Adaptive Forest Fire Spread Simulation Algorithm Based on Cellular Automata
Abstract
:1. Introduction
2. Algorithm Development
2.1. Revised Wang Zhengfei Model
2.2. Adaptive Geographic Cellular Automata Algorithm
3. Experiment
3.1. Research Area
3.2. Data and Data Processing
3.3. Simulation Results and Accuracy
3.4. Adaptive Forest Fire Spread Simulation under Different Conditions
3.4.1. Wind Speed
3.4.2. Slope
3.4.3. Relationship between Aspect and Wind Direction
4. Discussion
5. Conclusions
- With a view to ensuring simulation accuracy, the adaptive forest fire spread simulation algorithm, based on cellular automata, can automatically adjust the time step so that forest fire spread can adapt to dynamic real-world environments, conforming to actual fire changes, and better simulate results. The experimental simulation accuracy was 96.9%, and the kappa coefficient was 0.6214.
- In the traditional CA model, in which the time step is fixed, when a fire is large, producing large changes in the burnt area within one time step, it is impossible to know the details of the fire surge in all directions on the fire line, which may hinder emergency decision making. By contrast, the adaptive CA model that uses a variable time step can provide more details about fire spread for decision-makers. When wind speed is high, slope is large, or wind direction is consistent with slope direction, fire spreads faster, with the time step of the adaptive CA model decreasing to better reflect the details of its spread.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kan, Z.; Ma, D.; Zhang, H. Characteristics of forest fire and suppression countermeasures in Sichuan forest region. For. Sci. Technol. 2004, 2, 29–31. [Google Scholar]
- Papadopoulos, G.D.; Pavlidou, F.N. A comparative review on wildfire simulators. IEEE Syst. J. 2011, 5, 233–243. [Google Scholar] [CrossRef]
- Fons, W.L. Analysis of fire spread in light forest fuels. J. Agric. Res. 1946, 72, 93–121. [Google Scholar]
- Albini, F.A. Spot Fire Distance from Burning Trees: A Predictive Model. Intermountain Forest and Range Experiment Station, Forest Service; US Department of Agriculture: Washington, DC, USA, 1979. [Google Scholar]
- Anderson, D.H.; Catchpole, E.A.; De Mestre, N.J.; Parkes, T. Modelling the spread of grass fires. ANZIAM J. 1982, 23, 451–466. [Google Scholar] [CrossRef] [Green Version]
- Mcarthur, A.G. Weather and Grassland Fire Behavior; Forestry and Timber Bureau, Department of National Development, Commonwealth of Australia: Canberra, Australia, 1966; p. 100. [Google Scholar]
- Stocks, B.J.; Lawson, B.D.; Alexander, M.E.; Van Wagner, C.E.; Lynham, T.J.; Dube, D. The Canadian forest fire danger rating system: An overview. For. Chron. 1989, 65, 258–265. [Google Scholar] [CrossRef] [Green Version]
- Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; Intermountain Forest & Range Experiment Station, Forest Service, US Department of Agriculture: Washington, DC, USA, 1972; Volume 115. [Google Scholar]
- Van Wagner, C.E. Prediction of crown fire behavior in two stands of jack pine. Can. J. For. Res. 1993, 23, 442–449. [Google Scholar] [CrossRef]
- Wang, Z. Current forest fire danger rating system. J. Nat. Disasters 1992, 1, 39–44. [Google Scholar] [CrossRef]
- Glasa, J.; Halada, L. On elliptical model for forest fire spread modeling and simulation. Math. Comput. Simul. 2008, 78, 76–88. [Google Scholar] [CrossRef]
- Karafyllidis, I.; Thanailakis, A. A model for predicting forest fire spreading using cellular automata. Ecol. Model. 1997, 99, 87–97. [Google Scholar] [CrossRef]
