Efficiency of Visual and Machine Strength Grading of Sawn Timber with Respect to Log Type
Abstract
:1. Introduction
2. Experimental Tests
2.1. Materials
2.2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Obede, B.F.; Silva, D.A.L.; Rocco, F.A.; Chahud, E.; Varanda, L.D. Influence of wood moisture content on modulus of elasticity on tension parallel to the grain of Brazilian species. Eur. Int. J. Sci. Technol. 2012, 1, 11–22. [Google Scholar]
- Christoforo, A.L.; Panzera, T.H.; Silva, L.J.; Araújo, V.A.; Silva, D.A.L.; Rocco, F.A. Evaluation of the modulus of elasticity in damaged wooden beams. Int. J. Mater. Eng. 2020, 5, 92–97. [Google Scholar] [CrossRef] [Green Version]
- Zobel, B.J.P. Wood Variation: Its Causes and Control; Springer: Berlin, Germany, 1989. [Google Scholar]
- Savidge, R.A. Tree growth and wood quality. In Wood Quality and Its Biological Basis; Barnett, J.R., Jeronimidis, G., Eds.; Blackwell Publishing & CRC Press: Oxford, UK, 2003; pp. 1–29. [Google Scholar]
- Mederski, P.S.; Bembenek, M.; Karaszewski, Z.; Giefing, D.F.; Sulima-Olejniczak, E.; Rosińska, M.; Lacka, A. Density and mechanical properties of Scots pine (Pinus sylvestris L.) wood from a seedling seed orchard. Drewno. Prace Naukowe. Doniesienia. Komunikaty. 2015, 58, 117–124. [Google Scholar] [CrossRef]
- Rocha, M.F.V.; Veiga, T.R.L.A.; Soares, B.C.D.; Araújo, A.C.C.D.; Carvalho, A.M.M.; Hein, P.R.G. Do the growing conditions of trees influence the wood properties? Floresta E Ambiente 2019, 26. [Google Scholar] [CrossRef]
- Zeidler, A.; Boruvka, V.; Schönfelder, O. Comparison of Wood Quality of Douglas Fir and Spruce from Afforested Agricultural Land and Permanent Forest Land in the Czech Republic. Forests 2018, 9, 13. [Google Scholar] [CrossRef] [Green Version]
- Glos, P.; Henrici, D.; Lederer, B. Verbesserung der Wettbewerbsfähigkeit der Sägeindustrie durch Erhöhung der Schnittholzqualität [Improvement of Competitiveness Sawmill Industry via Enhancement of Timber Quality] (Report No. 96507); Wood Research Munich: Munich, Germany, 1999. [Google Scholar]
- Teischinger, A.; Patzelt, M. XXL-Wood. Materialkenngrößen als Grundlage für innovative Verarbeitungstechnologien und Produkte zur wirtschaftlichen nachhaltigen Nutzung der Österreichischen Nadelstarkholzreserven. In Berichte aus Energie-und Umweltforschung 27/2006 (Material Properties as the Basis for Innovative Products and Technologies for the Rational Use of Austrian Reserves of Large-Diameter Softwoods); Universität für Bodenkultur Wien: Wien, Austria, 2006. [Google Scholar]
- Kraler, A.; Maderebner, R. Gebirgsholz—Wald ohne Grenzen; deutliche Verbesserung des Marktwertes Süd-Ost-& Nordtiroler Gebirgshölzer und ausgewählter Holznischenprodukte [Wood from the Mountains—Forest without Bordezrs; Marked Improvement in the Market Value of Wood from South, East and North Tyrol and Selected Niche Wood Products]; Institut für Konstruktion und Materialwissenschaften Arbeitsbereich Holzbau, Leopold Franzens Universität Innsbruck: Innsbruck, Austria, 2012. [Google Scholar]
