# Wind Loading on Scaled Down Fractal Tree Models of Major Urban Tree Species in Singapore

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Tree Models

#### 2.1.1. Development of the Fractal Tree Models

#### 2.1.2. Development of the Tree Crown Models

#### 2.2. Wind Tunnel Tests

#### 2.2.1. Wake Profile Measurement

#### 2.2.2. Bulk Drag Measurement

- ${A}_{ref}$ = Reference area;
- ${C}_{D}$ = Bulk drag coefficient;
- $D$ = Bulk drag measurement in wind tunnel;
- ${U}_{ref}$ = Reference wind speed;
- $\rho $ = Air density.

#### 2.3. Numerical Simulations

#### 2.3.1. Solver and Numerical Models

- $\mathrm{FSAD}$ = Frontal silhouette area density, frontal silhouette area divided by tree crown volume;
- ${S}_{{u}_{i}}$ = Momentum sink;
- ${C}_{d}$ = Drag coefficient;
- $U$ = Velocity magnitude = $\sqrt{{u}_{i}{u}_{i}}$ (using the Einstein summation convention);
- ${u}_{i}$ = Velocity component.

#### 2.3.2. Grid and Boundary Conditions

^{−4}s. The residual convergence criteria used in this study was 10

^{−6}. It measures the iterative solution’s convergence and directly quantifies the error in the solution of the system of equations. The simulations were initialized until the velocity and pressure field data were statistically stable. In the current work, statistical stability is reached when the difference in a time-averaged quantity is less than 0.1% when the averaging period is halved. In this study, the mean drag and velocity profiles at 1H and 2H are examined to ensure the solutions are statistically stable.

#### 2.3.3. Tree Modelling

- ${A}_{total}$ = Total frontal optical silhouette area;
- ${A}_{fs}$ = Frontal optical silhouette area;
- ${C}_{d}$ = Local drag coefficient;
- $D$ = Drag force measurement in wind tunnel;
- $N$ = Total number of discretized elements;
- ${V}_{e}$ = Volume of element.

^{3}, 10

^{3}, and 20

^{3}elements, namely 5, 10, and 20 elements in the directions of height, width, and depth respectively. This resulted in 125, 1000, and 8000 total elements for each respective resolution. The 9th and 20th slices for K. senegalensis tree model are presented in Figure 7. In the 9th slice, the branches show up near to the trunk of the tree model. In the final slices, the tree crown branches no longer exist at the outermost point of the tree crown. The frontal silhouette area of each slice is presented in black. The silhouette area is the product of the number of black pixels and the area represented by each pixel. The summation of frontal silhouette area in all slices is the total frontal silhouette area; which was used as the reference area in the calculation of the local drag coefficient. The resultant local ${C}_{d}\xb7\mathrm{FSAD}$ is presented in Figure 7d. The trunk has the greatest local value. The streamwise averaged and longitudinal averaged coefficient of K. senegalensis at different resolutions are plotted in Figure 8. In the tree model volume, the center of the crown has the largest values. Similar plots for other tree models are presented in Figure A7 in Appendix B.

## 3. Results and Discussion

#### 3.1. Velocity Profile

^{3}increased by 2.5 times compared to Δ = 10

^{3}. As seen in the figure, the results at Δ = 10

^{3}and Δ = 20

^{3}are very close. We hence chose to simulate most of the cases at a resolution of Δ = 10

^{3}, except for P. pterocarpum and S. saman, which were simulated at Δ = 20

^{3}due to the significantly wider crowns.

#### 3.2. Drag Force

#### 3.3. Bulk Drag Coefficients

- $\alpha $ = Aerodynamic porosity;
- $\beta $ = Frontal optical porosity.

## 4. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Appendix A

**Figure A1.**H. odorata fractal tree model: (

**a**) trunk and branches; (

**b**) tree crown volume; (

**c**) final model (frontal view at 0° rotation).

**Figure A2.**S. saman fractal tree model: (

**a**) trunk and branches; (

**b**) tree crown volume; (

**c**) final model (frontal view at 0° rotation).

**Figure A3.**S. grande fractal tree model: (

**a**) trunk and branches; (

**b**) tree crown volume; (

**c**) final model (frontal view at 0° rotation).

**Figure A4.**S. macrophylla fractal tree model: (

**a**) trunk and branches; (

**b**) tree crown volume; (

**c**) final model (frontal view at 0° rotation).

**Figure A5.**T. rosea fractal tree model: (

**a**) trunk and branches; (

**b**) tree crown volume; (

**c**) final model (frontal view at 0° rotation).

**Figure A6.**P. pterocarpum fractal tree model: (

**a**) trunk and branches; (

**b**) tree crown volume; (

**c**) final model (frontal view at 0° rotation).

## Appendix B

**Figure A7.**Streamwise averaged ${C}_{d}\xb7\mathrm{FSAD}$ for 0° rotation angle: (

**a**) H. odorata (Δ = 10

^{3}); (

**b**) S. saman (Δ = 20

^{3}); (

**c**) S. grande (Δ = 10

^{3}); (

**d**) S. macrophylla (Δ = 10

^{3}); (

**e**) T. rosea (Δ = 10

^{3}); (

**f**) P. pterocarpum (Δ = 20

^{3}).

