Ownership Patterns Drive Multi-Scale Forest Structure Patterns across a Forested Region in Southern Coastal Oregon, USA
Abstract
:1. Introduction
- What distinct classes of forest structure exist across our study area?
- How does the distribution and pattern of forest structure vary among types of owners at scales of patches, ownership types, and subregion, and is this independent of property size?
- What implications do the fine and sub-regional scale patterns have for landscape configuration goals under recent updates to the Northwest Forest Plan?
2. Materials and Methods
2.1. Study Area
2.2. Identification of Ownerships
Group | Ownership Type | Description | Summary of Landowner Objectives | Rotation Length |
---|---|---|---|---|
Private non-industrial | Private Private Very Small Private Small Private Medium | 20.23 hectares (<50 acres) 20.23–40.47 hectares (50–100 acres) 40.47–202.34 hectares (100–500 acres) 202.34–2023.43 hectares (500–5000 acres) | Harvest income; land investment; part of residence; estate for children | 35–70 |
Private- Industrial | Timber Investment Management Organization (TIMO) Real Estate Investment Trust (REIT) Integrated | Procure, manage, and sell timberland assets on behalf of institutions or investors Own cash producing real estate and distribute rents to investors, in addition to other requirements they must fulfill May own both timber land and milling infrastructure | Maximizing rate of return on investment; focus on net present value | 35–60 |
Family | Large forestland owners that are closely held or family owned | Diverse objectives, including but not limited to harvest income, wildlife habitat protection, land investment, and estate for children | 35–60 | |
Mixed Objective Government | State | Land owned by the state of Oregon. In this area, only Elliott State Forest | Stand diversity and heterogeneity; sustainable-yield timber production | 80+ |
Bureau of Land Management | Land managed by the Bureau of Land Management that was formerly not a part of railroad lands | Managed under the Northwest Forest Plan. Maintenance of late-successional and old growth species habitat and ecosystems, and native biological diversity; sustainable yield timber production on a small amount of designated lands. | 80+ | |
NWFP Objective Government | U.S. Forest Service Bureau of Land Management O&C Bureau of Land Management CBWR | Land managed by the U.S. Forest Service Land managed by the BLM that is part of the former Oregon and California railroad land grant Land managed by the BLM that is part of the former Coos Bay wagon road land grants | Managed under the Northwest Forest Plan. Maintenance of late-successional and old growth species habitat and ecosystems, and native biological diversity; sustainable-yield timber production on a small amount of designated lands. | 80+ |
2.3. Airborne Lidar Data
2.4. Forest Structure Analysis and Classification
2.5. Quantifying Landscape Pattern and Effect of Ownership
3. Results
3.1. Forest Structure Classes
3.2. Ownership Clustering Created Four Structurally Similar Groups of Ownerships
3.3. Landscape Structure Metrics Significantly Differ among Ownerships
4. Discussion
4.1. Two Distinct Assemblages of Forest Structure Classes
4.2. Land Ownership Objectives Manifested in Landscape Pattern of Forest Structure
4.2.1. Ecological Forest Management Evident on Public Lands