- Johansson, M.; Kliger, R. Variability in strength and stiffness of structural Norway spruce timber: Influence of raw material parameters. In Proceedings of the World Conference on Timber Engineering; Barrett, J.D., Ed.; WCTE: Whistler, BC, Canada, 2000; p. 9. [Google Scholar]
- Haartveit, E.Y.; Flæte, P.O. Mechanical properties of Norway spruce lumber from monocultures and mixed stands—Modelling bending stiffness and strength using stand and tree characteristics. In Proceedings from the Fourth Workshop “Connection between Forest Resources and Wood Quality: Modelling Approaches and Simulation Software; Nepveu, G., Ed.; IUFRO: Vienna, Austria, 2002; pp. 346–355. [Google Scholar]
- EN 14081-1. Timber Structures—Strength Graded Structural Timber with Rectangular Cross Section—Part 1: General Requirements; European Committee for Standarization (CEN): Brussels, Belgium, 2016. [Google Scholar]
- EN 338. Timber Structures—Strength Classes; European Committee for Standarization (CEN): Brussels, Belgium, 2016. [Google Scholar]
- Denzler, J.K.; Diebold, R.; Glos, P. Machine strength grading–commercially used grading machines–current developments. In Proceedings of the 14th International Symposium on Nondestructive Testing of Wood, Eberswalde, Germany, 2–4 May 2005; Friedrich-Wilhelm Broker; Fachhochschule Eberswalde; Shaker: Aachen, Germany, 2005; pp. 11–16. [Google Scholar]
- Bacher, M. Comparison of different machine strength grading principles. In Proceedings of the COST E53 Conference, Delft, The Netherlands, 29–30 October 2008; Gard, W.F., van de Kuilen, J.W.G., Eds.; Delft University of Technology: Delft, The Netherlands, 2008; pp. 183–193. [Google Scholar]
- Ridley-Ellis, D.; Stapel, P.; Baño, V. Strength grading of sawn timber in Europe: An explanation for engineers and researchers. Eur. J. Wood Wood Prod. 2016, 74, 291–306. [Google Scholar] [CrossRef]
- Giudiceandrea, F. Stress grading lumber by a combination of vibration stress waves and X-ray Scanning. In Proceedings of the 11th International Conference on Scanning Technology and Process Optimization in the Wood Industry (Scan Tech 2005), Las Vegas, NV, USA, 24–26 July 2005; Szymani, R., Ed.; Wood Machining Institute: Berkeley, CA, USA, 2005; pp. 99–108. [Google Scholar]
- Krzosek, S.; Grześkiewicz, M.; Bacher, M. Mechanical properties of Polish-grown Pinus silvestris L. structural sawn timber. In Proceedings of the COST E53 Conference Proceedings, Delft, The Netherlands, 29–30 October 2008; pp. 253–260. [Google Scholar]
- Krzosek, S.; Bacher, M. Aktueller Stand der maschinellen Festigkeitssortierung von Schnittholz in Polen und in Europa. Ann. Wars. Univ. Life Sci.—SGGW. For. Wood Technol. 2011, 74, 254–259. [Google Scholar]
- Glos, P.; Burger, N. Maschinelle Sortierung von Frisch eingeschnittenen Schnittholz. Holz Roh Werkst. 1998, 56, 319–329. [Google Scholar] [CrossRef]
- Glos, P.; Becker, G.; Diebold, R.; Pelz, S. Einstufung von Douglasie in die europäischen festigkeitsklassen [classification of douglas fir into the European strength classes]. In Report No. 97501; Wood Research Munich: Munich, Germany, 1998. [Google Scholar]
- Glos, P.; Schleifer, A. Maschinelle Festigkeitssortierung von Kiefernschnittholz. Holzforschung München. Abschlussbericht Nr. 01515. München 2002 (Mechanical Strength Grading of Pine Lumber. Wood Research Munich. Final Report Nr. 01515. Technical University Munich); Technical University Munich: Munchen, Germany, 2002. [Google Scholar]