## Appendix C

**Figure A8.**Wake contour at 1H downstream for 0° rotation angle: (

**a**) H. odorata; (

**b**) S. saman; (

**c**) S. grande; (

**d**) S. macrophylla; (

**e**) T. rosea; (

**f**) P. pterocarpum.

## References

- Thom, A.S. Momentum absorption by vegetation. Q. J. R. Meteorol. Soc.
**1971**, 97, 414–428. [Google Scholar] [CrossRef] - Wilson, N.R.; Shaw, R.H. A higher order closure model for canopy flow. J. Appl. Meteorol.
**1977**, 16, 1197–1205. [Google Scholar] [CrossRef][Green Version] - Wilson, J.D. Numerical studies of flow through a windbreak. J. Wind. Eng. Ind. Aerodyn.
**1985**, 21, 119–154. [Google Scholar] [CrossRef] - Li, Z.; Lin, J.D.; Miller, D.R. Air flow over and through a forest edge: A steady-state numerical simulation. Bound.-Layer Meteorol.
**1990**, 51, 179–197. [Google Scholar] [CrossRef] - Brunet, Y.; Finnigan, J.J.; Raupach, M.R. A wind tunnel study of air flow in waving wheat: Single-point velocity statistics. Bound.-Layer Meteorol.
**1994**, 70, 95–132. [Google Scholar] [CrossRef] - Liu, J.; Chen, J.M.; Black, T.A.; Novak, M.D. E-modelling of turbulent air flow downwind of a model forest edge. Bound.-Layer Meteorol.
**1996**, 77, 21–44. [Google Scholar] [CrossRef] - Ayotte, K.W.; Finnigan, J.J.; Raupach, M.R. A second-order closure for neutrally stratified vegetative canopy flows. Bound.-Layer Meteorol.
**1999**, 90, 189–216. [Google Scholar] [CrossRef] - Pinard, J.D.J.P.; Wilson, J.D. First- and second-order closure models for wind in a plant canopy. J. Appl. Meteorol.
**2001**, 40, 1762–1768. [Google Scholar] [CrossRef] - Sanz, C. A note on k-modelling of vegetation canopy air-flows. Bound.-Layer Meteorol.
**2003**, 108, 191–197. [Google Scholar] [CrossRef] - Endalew, A.M.; Hertog, M.; Gebrehiwot, M.G.; Baelmans, M.; Ramon, H.; Nicolaï, B.; Verboven, P. Modelling airflow within model plant canopies using an integrated approach. Comput. Elec tron. Agric.
**2009**, 66, 9–24. [Google Scholar] [CrossRef] - Dellwik, E.; Laan, M.V.D.; Angelou, N.; Mann, J.; Sogachev, A. Observed and modeled near-wake flow behind a solitary tree. Agric. For. Meteorol.
**2019**, 265, 78–87. [Google Scholar] [CrossRef] - Poh, H.J.; Chan, W.L.; Wise, D.J.; Lim, C.W.; Khoo, B.C.; Gobeawan, L.; Ge, Z.; Eng, Y.; Peng, J.X.; Raghavan, V.S.G.; et al. Wind load prediction on single tree with integrated approach of L-system fractal model, wind tunnel and tree aerodynamic simulation. AIP Adv.
**2020**, 10, 075202. [Google Scholar] [CrossRef] - Kanda, M.; Hino, M. Organized structures in developing turbulent flow within and above a plant canopy, using a Large Eddy Simulation. Bound.-Layer Meteorol.
**1994**, 68, 237–257. [Google Scholar] [CrossRef] - Shaw, R.H.; Schumann, U. Large-eddy simulation of turbulent flow above and within a forest. Bound. Layer Meteorol.
**1992**, 61, 47–64. [Google Scholar] [CrossRef][Green Version] - Vasaturo, R.; Kalkman, I.; Blocken, B.; Wesemael, P.V. Large eddy simulation of the neutral atmospheric boundary layer: Performance evaluation of three inflow methods for terrains with different roughness. J. Wind. Eng. Ind. Aerodyn.
**2018**, 173, 241–261. [Google Scholar] [CrossRef] - Li, Q.; Wang, Z.H. Large-eddy simulation of the impact of urban trees on momentum and heat fluxes. Agric. For. Meteorol.
**2018**, 255, 44–56. [Google Scholar] [CrossRef] - Mayhead, G. Some drag coefficients for British forest trees derived from wind tunnel studies. Agric. Meteorol.
**1973**, 12, 123–130. [Google Scholar] [CrossRef] - Rudnicki, M.; Mitchell, S.J.; Novak, M.D. Wind tunnel measurements of crown streamlining and drag relationships for three conifer species. Can. J. For. Res.
**2004**, 34, 666–676. [Google Scholar] [CrossRef] - Vollsinger, S.; Mitchell, S.J.; Byrne, K.E.; Novak, M.D.; Rudnicki, M. Wind tunnel measurements of crown streamlining and drag relationships for several hardwood species. Can. J. For. Res.
**2005**, 35, 1238–1249. [Google Scholar] [CrossRef] - Gromke, C.; Ruck, B. Aerodynamic modelling of trees for small-scale wind tunnel studies. Forestry
**2008**, 81, 243–258. [Google Scholar] [CrossRef][Green Version] - Cao, J.; Tamura, Y.; Yoshida, A. Wind tunnel study on aerodynamic characteristics of shrubby specimens of three tree species. Urban. For. Urban. Green.