- Broadbent, S.R.; Hammersley, J.M. Percolation processes. I: Crystals and mazes. Math. Proc. Camb. Philos. Soc. 1957, 53, 629–641. [Google Scholar] [CrossRef]
- Wolfgang Von, N.; Alexander, B. Dynamic simulation of forest fires. Can. J. For. Res. 1988, 18, 807–814. [Google Scholar] [CrossRef]
- Zhu, Q.; Rong, T.; Sun, R. A case study on fractal simulation of forest fire spread. Sci. China 2000, 43, 104–112. [Google Scholar] [CrossRef]
- Ding, Z.; Song, K.; Wang, Z.; Tang, X.; Dong, Z.; Jia, M.; Shao, T. Contrastive analysis of algorithms of the forest fire spreading simulation based on ArcGIS engine. J. Univ. Chin. Acad. Sci. 2014, 31, 640–646. [Google Scholar]
- Huang, H.G.; Zhang, X.L.; Wang, L. Simulation of forest fire spread based on a 3D-surface cellular automata model. J. Beijing For. Univ. 2005, 27, 94–97. [Google Scholar] [CrossRef]
- Eskandari, S. Application of a CA-based model to predict the fire front in hyrcanian forests of Iran. Arab. J. Geosci. 2016, 9, 688. [Google Scholar] [CrossRef]
- Rui, X.; Hui, S.; Yu, X.; Zhang, G.; Wu, B. Forest fire spread simulation algorithm based on cellular automata. Nat. Hazards J. Int. Soc. Prev. Mitig. Nat. Hazards 2018, 91, 309–319. [Google Scholar] [CrossRef]
- Mutthulakshmi, K.; Wee, M.R.E.; Wong, Y.C.K.; Lai, J.W.; Koh, J.M.; Acharya, U.R.; Cheong, K.H. Simulating forest fire spread and fire-fighting using cellular automata. Chin. J. Phys. Taipei 2020, 65, 642–650. [Google Scholar] [CrossRef]
- Vahidnia, M.H.; Alesheikh, A.A.; Behzadi, S.; Salehi, S. Modeling the spread of spatio-temporal phenomena through the incorporation of ANFIS and genetically controlled cellular automata: A case study on forest fire. Int. J. Digit. Earth 2013, 6, 51–75. [Google Scholar] [CrossRef]
- Zheng, Z.; Huang, W.; Li, S.; Zeng, Y. Forest fire spread simulating model using cellular automaton with extreme learning machine. Ecol. Model. 2017, 348, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Liu, H.; Zhou, Y.; Sun, C. Spread vector induced cellular automata model for real-time crown fire behavior simulation. Environ. Model. Softw. 2018, 108, 14–39. [Google Scholar] [CrossRef]
- Guo, F.; Wang, G.; Su, Z.; Liang, H.; Wang, W.; Lin, F.; Liu, A. What drives forest fire in Fujian, China? Evidence from logistic regression and random forests. Int. J. Wildland Fire 2016, 25, 505. [Google Scholar] [CrossRef]
- Collin, A.; Bernardin, D.; Sero-Guillaume, O. A physical-based cellular automaton model for forest-fire propagation. Combust. Sci. Technol. 2011, 183, 347–369. [Google Scholar] [CrossRef]
- Tang, L.; Shao, G. Drone remote sensing for forestry research and practices. J. For. Res. 2015, 26, 791–797. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Xu, C.; He, Y.; Zhao, Y.; Xu, Y.; Rui, X.; Xu, H. Adaptive Forest Fire Spread Simulation Algorithm Based on Cellular Automata. Forests 2021, 12, 1431. https://doi.org/10.3390/f12111431
Sun L, Xu C, He Y, Zhao Y, Xu Y, Rui X, Xu H. Adaptive Forest Fire Spread Simulation Algorithm Based on Cellular Automata. Forests. 2021; 12(11):1431. https://doi.org/10.3390/f12111431
Chicago/Turabian StyleSun, Liyang, Congcong Xu, Yanglangxing He, Yanjun Zhao, Yuan Xu, Xiaoping Rui, and Hanwei Xu. 2021. "Adaptive Forest Fire Spread Simulation Algorithm Based on Cellular Automata" Forests 12, no. 11: 1431. https://doi.org/10.3390/f12111431
APA StyleSun, L., Xu, C., He, Y., Zhao, Y., Xu, Y., Rui, X., & Xu, H. (2021). Adaptive Forest Fire Spread Simulation Algorithm Based on Cellular Automata. Forests, 12(11), 1431. https://doi.org/10.3390/f12111431