- Hanhijärvi, A.; Ranta-Maunus, A.; Turk, G. Potential of Strength Grading of Timber with Combined Measurement Techniques (Report of the Combigrade—Project Phase 1); VTT Publications 568: Espoo, Finland, 2005. [Google Scholar]
- Hanhijärvi, A.; Ranta-Maunus, A. Development of strength grading of timber using combined measurement techniques. In Report of the Combigrade—Project Phase 2; VTT Technical Research Centre of Finland: Espoo, Finland, 2008. [Google Scholar]
- Nocetti, M.; Bacher, M.; Brunetti, M.; Crivellaro, A.; van de Kuilen, J.-W. Machine grading of Italian structural timber: Preliminary results on different wood species. In Proceedings of the World Conference on Timber Engineering, Trento, Italy, 20–24 June 2010; Ceccotti, A., van de Kuilen, J.W., Eds.; WCTE: Riva Del Garda, Italy, 2010. [Google Scholar]
- Diebold, R.; Schleifer, A.; Glos, P. Machine grading of structural sawn timber from various softwood and hardwood species. In Proceedings of the 12th International Symposium on Nondestructive Testing of Wood, Sopron, Hungary, 13–15 September 2000; University of Wester Hungary: Sopron, Hungary, 2000; pp. 139–146. [Google Scholar]
- Krzosek, S.; Grzeskiewicz, M. Strength grading Polish grown Pinus sylvestris L. structural timber using Timber Grader MTG and visual method. Ann. Wars. Univ. Life Sci.—SGGW For. Wood Technol. 2008, 66, 26–31. [Google Scholar]
- Krzosek, S. Wytrzymałościowe Sortowanie Polskiej Sosnowej Tarcicy Konstrukcyjnej Rożnymi Metodami [Strength Grading of Polish Pine Structural Sawn Timber]; Wydawnictwo SGGW: Warsaw, Poland, 2009. [Google Scholar]
- Gaunt, D.J.; Roper, J.; Davy, B. Performance Grading of New Zeland Pine and the Development of the “E-Grader”; Presentation to NZ Timber Industry Federation: Brisbane, Australia, 1999. [Google Scholar]
- Gaunt, D. A revolution in structural timber grading. In Proceedings of the WCTE Conference, Timber Engineering Challenges and Solutions, Auckland, New Zeland, 15–19 July 2012; Editor Curran Associates: Red Hook, NY, USA, 2012; pp. 276–283. [Google Scholar]
- Bucur, V. Nondestructive Characterization and Imaging of Wood; Springer: Berlin/Heidelberg, Germany, 2003; 214p. [Google Scholar]
- Mišeikyte, S.; Baltrušaitis, A.; Kudakas, L. Strength and stiffness properties of the Lithuanian grown Scots pine (Pinus sylvestris): Comparison of various testing methods. In Proceedings of the 4th meeting of the Nordic Baltic Network in Wood Material Science and Engineering (WSE), Riga, Latvia, 13–14 November 2008; Latvian State Institute of Wood Chemistry: Riga, Latvia, 2008; pp. 101–107. [Google Scholar]
- Luttenberger, L.R. Waste management challenges in transition to circular economy. Case Croatia. J. Clean. Prod. 2020, 256, 120495. [Google Scholar] [CrossRef]
- International Advisory Council on Global Bioeconomy. Expending the sustainable bioeconomy—Vision and way forward. In Communique of the Global Bioeconomy Summit; International Advisory Council on Global Bioeconomy: Berlin, Germany, 2020. [Google Scholar]