**2012**, 11, 465–476. [Google Scholar] [CrossRef] - Manickathan, L.; Defraeye, T.; Allegrini, J.; Derome, D.; Carmeliet, J. Comparative study of flow field and drag coefficient of model and small natural trees in a wind tunnel. Urban. For. Urban. Green.
**2018**, 35, 230–239. [Google Scholar] [CrossRef] - Bai, K.; Meneveau, C.; Katz, J. Experimental study of spectral energy fluxes in turbulence generated by a fractal, tree-like object. Phys. Fluids
**2013**, 25, 110810. [Google Scholar] [CrossRef] - Bai, K.; Katz, J.; Meneveau, C. Turbulent flow structure inside a canopy with complex multi-scale elements. Bound.-Layer Meteorol.
**2015**, 155, 435–457. [Google Scholar] [CrossRef] - Chan, W.L.; Cui, Y.; Jadhav, S.S.; Khoo, B.C.; Lee, H.P.; Lim, C.W.C.; Gobeawan, L.; Wise, D.J.; Ge, Z.; Poh, H.J.; et al. Experimental study of wind load on tree using scaled fractal tree model. Int. J. Mod. Phys. B
**2020**, 2040087. [Google Scholar] [CrossRef] - Lindenmayer, A. Mathematical models for cellular interactions in development I. Filaments with one-sided inputs. J. Theor. Biol.
**1968**, 18, 280–299. [Google Scholar] [CrossRef] - Prusinkiewicz, P.; Lindenmayer, A. The Algorithmic Beauty of Plants, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1990. [Google Scholar] [CrossRef][Green Version]
- Gobeawan, L.; Wise, D.; Alex Thiam Koon, Y.; Wong, S.; Lim, C.; Lin, E.; Su, Y. Convenient tree species modeling for virtual cities. In Lecture Notes in Computer Science; Gavrilova, M., Chang, J., Thalmann, N., Hitzer, E., Ishikawa, H., Eds.; Springer: Cham, Switzerland, 2019; Volume 11542, pp. 304–315. [Google Scholar] [CrossRef]
- Nobis, M.; Hunziker, U. Automatic thresholding for hemispherical canopy-photographs based on edge detection. Agric. For. Meteorol.
**2005**, 128, 243–250. [Google Scholar] [CrossRef] - Korhonen, L.; Heikkinen, J. Automated analysis of in situ canopy images for the estimation of forest canopy cover. For. Sci.
**2009**, 55, 323–334. [Google Scholar] [CrossRef] - DaVis. Software for Intelligent Imaging. 2016. Available online: https://www.lavision.de/en/download.php?id=3 (accessed on 12 July 2020).
- Weller, H.G.; Tabor, G.; Jasak, H.; Fureby, C. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys.
**1998**, 12, 620. [Google Scholar] [CrossRef] - Nicoud, F.; Ducros, F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust.
**1999**, 62, 183–200. [Google Scholar] [CrossRef] - Selle, L. Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes. Combust. Flame
**2004**, 137, 489–505. [Google Scholar] [CrossRef] - Roux, S.; Lartigue, G.; Poinsot, T.; Meier, U.; Bérat, C. Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis, and large eddy simulations. Combust. Flame
**2005**, 141, 40–54. [Google Scholar] [CrossRef][Green Version] - Menter, F.R.; Egorov, Y. The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: Theory and model description. Flow Turbul. Combust.
**2010**, 85, 113–138. [Google Scholar] [CrossRef] - Li, Y.; Rahardjo, H.; Irvine, K.N.; Law, A.W.K. CFD analyses of the wind drags on Khaya Senegalensis and Eugenia Grandis. Urban. For. Urban. Green.
**2018**, 34, 29–43. [Google Scholar] [CrossRef] - Hagen, L.J.; Skidmore, E.L. Windbreak drag as influenced by porosity. Trans. ASAE
**1971**, 14, 464–465. [Google Scholar] [CrossRef] - Guan, D.; Zhang, Y.; Zhu, T. A wind-tunnel study of windbreak drag. Agric. For. Meteorol.
**2003**, 118, 75–84. [Google Scholar] [CrossRef] - Dong, Z.; Luo, W.; Qian, G.; Wang, H. A wind tunnel simulation of the mean velocity fields behind upright porous fences. Agric. For. Meteorol.
**2007**, 146, 82–93. [Google Scholar] [CrossRef] - Dong, Z.; Luo, W.; Qian, G.; Lu, P.; Wang, H. A wind tunnel simulation of the turbulence fields behind upright porous wind fences. J. Arid. Environ.
**2010**, 74, 193–207. [Google Scholar] [CrossRef] - Schindler, D.; Schönborn, J.; Fugmann, H.; Mayer, H. Responses of an individual deciduous broadleaved tree to wind excitation. Agric. For. Meteorol.
**2013**, 177, 69–82. [Google Scholar] [CrossRef]

