [Google Scholar] [CrossRef]
- Kubicz, J.; Pawełczyk, A.; Lochyński, P. Environmental health risk posed by contamination of the individual water wells. Chemosphere 2018, 208, 247–256. [Google Scholar] [CrossRef] [PubMed]
Tree | Years | GLK (%) | TVBP | TVH |
---|---|---|---|---|
Ind. 1 | 1921–2020 | 80 | 13.6 | 13.4 |
Ind. 2 | 1939–2020 | 82 | 11.7 | 11.8 |
Control | 1923–2020 | 81 | 17.3 | 19.7 |
Table | LOD | |
---|---|---|
ICP-MS | ICP-OES | |
Ag | 1.8 × 10−5 | 3.0 × 10−3 |
Al | 2.3 × 10−3 | 1.4 × 10−2 |
Cd | 2.1 × 10−5 | 1.0 × 10−3 |
Co | 5.3 × 10−5 | 2.3 × 10−3 |
Cr | 1.7 × 10−4 | 1.0 × 10−3 |
Cu | 1.6 × 10−4 | 1.0 × 10−3 |
Fe | 2.6 × 10−3 | 1.0 × 10−3 |
Mn | 1.3 × 10−4 | 9.0 × 10−4 |
Ni | 9.6 × 10−5 | 1.0 × 10−3 |
Pb | 2.1 × 10−4 | 2.0 × 10−3 |
Zn | 3.6 × 10−3 | 3.0 × 10−4 |
A (1967–1970) | B (1995–1998) | C (1999–2002) | D (2011–2014) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ind.1 1 | Ind.1 2 | Control | Ind.1 1 | Ind. 1 2 | Control | Ind. 1 1 | Ind. 1 2 | Control | Ind. 1 1 | Ind. 1 2 | Control | ||
Ag | ICP-MS | 3.8 × 10−3 | 3.3 × 10−3 | 4.0 × 10−3 | 3.3 × 10−4 | 3.4 × 10−3 | 1.6 × 10−4 | 8.7 × 10−4 | 1.9 × 10−3 | 1.3 × 10−3 | 2.9 × 10−4 | 9.2 × 10−3 | 5.6 × 10−5 |
±SD | 1.6 × 10−4 | 9.2 × 10−5 | 1.8 × 10−4 | 9.0 × 10−6 | 4.1 × 10−5 | 3.0 × 10−6 | 1.0 × 10−5 | 1.8 × 10−5 | 1.4 × 10−5 | 1.0 × 10−5 | 6.9 × 10−5 | 2.0 × 10−3 | |
ICP-OES | nd 2 | nd 2 | nd 2 | nd 2 | nd 2 | nd 2 | nd 2 | nd 2 | nd 2 | nd 2 | 7.8 × 10−3 | nd 2 | |
±SD | - | - | - | - | - | - | - | - | - | - | 1.5 × 10−3 | - | |
Al | ICP-MS | 7.2 × 10−3 | 2.3 × 10−3 | nd 2 | 6.4 × 10−1 | 2.9 × 10−2 | nd 2 | 7.4 × 10−2 | 2.4 × 10−1 | nd 2 | 9.3 × 10−2 | 1.1 × 10−1 | nd 2 |
±SD | 2.2 × 10−4 | 8.4 × 10−5 | - | 1.8 × 10−3 | 6.0 × 10−4 | - | 1.1 × 10−3 | 3.3 × 10−3 | - | 1.1 × 10−3 | 1.0 × 10−3 | - | |
ICP-OES | nd 2 | nd 2 | nd 2 | nd 2 | 1.8 × 10−2 | nd 2 | nd 2 | 1.5 × 10−1 | nd 2 | nd 2 | 6.1 × 10−2 | nd 2 | |
±SD | - | - | - | - | 7.1 × 10−3 | - | - | 5.5 × 10−3 | - | - | 8.5 × 10−3 | - | |
Cd | ICP-MS | 2.3 × 10−4 | 1.9 × 10−4 | 1.7 × 10−4 | 3.4 × 10−4 | 4.1 × 10−4 | 1.2 × 10−4 | 4.0 × 10−4 | 3.1 × 10−4 | 4.9 × 10−5 | 3.6 × 10−4 | 6.7 × 10−4 | 3.9 × 10−5 |
±SD | 1.1 × 10−5 | 1.2 × 10−5 | 7.0 × 10−6 | 1.4 × 10−5 | 1.3 × 10−5 | 5.0 × 10−6 | 1.6 × 10−5 | 9.0 × 10−6 | 4.0 × 10−6 | 8.0 × 10−6 | 1.6 × 10−5 | 1.0 × 10−6 | |