- PN-D-94021. Tarcica Konstrukcyjna Iglasta Sortowana Metodami Wytrzymałościowymi (Coniferous Construction Timber Sorted by Strength Methods); Polish Committee for Standardization (PKN): Warsaw, Poland, 2013. [Google Scholar]
- EN 408 + A1. Timber Structures—Structural Timber and Glued Laminated Timber. Determination of Some Physical and Mechanical Properties; European Committee for Standardization (CEN): Brussels, Belgium, 2012. [Google Scholar]
- Burawska-Kupniewska, I.; Krzosek, S.; Mańkowski, P.; Grześkiewicz, M. Quality and bending properties of Scots Pine (Pinus Sylvestris L.) sawn timber. Forests 2020, 11, 1200. [Google Scholar] [CrossRef]
- Burawska-Kupniewska, I.; Mańkowski, P.; Krzosek, S. Mechanical properties of machine stress graded sawn timber depending on the log type. Forests 2021, 12, 532. [Google Scholar] [CrossRef]
- Mirski, R.; Dziurka, D.; Chuda-Kowalska, M.; Wieruszewski, M.; Kawalerczyk, J.; Trociński, A. The usefulness of pine timber (Pinus sylvestris L.) for the production of structural elements. Part I: Evaluation of the quality of the pine timber in the bending test. Materials 2020, 13, 3957. [Google Scholar] [CrossRef]
- Jelonek, T.; Pazdrowski, W.; Tomczak, A.; Grzywiński, W. Biomechanical stability of pines growing on former farmland in northern Poland. Wood Res. 2012, 57, 31–44. [Google Scholar]
- Pikk, J.; Kask, R. Mechanical properties of juvenile wood of Scots pine (Pinus sylvestris L.) on Myrtillus forest site type. Balt. For. 2004, 10, 72–78. [Google Scholar]
- Björklund, L.; Walfridsson, E. Tallvedens egenskaper i Sverige-Torr-rådensitet, kärnvedhalt, fuktighet och barkhalt. [Properties of scots pine wood in Sweden: Basic density, heartwood, moisture and bark content]. In Rapport Nr. 234; Swedish University of Agriculture Sciences, Department of Forest Products: Uppsala, Sweden, 1993; p. 67. [Google Scholar]
- Repola, J. Models for vertical wood density of Scots pine, Norway spruce and birch stems, and their application to determine average wood density. Silva Fenn. 2006, 40, 673–685. [Google Scholar] [CrossRef] [Green Version]
- Hillis, W.E. The Formation of Heartwood and Its Extractives. In Phytochemicals in Human Health Protection, Nutrition, and Plant Defense. Recent Advances in Phytochemistry. Proceedings of the Phytochemical Society of North America; Springer: Boston, MA, USA, 1999; Volume 33, Chapter 9; pp. 215–253. [Google Scholar]
- Šilinskas, B.; Varnagirytė-Kabašinskienė, I.; Aleinikovas, M.; Beniušienė, L.; Aleinikovienė, J.; Škėma, M. Scots pine and norway spruce wood properties at sites with different stand densities. Forests 2020, 11, 587. [Google Scholar] [CrossRef]
- Machado, J.S.; Cruz, H.P. Within stem variation of Maritime pine timber mechanical properties. Holz Roh Werkst. 2005, 63, 154–159. [Google Scholar] [CrossRef]
- Antony, F.; Jordan, L.; Schimleck, L.R.; Clark, A.; Souter, R.A.; Daniels, R.F. Regional variation in wood modulus of elasticity (stiffness) and modulus of rupture (strength) of planted loblolly pine in the United States. Can. J. For. Res. 2011, 41, 1522–1533. [Google Scholar] [CrossRef]
Strength Class | Log Type | All | KW | KS | KG | R |
---|---|---|---|---|---|---|