4.2.2. Forest Structure Did Not Reflect Expected Land Objective Differences between Private Industrial and Private Non-Industrial Lands
4.3. Landowner Objectives and Management Practices Create Different Scales of Forest Structure Pattern
4.4. Conservation Applications
4.4.1. NWFP Goal Assessment
4.4.2. Conservation Easements
4.4.3. Implications for the Oregon Forest Practices Act
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ryan, K.C. Dynamic interactions between forest structure and fire behavior in boreal ecosystems. Silva Fenn. 2002, 36, 13–39. [Google Scholar] [CrossRef] [Green Version]
- Sanders, R.A. Some determinants of urban forest structure. Urban Ecol. 1984, 8, 13–27. [Google Scholar] [CrossRef]
- Parrotta, J.; Francis, J.K.; Knowles, O.H. Harvesting intensity affects forest structure and composition in an upland Amazonian forest. For. Ecol. Manag. 2002, 169, 243–255. [Google Scholar] [CrossRef]
- Wang, X.; Fang, J.; Tang, Z.; Zhu, B. Climatic control of primary forest structure and DBH–height allometry in Northeast China. For. Ecol. Manag. 2006, 234, 264–274. [Google Scholar] [CrossRef]
- Kulakowski, D.; Bebi, P.; Rixen, C. The interacting effects of land use change, climate change and suppression of natural disturbances on landscape forest structure in the Swiss Alps. Oikos 2010, 120, 216–225. [Google Scholar] [CrossRef]
- Quesada, C.A.; Phillips, O.L.; Schwarz, M.; Czimczik, C.I.; Baker, T.R.; Patiño, S.; Fyllas, N.M.; Hodnett, M.G.; Herrera, R.; Almeida, S.; et al. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 2012, 9, 2203–2246. [Google Scholar] [CrossRef] [Green Version]
- McElhinny, C.; Gibbons, P.; Brack, C.; Bauhus, J. Forest and woodland stand structural complexity: Its definition and measurement. For. Ecol. Manag. 2005, 218, 1–24. [Google Scholar] [CrossRef]
- Tateno, R.; Hishi, T.; Takeda, H. Above- and belowground biomass and net primary production in a cool-temperate deciduous forest in relation to topographical changes in soil nitrogen. For. Ecol. Manag. 2004, 193, 297–306. [Google Scholar] [CrossRef]
- Yeo-Chang, Y. Use of forest resources, traditional forest-related knowledge and livelihood of forest dependent communities: Cases in South Korea. For. Ecol. Manag. 2009, 257, 2027–2034. [Google Scholar] [CrossRef]
- Tetzlaff, D.; Soulsby, C.; Buttle, J.; Capell, R.; Carey, S.K.; Laudon, H.; McDonnell, J.J.; McGuire, K.J.; Seibert, J.; Shanley, J. Catchments on the cusp? Structural and functional change in northern ecohydrology. Hydrol. Process. 2013, 27, 766–774. [Google Scholar] [CrossRef]
- Caldwell, P.V.; Miniat, C.F.; Elliott, K.J.; Swank, W.T.; Brantley, S.T.; Laseter, S.H. Declining water yield from forested mountain watersheds in response to climate change and forest mesophication. Glob. Chang. Biol. 2016, 22, 2997–3012. [Google Scholar] [CrossRef] [PubMed]
- Franklin, J.F.; Spies, T.A.; Van Pelt, R.; Carey, A.B.; Thornburgh, D.A.; Berg, D.R.; Lindenmayer, D.B.; Harmon, M.E.; Keeton, W.S.; Shaw, D.C.; et al. Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. For. Ecol. Manag. 2002, 155, 399–423. [Google Scholar] [CrossRef]
- Schwab, F.E.; Pitt, M.D. Moose selection of canopy cover types related to operative temperature, forage, and snow depth. Can. J. Zool. 1991, 69, 3071–3077. [Google Scholar] [CrossRef]
- Coops, N.; Tompaski, P.; Nijland, W.; Rickbeil, G.J.M.; Nielsen, S.E.; Bater, C.W.; Stadt, J.J. A forest structure habitat index based on airborne laser scanning data. Ecol. Indic. 2016, 67, 346–357. [Google Scholar] [CrossRef]