ICP-OES | nd 2 | nd 2 | nd 2 | nd 2 | nd 2 | nd 2 | nd 2 | nd 2 | nd 2 | nd 2 | nd 2 | nd 2 | |
±SD | - | - | - | - | - | - | - | - | - | - | - | - | |
Co | ICP-MS | 1.3 × 10−3 | 6.5 × 10−3 | 1.8 × 10−3 | 4.6 × 10−4 | 1.1 × 10−3 | 1.8 × 10−3 | 3.5 × 10−4 | 1.5 × 10−3 | 2.3 × 10−3 | 5.2 × 10−4 | nd 2 | 5.2 × 10−4 |
±SD | 4.7 × 10−5 | 3.2 × 10−4 | 5.8 × 10−5 | 3.7 × 10−5 | 5.4 × 10−5 | 4.0 × 10−6 | 1.5 × 10−5 | 2.9 × 10−5 | 3.0 × 10−6 | 1.8 × 10−5 | - | 1.2 × 10−5 | |
ICP-OES | nd 2 | nd 2 | nd 2 | nd 2 | 2.3 × 10−3 | nd 2 | nd 2 | nd 2 | nd 2 | nd 2 | nd 2 | nd 2 | |
±SD | - | - | - | - | 8.3 × 10−4 | - | - | - | - | - | - | - | |
Cr | ICP-MS | 1.3 × 10−2 | 3.0 × 10−2 | 6.9 × 10−3 | 1.3 × 10−2 | 7.1 × 10−3 | 3.3 × 10−3 | 4.4 × 10−2 | 6.7 × 10−3 | 2.3 × 10−3 | 1.2 × 10−2 | 5.5 × 10−3 | 1.4 × 10−3 |
±SD | 3.3 × 10−4 | 5.4 × 10−4 | 2.3 × 10−4 | 3.5 × 10−4 | 1.3 × 10−4 | 3.4 × 10−5 | 6.1 × 10−4 | 7.2 × 10−5 | 4.6 × 10−5 | 1.2 × 10−4 | 6.7 × 10−5 | 2.2 × 10−5 | |
ICP-OES | 1.3 × 10−2 | 2.9 × 10−2 | 7.4 × 10−3 | 1.3 × 10−2 | 6.4 × 10−3 | 2.4 × 10−3 | 4.3 × 10−2 | 6.8 × 10−3 | 2.6 × 10−3 | 1.1 × 10−2 | 6.5 × 10−3 | nd 2 | |
±SD | 1.0 × 10−3 | 1.1 × 10−3 | 2.7 × 10−3 | 4.4 × 10−4 | 1.4 × 10−3 | 9.0 × 10−4 | 4.2 × 10−4 | 3.9 × 10−4 | 2.1 × 10−3 | 1.6 × 10−3 | 2.3 × 10−4 | - | |
Cu | ICP-MS | 6.6 × 10−3 | 2.0 × 10−3 | 2.8 × 10−3 | 1.2 × 10−2 | 9.6 × 10−3 | 4.9 × 10−3 | 1.6 × 10−2 | 9.7 × 10−3 | 3.5 × 10−3 | 1.2 × 10−2 | 1.7 × 10−2 | 2.4 × 10−3 |
±SD | 1.9 × 10−4 | 1.0 × 10−4 | 7.1 × 10−5 | 2.8 × 10−4 | 1.3 × 10−4 | 5.3 × 10−5 | 3.4 × 10−4 | 5.3 × 10−5 | 2.3 × 10−5 | 1.4 × 10−4 | 6.0 × 10−5 | 3.3 × 10−5 | |
ICP-OES | 7.7 × 10−3 | 5.0 × 10−3 | 7.0 × 10−3 | 9.4 × 10−3 | 8.9 × 10−3 | nd 2 | 1.4 × 10−2 | 8.8 × 10−3 | nd 2 | 9.2 × 10−3 | 1.4 × 10−2 | nd 2 | |
±SD | 6.1 × 10−4 | 4.9 × 10−4 | 5.1 × 10−4 | 3.5 × 10−4 | 2.1 × 10−3 | - | 8.1 × 10−4 | 9.1 × 10−4 | - | 7.6 × 10−4 | 2.0 × 10−3 | - | |
Fe | ICP-MS | 1.6 × 10−1 | 6.2 × 10−2 | 9.1 × 10−3 | 2.9 × 10−1 | 4.0 × 10−1 | 4.8 × 10−2 | 6.5 × 10−1 | 2.0 × 10−1 | 6.3 × 10−2 | 4.1 × 10−1 | 3.1 × 10−1 | 3.2 × 10−2 |
±SD | 3.1 × 10−3 | 7.4 × 10−4 | 1.9 × 10−4 | 8.9 × 10−3 | 5.7 × 10−3 | 1.0 × 10−3 | 1.1 × 10−2 | 3.3 × 10−3 | 7.8 × 10−4 | 3.6 × 10−3 | 9.0 × 10−4 | 5.8 × 10−4 | |