All (510) | B | 170 | 32 | 29 | 54 | 55 |
M | 170 | 13 | 15 | 66 | 76 | |
T | 170 | 7 | 9 | 67 | 87 | |
C40 (29) | B | 23 | 6 | 5 | 7 | 5 |
M | 6 | 1 | 1 | 2 | 2 | |
T | 0 | 0 | 0 | 0 | 0 | |
C35 (91) | B | 60 | 15 | 15 | 18 | 12 |
M | 28 | 2 | 8 | 13 | 5 | |
T | 3 | 0 | 1 | 0 | 2 | |
C30 (130) | B | 46 | 11 | 7 | 17 | 11 |
M | 55 | 6 | 2 | 27 | 20 | |
T | 29 | 3 | 6 | 10 | 10 | |
C24 (200) | B | 23 | 0 | 1 | 10 | 12 |
M | 69 | 4 | 3 | 23 | 39 | |
T | 108 | 4 | 2 | 46 | 56 | |
C18 (43) | B | 9 | 0 | 0 | 1 | 8 |
M | 10 | 0 | 1 | 1 | 8 | |
T | 24 | 0 | 0 | 7 | 17 | |
Reject (9) | B | 1 | 0 | 0 | 0 | 1 |
M | 2 | 0 | 0 | 0 | 2 | |
T | 6 | 0 | 0 | 4 | 2 | |
Error (8) | B | 8 | 0 | 1 | 1 | 6 |
M | 0 | 0 | 0 | 0 | 0 | |
T | 0 | 0 | 0 | 0 | 0 |
Feature | Factor | SS | DF | MS | F | p |
---|---|---|---|---|---|---|
DEN | Log type (1) | 337,845 | 2 | 168,922 | 60.51 | 0.000000 * |
Quality class (2) | 151,089 | 3 | 50,363 | 18.04 | 0.000000 * | |
1 *2 | 33,076 | 6 | 5513 | 1.97 | 0.067638 NS | |
Error | 1,379,002 | 494 | 2792 | - | - | |
Log type (1) | 13,193.5 | 1 | 13,193.49 | 9.58785 | 0.002073 * | |
C class (2) | 386,695.5 | 4 | 96,673.86 | 70.25390 | 0.000000 * | |
1 *2 | 7659.6 | 9 | 851.07 | 0.61848 | 0.781629 NS | |
Error | 661,886.8 | 481 | 1376.06 | |||
MOE | Log type (1) | 4.297901 × 108 | 2 | 2.148950 × 108 | 45.360 | 0.000000 * |
Quality class (2) | 3.390675 × 108 | 3 | 1.130225 × 108 | 23.857 | 0.000000 * | |
1 *2 | 5.157203 × 107 | 6 | 8.595338 × 106 | 1.814 | 0.094395 NS | |
Error | 2.340350 × 109 | 494 | 4.737550 × 106 | - | - | |
Log type (1) | 4.199435 × 106 | 1 | 4,199,435 | 3.4023 | 0.065719 NS | |
C class (2) | 1.017103 × 109 | 4 | 254,275,730 | 206.0095 | 0.000000 * | |
1 *2 | 1.263513 × 107 | 9 | 1,403,904 | 1.1374 | 0.334314 NS | |
Error | 5.949283 × 108 | 482 | 1,234,291 | - | - | |
MOR | Log type (1) | 9474.9 | 2 | 4737.4 | 25.158 | 0.000000 * |
Quality class (2) | 20,955.2 | 3 | 6985.1 | 37.095 | 0.000000 * | |
1 *2 | 601.8 | 6 | 100.3 | 0.533 | 0.783591 NS | |
Error | 93,587.0 | 497 | 188.3 | - | - | |
Log type (1) | 710.30 | 1 | 710.298 | 4.80597 | 0.028837 * | |
C class (2) | 22,555.93 | 4 | 5638.982 | 38.15409 | 0.000000 * | |
1 *2 | 4015.32 | 9 | 446.147 | 3.01869 | 0.001614 * | |
Error | 71,532.77 | 484 | 147.795 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burawska-Kupniewska, I.; Krzosek, S.; Mańkowski, P. Efficiency of Visual and Machine Strength Grading of Sawn Timber with Respect to Log Type. Forests 2021, 12, 1467. https://doi.org/10.3390/f12111467
Burawska-Kupniewska I, Krzosek S, Mańkowski P. Efficiency of Visual and Machine Strength Grading of Sawn Timber with Respect to Log Type. Forests. 2021; 12(11):1467. https://doi.org/10.3390/f12111467
Chicago/Turabian StyleBurawska-Kupniewska, Izabela, Sławomir Krzosek, and Piotr Mańkowski. 2021. "Efficiency of Visual and Machine Strength Grading of Sawn Timber with Respect to Log Type" Forests 12, no. 11: 1467. https://doi.org/10.3390/f12111467
APA StyleBurawska-Kupniewska, I., Krzosek, S., & Mańkowski, P. (2021). Efficiency of Visual and Machine Strength Grading of Sawn Timber with Respect to Log Type. Forests, 12(11), 1467. https://doi.org/10.3390/f12111467