- Nepstad, D.C.; Verssimo, A.; Alencar, A.; Nobre, C.; Lima, E.; Lefebvre, P.A.; Schlesinger, P.; Potter, C.; Moutinho, P.; Mendoza, E.; et al. Large-scale impoverishment of Amazonian forests by logging and fire. Nat. Cell Biol. 1999, 398, 505–508. [Google Scholar] [CrossRef]
- Bengtsson, J.; Nilsson, S.G.; Franc, A.; Menozzi, P. Biodiversity, disturbances, ecosystem function and management of European forests. For. Ecol. Manag. 2000, 132, 39–50. [Google Scholar] [CrossRef]
- Backer, D.M.; Jensen, S.E.; McPherson, G.R. Impacts of Fire-Suppression Activities on Natural Communities. Conserv. Biol. 2004, 18, 937–946. [Google Scholar] [CrossRef]
- Boisvenue, C.; Running, S.W. Impacts of climate change on natural forest productivity—Evidence since the middle of the 20th century. Glob. Chang. Biol. 2006, 12, 862–882. [Google Scholar] [CrossRef]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef] [Green Version]
- Brotons, L.; Aquilué, N.; De Cáceres, M.; Fortin, M.-J.; Fall, A. How Fire History, Fire Suppression Practices and Climate Change Affect Wildfire Regimes in Mediterranean Landscapes. PLoS ONE 2013, 8, e62392. [Google Scholar] [CrossRef] [Green Version]
- Sorice, M.G.; Kreuter, U.P.; Wilcox, B.P.; Fox, W.E. Changing landowners, changing ecosystem? Land-ownership motivations as drivers of land management practices. J. Environ. Manag. 2014, 133, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Cubbage, F.W.; Mac Donagh, P.; Júnior, J.S.; Rubilar, R.; Donoso, P.J.; Ferreira, A.; Hoeflich, V.; Olmos, V.M.; Ferreira, G.; Balmelli, G.; et al. Timber investment returns for selected plantations and native forests in South America and the Southern United States. New For. 2006, 33, 237–255. [Google Scholar] [CrossRef]
- Adhikari, B.; Williams, F.; Lovett, J.C. Local benefits from community forests in the middle hills of Nepal. For. Policy Econ. 2007, 9, 464–478. [Google Scholar] [CrossRef]
- Götmark, F. Habitat management alternatives for conservation forests in the temperate zone: Review, synthesis, and implications. For. Ecol. Manag. 2013, 306, 292–307. [Google Scholar] [CrossRef]
- Erickson, D.L.; Ryan, R.L.; De Young, R. Woodlots in the rural landscape: Landowner motivations and management attitudes in a Michigan (USA) case study. Landsc. Urban Plan. 2002, 58, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Kendra, A.; Hull, R.B. Motivations and behaviors of new forest owners in Virginia. For. Sci. 2005, 51, 142–154. [Google Scholar] [CrossRef]
- Lindhjem, H.; Mitani, Y. Forest owners’ willingness to accept compensation for voluntary conservation: A contingent valuation approach. J. For. Econ. 2012, 18, 290–302. [Google Scholar] [CrossRef]
- Weiss, G.; Lawrence, A.; Lidestav, G.; Feliciano, D.; Hujala, T.; Sarvašová, Z.; Dobšinská, Z.; Živojinović, I. Research trends: Forest ownership in multiple perspectives. For. Policy Econ. 2019, 99, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Mladenoff, D.J.; White, M.A.; Pastor, J.; Crow, T.R. Comparing Spatial Pattern in Unaltered Old-Growth and Disturbed Forest Landscapes. Ecol. Appl. 1993, 3, 294–306. [Google Scholar] [CrossRef]
- Turner, M.G.; Wear, D.N.; Flamm, R.O. Land Ownership and Land-Cover Change in the Southern Appalachian Highlands and the Olympic Peninsula. Ecol. Appl. 1996, 6, 1150–1172. [Google Scholar] [CrossRef] [Green Version]
