Do Seedlings Derived from Pinewood Nematode-Resistant Pinus thunbergii Parl. Clones Selected in Southwestern Region Perform Well in Northern Regions in Japan? Inferences from Nursery Inoculation Tests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites
2.2. Pine Seedlings
2.3. Nematode Inoculation and Symptom Observation
- Sound seedling rate = No. of seedlings in symptom class 0/No. of inoculated seedlings
- Survival rate = No. of seedlings in symptom class 0 and 1/No. of inoculated seedlings
2.4. Statistical Analysis
3. Results
3.1. Seedling Height
3.2. Sound Seedling Rate
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Forest Tree Breeding Center (Japan). Statistics and States of Implementation in Forest Tree Breeding Projects in Japan; Forest Tree Breeding Center: Hitachi, Japan, 2020; pp. 68–69. [Google Scholar]
- Kiyohara, T.; Tokushige, Y. Inoculation experiments of a nematode, Bursaphelenchus sp., onto pine trees. J. Jpn. For. Soc. 1971, 53, 105–114, (In Japanese with English Summary). [Google Scholar]
- Mamiya, Y. History of pine wilt disease in Japan. J. Nematol. 1988, 20, 219–226. [Google Scholar] [PubMed]
- Kazuyoshi, F. Pine wilt in Japan from first incidence to the present. In Pine Wilt Disease; Zhao, B.G., Futai, K., Sutherland, J.R., Takeuchi, Y., Eds.; Springer: New York, NY, USA, 2008; pp. 5–12. [Google Scholar]
- Nakajima, G.; Iki, T.; Yamanobe, T.; Nakamura, K.; Aikawa, T. Spatial and temporal distribution of Bursaphelenchus xylophilus inoculated in grafts of a resistant clone of Pinus thunbergii. J. For. Res. 2019, 24, 93–99. [Google Scholar] [CrossRef]
- Mota, M.M.; Braasch, H.; Bravo, M.A.; Penas, A.C.; Burgermeister, W.; Metge, K.; Sousa, E. First report of Bursaphelenchus xylophilus in Portugal and in Europe. Nematology 1999, 1, 727–734. [Google Scholar] [CrossRef]
- Abelleira, A.; Picoaga, A.; Mansilla, J.P.; Aguin, O. Detection of Bursaphelenchus xylophilus, causal agent of pine wilt disease on Pinus pinaster in northwestern Spain. Plant Dis. 2011, 95, 776. [Google Scholar] [CrossRef] [PubMed]
- Robertson, L.; Cobacho Arcos, S.; Escuer, M.; Santiago Merino, R.; Esparrago, G.; Abelleira, A.; Navas, A. Incidence of the pinewood nematode Bursaphelenchus xylophlius Steiner & Buhrer, 1934 (Nickle, 1970) in Spain. Nematology 2011, 13, 755–757. [Google Scholar] [CrossRef]
- Inácio, M.L.; Nóbrega, F.; Vieira, P.; Bonifácio, L.; Naves, P.; Sousa, E.; Mota, M. First detection of Bursaphelenchus xylophilus associated with Pinus nigra in Portugal and in Europe. For. Path. 2015, 45, 235–238. [Google Scholar] [CrossRef]
- Vicente, C.; Espada, M.; Vieira, P.; Mota, M. Pine Wilt Disease: A threat to European forestry. Eur. J. Plant Pathol. 2012, 133, 89–99. [Google Scholar] [CrossRef]
- Hirata, A.; Nakamura, K.; Nakao, K.; Kominami, Y.; Tanaka, N.; Ohashi, H.; Takano, K.T.; Takeuchi, W.; Matsui, T. Potential distribution of pine wilt disease under future climate change scenarios. PLoS ONE 2017, 12, e0182837. [Google Scholar] [CrossRef] [Green Version]
- Fujimoto, Y.; Toda, T.; Nishimura, K.; Yamane, H.; Fuyuno, S. Breeding project on resistance to the pine-wood nematode an outline of the research and the achievement of the project for ten year. Bull. For. Tree Breed. Inst. 1989, 7, 1–84. [Google Scholar]
- Kurinobu, S. Current status of resistance breeding of Japanese pine species to pine wilt disease. Forest Sci. Technol. 2008, 4, 51–57. [Google Scholar] [CrossRef]