ICP-OES | 6.0 × 10−2 | 7.5 × 10−2 | 1.8 × 10−2 | 1.3 × 10−1 | 2.7 × 10−1 | 4.7 × 10−3 | 4.0 × 10−1 | 1.1 × 10−1 | 3.2 × 10−2 | 2.5 × 10−1 | 1.7 × 10−1 | 1.4 × 10−3 | |
±SD | 2.1 × 10−3 | 1.0 × 10−3 | 1.9 × 10−3 | 1.8 × 10−3 | 1.1 × 10−2 | 2.8 × 10−3 | 1.0 × 10−2 | 2.1 × 10−3 | 2.1 × 10−3 | 8.0 × 10−3 | 3.0v | 1.6 × 10−3 | |
Mn | ICP-MS | 6.5 × 10−2 | 3.8 × 10−2 | 2.5 × 10−2 | 3.0 × 10−2 | 7.8 × 10−2 | 5.5 × 10−3 | 9.8 × 10−2 | 7.9 × 10−2 | 3.8 × 10−3 | 2.9 × 10−1 | 1.7 × 10−1 | 7.6 × 10−3 |
±SD | 1.3 × 10−3 | 8.0 × 10−4 | 2.7 × 10−4 | 8.1 × 10−4 | 1.0 × 10−3 | 7.6 × 10−5 | 1.6 × 10−3 | 5.7 × 10−4 | 3.9 × 10−5 | 2.1 × 10−3 | 1.2 × 10−3 | 1.3 × 10−4 | |
ICP-OES | 6.6 × 10−2 | 3.9 × 10−2 | 2.8 × 10−2 | 2.9 × 10−2 | 7.7 × 10−2 | 4.9 × 10−3 | 9.4 × 10−2 | 7.6 × 10−2 | 3.0 × 10−3 | 2.2 × 10−1 | 1.3 × 10−1 | 6.2 × 10−3 | |
±SD | 2.6 × 10−4 | 5.9 × 10−4 | 6.3 × 10−4 | 4.9 × 10−4 | 1.2 × 10−3 | 1.5 × 10−4 | 1.8 × 10−3 | 1.1 × 10−3 | 2.0 × 10−4 | 7.6 × 10−3 | 2.4 × 10−3 | 1.9 × 10−4 | |
Ni | ICP-MS | 1.3 × 10−2 | 1.1 × 10−3 | 6.9 × 10−3 | 6.1 × 10−3 | 3.1 × 10−3 | 8.8 × 10−4 | 7.8 × 10−3 | 3.4 × 10−3 | 8.6 × 10−4 | 6.5 × 10−3 | 6.5 × 10−3 | 7.9 × 10−4 |
±SD | 2.7 × 10−4 | 3.7 × 10−5 | 9.0 × 10−5 | 1.7 × 10−4 | 7.0 × 10−5 | 1.7 × 10−5 | 8.1 × 10−5 | 4.9 × 10−5 | 2.8 × 10−5 | 7.3 × 10−5 | 4.6 × 10−5 | 1.1 × 10−5 | |
ICP-OES | 9.1 × 10−3 | nd 2 | 1.1 × 10−3 | 2.2 × 10−3 | 9.7 × 10−4 | nd 2 | 4.2 × 10−3 | 1.1 × 10−3 | nd 2 | 2.4 × 10−3 | 3.3 × 10−3 | nd 2 | |
±SD | 3.2 × 10−4 | - | 5.4 × 10−4 | 5.3 × 10−4 | 5.4 × 10−4 | - | 1.6 × 10−3 | 8.0 × 10−4 | - | 4.7 × 10−5 | 8.2 × 10−4 | - | |
Pb | ICP-MS | 2.1 × 10−3 | 2.0 × 10−3 | 1.7 × 10−3 | 1.2 × 10−2 | 2.1 × 10−2 | 1.4 × 10−3 | 1.2 × 10−2 | 1.7 × 10−2 | 2.2 × 10−3 | 1.1 × 10−2 | 2.0 × 10−2 | 1.5 × 10−3 |
±SD | 4.0 × 10−5 | 5.6 × 10−5 | 4.5 × 10−5 | 9.6 × 10−4 | 2.5 × 10−4 | 1.5 × 10−5 | 1.6 × 10−4 | 1.3 × 10−4 | 1.6 × 10−5 | 1.3 × 10−4 | 1.1 × 10−4 | 3.7 × 10−5 | |
ICP-OES | nd 2 | nd 2 | nd 2 | 6.9 × 10−3 | 2.0 × 10−2 | nd 2 | 7.8 × 10−3 | 1.5 × 10−2 | nd 2 | 4.9 × 10−3 | 2.1 × 10−2 | nd 2 | |
±SD | - | - | - | 9.5 × 10−4 | 5.0 × 10−3 | - | 4.4 × 10−3 | 2.9 × 10−3 | - | 3.2 × 10−3 | 5.7 × 10−3 | - | |
Zn | ICP-MS | 5.2 × 10−2 | 2.1 × 10−1 | 1.1 × 10−2 | 4.0 × 10−1 | 1.7 × 10−1 | 4.6 × 10−2 | 7.1 × 10−1 | 6.9 × 10−2 | 2.7 × 10−2 | 1.0 × 10−1 | 1.3 × 10−1 | 2.7 × 10−2 |