- Crow, T.R.; Host, G.E.; Mladenoff, D.J. Ownership and ecosystem as sources of spatial heterogeneity in a forested landscape, Wisconsin, USA. Landsc. Ecol. 1999, 14, 449–463. [Google Scholar] [CrossRef]
- Cohen, W.B.; Spies, T.A.; Alig, R.J.; Oetter, D.R.; Maiersperger, T.K.; Fiorella, M. Characterizing 23 Years (1972–1995) of Stand Replacement Disturbance in Western Oregon Forests with Landsat Imagery. Ecosystems 2002, 5, 122–137. [Google Scholar] [CrossRef]
- Nagendra, H.; Pareeth, S.; Sharma, B.; Schweik, C.M.; Adhikari, K.R. Forest fragmentation and regrowth in an institutional mosaic of community, government and private ownership in Nepal. Landsc. Ecol. 2007, 23, 41–54. [Google Scholar] [CrossRef]
- Ohmann, J.L.; Gregory, M.J.; Spies, T.A. Influence of environment, disturbance, and ownership on forest vegetation of coastal oregon. Ecol. Appl. 2007, 17, 18–33. [Google Scholar] [CrossRef]
- Schulte, L.A.; Mladenoff, D.J.; Crow, T.R.; Merrick, L.C.; Cleland, D.T. Homogenization of northern U.S. Great Lakes forests due to land use. Landsc. Ecol. 2007, 22, 1089–1103. [Google Scholar] [CrossRef] [Green Version]
- Hudiburg, T.W.; Law, B.E.; Turner, D.P.; Campbell, J.; Donato, D.; Duane, M. Carbon dynamics of Oregon and Northern California forests and potential land-based carbon storage. Ecol. Appl. 2009, 19, 163–180. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B.; Pfaff, E.; Braaten, J.; Nelson, P. Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan. Remote Sens. Environ. 2012, 122, 117–133. [Google Scholar] [CrossRef]
- Pachavo, G.; Murwira, A. Land-use and land tenure explain spatial and temporal patterns in terrestrial net primary productivity (NPP) in Southern Africa. Geocarto Int. 2013, 29, 671–687. [Google Scholar] [CrossRef]
- Hightower, J.N.; Butterfield, A.C.; Weishampel, J.F. Quantifying Ancient Maya Land Use Legacy Effects on Contemporary Rainforest Canopy Structure. Remote Sens. 2014, 6, 10716–10732. [Google Scholar] [CrossRef]
- Boucher, D.; De Grandpré, L.; Kneeshaw, D.; St-Onge, B.; Ruel, J.-C.; Waldron, K.; Lussier, J.-M. Effects of 80 years of forest management on landscape structure and pattern in the eastern Canadian boreal forest. Landsc. Ecol. 2015, 30, 1913–1929. [Google Scholar] [CrossRef]
- Rendenieks, Z.; Nikodemus, O.; Brūmelis, G.; Nikodemus, O. The implications of stand composition, age and spatial patterns of forest regions with different ownership type for management optimisation in northern Latvia. For. Ecol. Manag. 2015, 335, 216–224. [Google Scholar] [CrossRef]
- Easterday, K.; McIntyre, P.J.; Kelly, M. Land ownership and 20th century changes to forest structure in California. For. Ecol. Manag. 2018, 422, 137–146. [Google Scholar] [CrossRef]
- Guo, X.; Coops, N.; Tompalski, P.; Nielsen, S.E.; Bater, C.W.; Stadt, J.J. Regional mapping of vegetation structure for biodiversity monitoring using airborne lidar data. Ecol. Inform. 2017, 38, 50–61. [Google Scholar] [CrossRef]
- Huntsinger, L.; Buttolph, L.; Hopkinson, P. Ownership and Management Changes on California Hardwood Rangelands: 1985 to 1992. J. Range Manag. 1997, 50, 423. [Google Scholar] [CrossRef]
- Schaich, H.; Plieninger, T. Land ownership drives stand structure and carbon storage of deciduous temperate forests. For. Ecol. Manag. 2013, 305, 146–157. [Google Scholar] [CrossRef]
- Vogeler, J.C.; Slesak, R.A.; Fekety, P.A.; Falkowski, M.J. Characterizing over Four Decades of Forest Disturbance in Minnesota, USA. Forest 2020, 11, 362. [Google Scholar] [CrossRef] [Green Version]