- Nose, M.; Shiraishi, S. Breeding for resistance to pine wilt disease. In Pine Wilt Disease; Zhao, B.G., Futai, K., Sutherland, J.R., Takeuchi, Y., Eds.; Springer: New York, NY, USA, 2008; pp. 334–350. [Google Scholar] [CrossRef]
- Futai, K. Furuno Tooshu The variety of resistances among pine-species to pinewood nematode, Bursaphelenchus lignicolus. Bull. Kyoto Univ. For. 1979, 51, 23–36, (In Japanese with English Summary). [Google Scholar]
- Toda, T.; Kurinobu, S. Genetic improvement in pine wilt disease resistance in Pinus thunbergii: The effectiveness of pre-screening with an artificial inoculation at the nursery. J. For. Res. 2001, 6, 197–201. [Google Scholar] [CrossRef]
- Iwaizumi, M.G.; Tamaki, S.; Isoda, K.; Kubota, M. Evaluation of combining ability for pine wood nematode-resistance based on half-diallele lines of Pinus densiflora resistant clones. For. Genet. For. Breed 2019, 8, 121–130. [Google Scholar] [CrossRef]
- Menéndez-Gutiérrez, M.; Alonso, M.; Toval, G.; Díaz, R. Variation in pinewood nematode susceptibility among Pinus pinaster Ait. provenances from the Iberian Peninsula and France. Ann. For. Sci. 2017, 74, 76. [Google Scholar] [CrossRef] [Green Version]
- Menéndez-Gutiérrez, M.; Alonso, M.; Toval, G.; Díaz, R. Testing of selected Pinus pinaster half-sib families for tolerance to pinewood nematode (Bursaphelenchus xylophilus). Forestry 2018, 91, 38–48. [Google Scholar] [CrossRef]
- Carrasquinho, I.; Lisboa, A.; Inácio, M.L.; Gonçalves, E. Genetic variation in susceptibility to pine wilt disease of maritime pine (Pinus pinaster Aiton) half-sib families. Ann. For. Sci. 2018, 73, 45–67. [Google Scholar] [CrossRef] [Green Version]
- Kiyohara, T. Effect of temperature on the disease incidence of pine seedlings inoculated with Bursaphelenchus lignicolus. Forest Soc. Ann. Trans. Meet. Jpn. 1973, 84, 334–335. (In Japanese) [Google Scholar]
- Kazuo, S.; Tomoya, K. Influence of water stress on development of pine wilting disease caused by Bursaphelenchus lignicolus. Eur. J. For. Pathol. 1978, 8, 97–107. [Google Scholar] [CrossRef]
- Shigeru, K. Effect of light intensity on the development of pine wilt disease. Can. J. Bot. 1989, 67, 1861–1864. [Google Scholar] [CrossRef]
- Japan Meteorological Agency. 2020 Climate Statistics. Available online: http://www.data.jma.go.jp/obd/stats/etrn/index.php (accessed on 26 February 2020).
- Toda, T. Studies on the breeding for resistance to the pine wilt disease in Pinus densiflora and P. thunbergii. Boll. Tree Breed. Cent. 2004, 20, 83–217. [Google Scholar]
- Matsunaga, K.; Ohira, M.; Kuramoto, N.; Kurahara, Y.; Hoshi, H.; Yamada, H.; Koyama, T.; Miyazato, M. Evaluation of pinewood-nematode resistance in open pollinated seedlings from additionally selected Pinus thunbergii clones Kyushu. J. For. Res. 2011, 64, 84–86. [Google Scholar]
- Aikawa, T.; Kikuchi, T.; Kosaka, H. Demonstration of interbreeding between virulent and avirulent populations of Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae) by PCR-RFLP method. Appl. Entomol. Zool. 2003, 38, 565–569. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Barton, K. MuMIn: Multi-Model Inference. R Package Version 1.43.17 2020. Available online: https://cran.r-project.org/web/packages/MuMIn/index.html (accessed on 22 May 2020).
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous inference in general parametric models. Biometr. J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [Green Version]
- Therneau, M. A Package for Survival Analysis in R. R Package Version 3.2-3. 2020. Available online: https://CRAN.R-project.org/package=survival (accessed on 22 May 2020).