±SD | 1.2 × 10−3 | 5.9 × 10−3 | 3.4 × 10−4 | 8.2 × 10−3 | 2.1 × 10−3 | 4.5 × 10−4 | 1.3 × 10−2 | 5.8 × 10−4 | 1.3 × 10−4 | 1.0 × 10−3 | 1.4 × 10−3 | 4.7 × 10−4 | |
ICP-OES | 4.2 × 10−2 | 2.1 × 10−2 | 1.5 × 10−2 | 3.2 × 10−1 | 1.2 × 10−1 | 2.1 × 10−2 | 5.9 × 10−1 | 3.5 × 10−2 | 1.3 × 10−2 | 6.9 × 10−2 | 9.9 × 10−2 | 6.3 × 10−3 | |
±SD | 4.5 × 10−4 | 6.7 × 10−4 | 9.6 × 10−4 | 1.2 × 10−3 | 5.5 × 10−4 | 4.4 × 10−4 | 1.4 × 10−3 | 5.6 × 10−4 | 4.0 × 10−4 | 7.4 × 10−4 | 1.1 × 10−3 | 3.8 × 10−4 |
TEs | Technique | Sum of ranks | U 1 | p2 |
---|---|---|---|---|
Ag | ICP-MS | 211 | 11 | <0.001 |
ICP-OES | 89 | |||
Al | ICP-MS | 180 | 42 | 0.089 |
ICP-OES | 120 | |||
Cd | ICP-MS | 222 | 0.01 | <0.001 |
ICP-OES | 78 | |||
Co | ICP-MS | 207 | 16 | <0.001 |
ICP-OES | 94 | |||
Cr | ICP-MS | 151 | 71 | 0.977 |
ICP-OES | 149 | |||
Cu | ICP-MS | 161 | 61 | 0.551 |
ICP-OES | 139 | |||
Fe | ICP-MS | 173 | 49 | 0.198 |
ICP-OES | 127 | |||
Mn | ICP-MS | 154 | 68 | 0.843 |
ICP-OES | 146 | |||
Ni | ICP-MS | 183 | 39 | 0.060 |
ICP-OES | 117 | |||
Pb | ICP-MS | 173 | 49 | 0.198 |
ICP-OES | 127 | |||
Zn | ICP-MS | 173 | 49 | 0.198 |
ICP-OES | 127 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobrzańska, J.; Lochyński, P.; Kalbarczyk, R.; Ziemiańska, M. Challenges in the Application of Dendrochemistry in Research on Historical Environmental Pollution in an Old Copper Mining Area. Forests 2021, 12, 1505. https://doi.org/10.3390/f12111505
Dobrzańska J, Lochyński P, Kalbarczyk R, Ziemiańska M. Challenges in the Application of Dendrochemistry in Research on Historical Environmental Pollution in an Old Copper Mining Area. Forests. 2021; 12(11):1505. https://doi.org/10.3390/f12111505
Chicago/Turabian StyleDobrzańska, Joanna, Paweł Lochyński, Robert Kalbarczyk, and Monika Ziemiańska. 2021. "Challenges in the Application of Dendrochemistry in Research on Historical Environmental Pollution in an Old Copper Mining Area" Forests 12, no. 11: 1505. https://doi.org/10.3390/f12111505
APA StyleDobrzańska, J., Lochyński, P., Kalbarczyk, R., & Ziemiańska, M. (2021). Challenges in the Application of Dendrochemistry in Research on Historical Environmental Pollution in an Old Copper Mining Area. Forests, 12(11), 1505. https://doi.org/10.3390/f12111505