- Spies, T.A.; Ripple, W.J.; Bradshaw, G.A. Dynamics and Pattern of a Managed Coniferous Forest Landscape in Oregon. Ecol. Appl. 1994, 4, 555–568. [Google Scholar] [CrossRef] [Green Version]
- Ohmann, J.L.; Spies, T.A. Regional Gradient Analysis and Spatial Pattern of Woody Plant Communities of Oregon Forests. Ecol. Monogr. 1998, 68, 151. [Google Scholar] [CrossRef]
- Stanfield, B.J.; Bliss, J.C.; Spies, T.A. Land ownership and landscape structure: A spatial analysis of sixty-six Oregon (USA) Coast Range watersheds. Landsc. Ecol. 2002, 17, 685–697. [Google Scholar] [CrossRef]
- Wimberly, M.C.; Ohmann, J.L. A multi-scale assessment of human and environmental constraints on forest land cover change on the Oregon (USA) coast range. Landsc. Ecol. 2004, 19, 631–646. [Google Scholar] [CrossRef]
- Kennedy, R.S.H.; Spies, T.A.; Gregory, M.J. Relationships of dead wood patterns with biophysical characteristics and ownership according to scale in Coastal Oregon, USA. Landsc. Ecol. 2008, 23, 55–68. [Google Scholar] [CrossRef]
- Nonaka, E.; Spies, T.A. Historical range of variability in landscape structure: A simulation study in Oregon, USA. Ecol. Appl. 2005, 15, 1727–1746. [Google Scholar] [CrossRef] [Green Version]
- McAlpine, C.A.; Spies, T.; Norman, P.; Peterson, A. Conserving forest biodiversity across multiple land ownerships: Lessons from the Northwest Forest Plan and the Southeast Queensland regional forests agreement (Australia). Biol. Conserv. 2007, 134, 580–592. [Google Scholar] [CrossRef]
- Spies, T.A.; Peter, A.S.; Gravenmier, R.A.; Long, J.W.; Reilly, M.J. Synthesis of science to inform land management within the Northwest Forest Plan area. For. Serv. 2018, 1, 1–370. [Google Scholar]
- Thomas, J.W.; Franklin, J.F.; Gordon, J.; Johnson, K.N. The Northwest Forest Plan: Origins, Components, Implementation Experience, and Suggestions for Change. Conserv. Biol. 2006, 20, 277–287. [Google Scholar] [CrossRef]
- Dickinson, Y.; Zenner, E.; Miller, D. Examining the effect of diverse management strategies on landscape scale patterns of forest structure in Pennsylvania using novel remote sensing techniques. Can. J. For. Res. 2014, 44, 301–312. [Google Scholar] [CrossRef]
- Smithwick, E.A.H.; Harmon, M.E.; Remillard, S.M.; Acker, S.A.; Franklin, J.F. Potential Upper Bounds of Carbon Stores in Forests of the Pacific Northwest. Ecol. Appl. 2002, 12, 1303. [Google Scholar] [CrossRef]
- Harris, G.A.; Franklin, J.; Dyrness, C.T. Natural Vegetation of Oregon and Washington. J. Range Manag. 1990, 43, 85. [Google Scholar] [CrossRef]
- Rollins, M.G. LANDFIRE: A nationally consistent vegetation, wildland fire, and fuel assessment. Int. J. Wildland Fire 2009, 18, 235–249. [Google Scholar] [CrossRef] [Green Version]
- Morris, W.G. Forest Fires in Western Oregon and Western Washington. Or. Hist. Soc. 1934, 35, 313–339. [Google Scholar]
- National Interagency Fire Center Interagency Fire Perimeter History—All Years 2020. Available online: https://data-nifc.opendata.arcgis.com/datasets/4454e5d8e8c44b0280258b51bcf24794_0/geoservice?geometry=-124.705%2C43.623%2C-122.619%2C43.970 (accessed on 15 December 2020).
- Wimberly, M.C.; Spies, T.A. Influences of environment and disturbance on forest patterns in Coastal Oregon Watersheds. Ecology 2001, 82, 1443–1459. [Google Scholar] [CrossRef]
- PRISM Climate Group. 2004. Available online: https://prism.oregonstate.edu/normals/ (accessed on 27 August 2019).