- Ichihara, Y.; Fukuda, K.; Suzuki, K. Early symptom development and histological changes associated with migration of Bursaphelenchus xylophilus in seedling tissues of Pinus thunbergii. Plant Dis. 2000, 84, 675–680. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, R.; Matsunaga, K.; Watanabe, A. Influence of temperature on pine wilt disease progression in Pinus thunbergii seedlings. Eur. J. Plant Pathol. 2020, 156, 581–590. [Google Scholar] [CrossRef]
- Masahiro, K. Breeding district and seed transfer zone. For. Genet. Tree Breed. 2015, 4, 12–15. (In Japanese) [Google Scholar]
- Iwaizumi, M.G.; Miyata, S.; Hirao, T.; Tamura, M.; Watanabe, A. Historical seed use and transfer affects geographic specificity in genetic diversity and structure of old planted Pinus thunbergii populations. For. Ecol. Manag. 2018, 408, 211–219. [Google Scholar] [CrossRef]
Mother | Father | No. of Seedlings, Height (Mean ± SD) | |||||||
---|---|---|---|---|---|---|---|---|---|
Clone (Abbreviation) | Rank* | Clone (Abbreviation) | Rank* | TBO | FTBC | KYBO | |||
Amakusa20 (A20) | 3/13 | Karatsu17 (K17) | 1/13 | 39 | 31.9 ± 7.2 a | 70 | 30.1 ± 4.0 b | 92 | 26.6 ± 5.4 b |
Namikata37 (N37) | 3/16 | Karatsu16 (K16) | 5/13 | 42 | 30.2 ± 7.6 ab | 69 | 32.7 ± 5.2 a | 77 | 30.9 ± 5.1 a |
Yoshida2 (Y2) | 4/16 | Tosashimizu63 (T63) | 6/16 | 39 | 29.7 ± 6.5 ab | 71 | 26.6 ± 3.9 d | 52 | 21.1 ± 3.0 c |
Tanabe54 (T54) | 10/16 | Oseto12 (O12) | 14/16 | 25 | 22.5 ± 6.0 c | 68 | 25.4 ± 4.6 e | 76 | 15.2 ± 4.3 d |
Kimotsuki24 (K24) | - | Kimotsuki29 (K29) | - | 22 | 25.8 ± 7.0 bc | 70 | 28.5 ± 5.3 c | 58 | 19.7 ± 4.0 c |
Minamatasho105 (M105) | - | Amakusa1 (A1) | - | 33 | 32.7 ± 7.5 a | 71 | 26.7 ± 5.2 d | 72 | 20.6 ± 4.5 c |
Total | 200 | 29.4 ± 7.7 | 419 | 28.3 ± 5.3 | 427 | 22.7 ± 7.0 |
Week | Spearman’s Correlation Coefficient (p-Value) | ||
---|---|---|---|
TBO vs. FTBC | TBO vs. KYBO | FTBC vs. KYBO | |
2 | 0.400 (0.419) | ||
3 | 0.789 (0.058) | 0.754 (0.103) | 0.845 (0.033) |
4 | 0.759 (0.058) | ||
5 | 0.943 (0.003) | 0.759 (0.058) | 0.698 (0.136) |
6 | 0.928 (0.017) | 0.770 (0.058) | 0.698 (0.136) |
7 | 0.812 (0.058) | 0.893 (0.017) | 0.698 (0.136) |
8 | 0.698 (0.136) | ||
9 | 0.754 (0.103) | 0.955 (0.003) | 0.698 (0.136) |
10 | 0.812 (0.058) | 0.893 (0.017) | 0.698 (0.136) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsunaga, K.; Iki, T.; Hirao, T.; Ohira, M.; Yamanobe, T.; Iwaizumi, M.G.; Miura, M.; Isoda, K.; Kurita, M.; Takahashi, M.; et al. Do Seedlings Derived from Pinewood Nematode-Resistant Pinus thunbergii Parl. Clones Selected in Southwestern Region Perform Well in Northern Regions in Japan? Inferences from Nursery Inoculation Tests. Forests 2020, 11, 955. https://doi.org/10.3390/f11090955
Matsunaga K, Iki T, Hirao T, Ohira M, Yamanobe T, Iwaizumi MG, Miura M, Isoda K, Kurita M, Takahashi M, et al. Do Seedlings Derived from Pinewood Nematode-Resistant Pinus thunbergii Parl. Clones Selected in Southwestern Region Perform Well in Northern Regions in Japan? Inferences from Nursery Inoculation Tests. Forests. 2020; 11(9):955. https://doi.org/10.3390/f11090955
Chicago/Turabian StyleMatsunaga, Koji, Taiichi Iki, Tomonori Hirao, Mineko Ohira, Taro Yamanobe, Masakazu G. Iwaizumi, Masahiro Miura, Keiya Isoda, Manabu Kurita, Makoto Takahashi, and et al. 2020. "Do Seedlings Derived from Pinewood Nematode-Resistant Pinus thunbergii Parl. Clones Selected in Southwestern Region Perform Well in Northern Regions in Japan? Inferences from Nursery Inoculation Tests" Forests 11, no. 9: 955. https://doi.org/10.3390/f11090955
APA StyleMatsunaga, K., Iki, T., Hirao, T., Ohira, M., Yamanobe, T., Iwaizumi, M. G., Miura, M., Isoda, K., Kurita, M., Takahashi, M., & Watanabe, A. (2020). Do Seedlings Derived from Pinewood Nematode-Resistant Pinus thunbergii Parl. Clones Selected in Southwestern Region Perform Well in Northern Regions in Japan? Inferences from Nursery Inoculation Tests. Forests, 11(9), 955. https://doi.org/10.3390/f11090955