- Maestas, J.D.; Knight, R.L.; Gilgert, W.C. Biodiversity and Land-Use Change in the American Mountain West. Geogr. Rev. 2001, 91, 509–524. [Google Scholar] [CrossRef]
- Zald, H.S.J.; Dunn, C.J. Severe fire weather and intensive forest management increase fire severity in a multi-ownership landscape. Ecol. Appl. 2018, 28, 1068–1080. [Google Scholar] [CrossRef] [PubMed]
- Franklin, J.F.; Johnson, K.N. Lessons in policy implementation from experiences with the Northwest Forest Plan, USA. Biodivers. Conserv. 2014, 23, 3607–3613. [Google Scholar] [CrossRef]
- Decker, D. Elliott State Forest Management Plan; Oregon Department of Forestry: Salem, OR, USA, 2011. [Google Scholar]
- Hagar, J.; Yost, A.; Haggerty, P.K. Incorporating LiDAR metrics into a structure-based habitat model for a canopy-dwelling species. Remote Sens. Environ. 2020, 236, 111499. [Google Scholar] [CrossRef]
- Johnson, R.; Alig, R.; Kline, J.; Moulton, R.; Rickenbach, M. Management of Non-Industrial Private Forest Lands: Survey Results from Western Oregon and Washington Owners; Forest Research Laboratory, Oregon State University: Corvallis, OR, USA, 1999; p. 43. [Google Scholar]
- Kaipainen, T.; Liski, J.; Pussinen, A.; Karjalainen, T. Managing carbon sinks by changing rotation length in European forests. Environ. Sci. Policy 2004, 7, 205–219. [Google Scholar] [CrossRef]
- McGaughey, R. FUSION; US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Seattle, WA, USA, 2018. [Google Scholar]
- North, M.P.; Kane, J.T.; Kane, V.R.; Asner, G.P.; Berigan, W.; Churchill, D.J.; Conway, S.; Gutiérrez, R.; Jeronimo, S.; Keane, J.; et al. Cover of tall trees best predicts California spotted owl habitat. For. Ecol. Manag. 2017, 405, 166–178. [Google Scholar] [CrossRef]
- Kane, V.; McGaughey, R.; Bakker, J.; Gersonde, R.; Lutz, J.; Franklin, J. Comparisons between field- and LiDAR-based measure of stand structural complexity. Can. J. For. Res. 2010, 40, 761–773. [Google Scholar] [CrossRef]
- Kane, V.R.; Lutz, J.A.; Roberts, S.L.; Smith, D.F.; McGaughey, R.J.; Povak, N.A.; Brooks, M.L. Landscape-scale effects of fire severity on mixed-conifer and red fir forest structure in Yosemite National Park. For. Ecol. Manag. 2013, 287, 17–31. [Google Scholar] [CrossRef]
- Kane, V.R.; Bakker, J.D.; McGaughey, R.J.; Lutz, J.A.; Gersonde, R.F.; Franklin, J.F. Examining conifer canopy structural complexity across forest ages and elevations with LiDAR data. Can. J. For. Res. 2010, 40, 774–787. [Google Scholar] [CrossRef]
- Ahmed, O.S.; Franklin, S.E.; Wulder, M.A.; White, J.C. Characterizing stand-level forest canopy cover and height using Landsat time series, samples of airborne LiDAR, and the Random Forest algorithm. ISPRS J. Photogramm. Remote Sens. 2015, 101, 89–101. [Google Scholar] [CrossRef]
- Matasci, G.; Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.; Hobart, G.W.; Bolton, D.K.; Tompalski, P.; Bater, C.W. Three decades of forest structural dynamics over Canada’s forested ecosystems using Landsat time-series and lidar plots. Remote Sens. Environ. 2018, 216, 697–714. [Google Scholar] [CrossRef]
- Smart, L.; Swenson, J.; Christensen, N.; Sexton, J. Three-dimensional characterization of pine forest type and red-cockaded woodpecker habitat by small-footprint, discrete-return lidar. For. Ecol. Manag. 2012, 281, 100–110. [Google Scholar] [CrossRef]
- Simonson, W.D.; Allen, H.D.; Coomes, D.A. Applications of airborne lidar for the assessment of animal species diversity. Methods Ecol. Evol. 2014, 5, 719–729. [Google Scholar] [CrossRef]
- Listopad, C.M.; Masters, R.E.; Drake, J.B.; Weishampel, J.F.; Branquinho, C. Structural diversity indices based on airborne LiDAR as ecological indicators for managing highly dynamic landscapes. Ecol. Indic. 2015, 57, 268–279. [Google Scholar] [CrossRef]
- Moran, C.J.; Rowell, E.M.; Seielstad, C.A. A data-driven framework to identify and compare forest structure classes using LiDAR. Remote Sens. Environ. 2018, 211, 154–166. [Google Scholar] [CrossRef]
- Silva, C.; Klauberg, C.; Hudak, A.T.; Vierling, L.A.; Liesenberg, V.; Carvalho, S.P.C.E.; Rodriguez, L.C.E. A principal component approach for predicting the stem volume in Eucalyptus plantations in Brazil using airborne LiDAR data. Forest 2016, 89, 422–433. [Google Scholar] [CrossRef]
- Murtagh, F.; Legendre, P. Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? J. Classif. 2014, 31, 274–295. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- McCune, B.; Grace, J.B. Analysis of Ecological Communities; MjM Software Design: Gleneden Beach, OR, USA, 2002. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Cutler, D.R.; Edwards, T.C., Jr.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random Forests for Classification in Ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef]
- Ohmann, J.L.; Gregory, M.J. Predictive mapping of forest composition and structure with direct gradient analysis and nearest- neighbor imputation in coastal Oregon, U.S.A. Can. J. For. Res. 2002, 32, 725–741. [Google Scholar] [CrossRef]
- Zald, H.S.; Ohmann, J.L.; Roberts, H.M.; Gregory, M.J.; Henderson, E.B.; McGaughey, R.J.; Braaten, J. Influence of lidar, Landsat imagery, disturbance history, plot location accuracy, and plot size on accuracy of imputation maps of forest composition and structure. Remote Sens. Environ. 2014, 143, 26–38. [Google Scholar] [CrossRef]
- Bell, D.M.; Gregory, M.J.; Kane, V.; Kane, J.; Kennedy, R.E.; Roberts, H.M.; Yang, Z. Multiscale divergence between Landsat- and lidar-based biomass mapping is related to regional variation in canopy cover and composition. Carbon Balance Manag. 2018, 13, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, R.E.; Ohmann, J.; Gregory, M.; Roberts, H.; Yang, Z.; Bell, D.M.; Kane, V.; Hughes, M.J.; Cohen, W.B.; Powell, S.; et al. An empirical, integrated forest biomass monitoring system. Environ. Res. Lett. 2018, 13, 025004. [Google Scholar] [CrossRef]
- Kane, V.R.; Bartl-Geller, B.N.; North, M.P.; Kane, J.T.; Lydersen, J.M.; Jeronimo, S.M.; Collins, B.M.; Moskal, L.M. First-entry wildfires can create opening and tree clump patterns characteristic of resilient forests. For. Ecol. Manag. 2019, 454, 117659. [Google Scholar] [CrossRef]
- Hesselbarth, M.H.K.; Sciaini, M.; With, K.A.; Wiegand, K.; Nowosad, J. landscapemetrics: An open-source R tool to cal-culate landscape metrics. Ecography 2019, 42, 1648–1657. [Google Scholar] [CrossRef] [Green Version]
- McGarigal, K. Fragstats Help. Available online: https://www.umass.edu/landeco/research/fragstats/documents/fragstats.help.4.2.pdf (accessed on 3 June 2019).
- Turner, M.G.; Gardner, R.H. Landscape Ecology in Theory and Practice; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Gardner, R.H.; Milne, B.T.; Turnei, M.G.; O’Neill, R.V. Neutral models for the analysis of broad-scale landscape pattern. Landsc. Ecol. 1987, 1, 19–28. [Google Scholar] [CrossRef]
- Oliver, C.D.; Larson, B.A. Forest Stand Dynamics, Update Edition; John Wiley & Sons: Hoboken, NJ, USA; Yale School of the Environment: New Haven, CT, USA, 1996. [Google Scholar]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [Green Version]
- Larson, A.J.; Franklin, J.F. Patterns of conifer tree regeneration following an autumn wildfire event in the western Oregon Cascade Range, USA. For. Ecol. Manag. 2005, 218, 25–36. [Google Scholar] [CrossRef]
- Donato, D.C.; Campbell, J.L.; Franklin, J.F. Multiple successional pathways and precocity in forest development: Can some forests be born complex? J. Veg. Sci. 2012, 23, 576–584. [Google Scholar] [CrossRef]
- Freund, J.A.; Franklin, J.F.; Larson, A.J.; Lutz, J.A. Multi-decadal establishment for single-cohort Douglas-fir forests. Can. J. For. Res. 2014, 44, 1068–1078. [Google Scholar] [CrossRef]
- Larson, A.J.; Lutz, J.A.; Gersonde, R.F.; Franklin, J.F.; Hietpas, F.F. Potential site productivity influences the rate of forest structural development. Ecol. Appl. 2008, 18, 899–910. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.N.; Bettinger, P.; Kline, J.D.; Spies, T.A.; Lennette, M.; Lettman, G.; Garber-Yonts, B.; Larsen, T. Simulating forest structure, timber production, and socioeconomic effects in a multi-owner province. Ecol. Appl. 2007, 17, 34–47. [Google Scholar] [CrossRef]
- Moeur, M. Northwest Forest Plan, the First 10 Years (1994–2003): Status and Trend of Late-Successional and Old-Growth Forest; U.S. Department of Agriculture Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2005. [Google Scholar]
- Davis, R.J.; Ohmann, J.L.; Kennedy, R.E.; Cohen, W.B.; Gregory, M.J.; Yang, Z.; Roberts, H.M.; Gray, A.N.; Spies, T.A. Northwest Forest Plan—The First 20 Years (1994–2013): Status and Trends of Late-Successional and Old-Growth Forests; USDA Forest Service: Portland, OR, USA, 2015; Volume 911, p. 112. [Google Scholar]
- Spies, T.A.; Franklin, J.F. The Structure of Natural Young, Mature, and Old-Growth Douglas-Fir Forests in Oregon and Washington. In Wildlife and Vegetation of Unmanaged Douglas-Fir Forests; USDA Forest Service: Portland, OR, USA, 1991; pp. 91–109. [Google Scholar]
- Dunton, R. Northwestern and Coastal Oregon Record of Decision and Approved Resource Management Plan; Bureau of Land Management: Portland, OR, USA, 2016; pp. 1–308. [Google Scholar]
- Kamal, S.; Grodzińska-Jurczak, M.; Brown, G.K. Conservation on private land: A review of global strategies with a proposed classification system. J. Environ. Plan. Manag. 2015, 58, 576–597. [Google Scholar] [CrossRef] [Green Version]
- Woodley, S.; Bertzky, B.; Crawhall, N.; Dudley, N.; Londono, J.M.; MacKinnon, K.; Redford, K.; Sandwith, T. Meeting Aichi Target 11: What does success look like for protected area systems? Parks 2012, 18, 1–13. [Google Scholar]
- Heller, N.E.; Zavaleta, E.S. Biodiversity management in the face of climate change: A review of 22 years of recommendations. Biol. Conserv. 2009, 142, 14–32. [Google Scholar] [CrossRef]
- Cloughesy, M.; Woodward, J. Oregon Forest Practice Act Rules Manual. Available online: https://oregonforests.org/sites/default/files/2018-02/OFRI_IllusManual_full.pdf (accessed on 20 November 2019).
- Spies, T.A.; Johnson, K.N.; Burnett, K.M.; Ohmann, J.L.; McComb, B.C.; Reeves, G.H.; Bettinger, P.; Kline, J.D.; Garber-Yonts, B. Cumulative ecological and socioeconomic effects of forest policies in coastal Oregon. Ecol. Appl. 2007, 17, 5–17. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Griffey, V.; Kellogg, B.; Haugo, R.; Kane, V. Ownership Patterns Drive Multi-Scale Forest Structure Patterns across a Forested Region in Southern Coastal Oregon, USA. Forests 2021, 12, 47. https://doi.org/10.3390/f12010047
Griffey V, Kellogg B, Haugo R, Kane V. Ownership Patterns Drive Multi-Scale Forest Structure Patterns across a Forested Region in Southern Coastal Oregon, USA. Forests. 2021; 12(1):47. https://doi.org/10.3390/f12010047
Chicago/Turabian StyleGriffey, Vivian, Bryce Kellogg, Ryan Haugo, and Van Kane. 2021. "Ownership Patterns Drive Multi-Scale Forest Structure Patterns across a Forested Region in Southern Coastal Oregon, USA" Forests 12, no. 1: 47. https://doi.org/10.3390/f12010047
APA StyleGriffey, V., Kellogg, B., Haugo, R., & Kane, V. (2021). Ownership Patterns Drive Multi-Scale Forest Structure Patterns across a Forested Region in Southern Coastal Oregon, USA. Forests, 12(1), 47. https://doi.org/10.3390/f12010047