**Figure 1.**Fabricated tree models: (

**a**) Khaya senegalensis; (

**b**) Hopea odorata; (

**c**) Samanea saman; (

**d**) Swietenia macrophylla; (

**e**) Syzygium grande; (

**f**) Tabebuia rosea; (

**g**) Peltophorum pterocarpum. K. senegalensis, and H. odorata were painted black to reduce laser reflections in particle image velocimetry (PIV) measurements.

**Figure 2.**K. senegalensis fractal tree model: (

**a**) trunk and branches; (

**b**) tree crown volume; (

**c**) final model (frontal view at 0° rotation).

**Figure 3.**K. senegalensis: (

**a**) photo of real tree; (

**b**) binary image; (

**c**) image with defined crown area.

**Figure 7.**(

**a**) K. senegalensis tree model resolution Δ = 20

^{3}; (

**b**) the 9th slice; (

**c**) the 20th slice; (

**d**) resultant local ${C}_{d}\xb7\mathrm{FSAD}$.

**Figure 8.**Averaged ${C}_{d}\xb7\mathrm{FSAD}$ of K. senegalensis at 0° rotation $\left(\frac{\int \text{}{C}_{d}\xb7\mathrm{FSAD}dy}{{\mathsf{\Delta}}^{\frac{1}{3}}}\right)$: averaged along the streamwise direction (

**a**) Δ = 5

^{3}; (

**b**) Δ = 10

^{3}; (

**c**) Δ = 20

^{3}; (

**d**) further averaged along the x-direction $\left(\frac{\iint {C}_{d}\xb7\mathrm{FSAD}dydx}{{\mathsf{\Delta}}^{\frac{2}{3}}}\right)$.

**Figure 9.**Normalized average horizontal velocity contour (${u}_{y}/{U}_{\mathrm{ref}}$) of K. senegalensis at ${U}_{\mathrm{ref}}$ = 5 m/s and 0° rotation as measured from the wind tunnel experiment.

**Figure 10.**Simulated wake contours $({u}_{y}/{U}_{\mathrm{ref}})$ behind the tree model at (

**a**) Y = 0H; (

**b**) Y = 1H; (

**c**) Y = 2H.

**Figure 11.**Average horizontal velocity profile at 1H upstream (

**left**), 1H downstream (

**middle**), and 2H downstream (

**right**) of K. senegalensis 0° rotation, 15 m/s upstream wind speed.

**Figure 13.**Average horizontal velocity profile at 1H upstream (

**left**), 1H downstream (

**middle**), and 2H downstream (

**right**): (

**a**) K. senegalensis 0° rotation; (

**b**) K. senegalensis 45° rotation; (

**c**) K. senegalensis 90° rotation; (

**d**) H. odorata 0° rotation; (

**e**) H. odorata 45° rotation; (

**f**) H. odorata 90° rotation.

**Figure 14.**Bulk drag coefficient against frontal optical porosity of the tree models. Data of the specified flexible models/trees are data extracted from Manickathan et al. [22]. The reference area is the frontal crown area.

Tree Species | Sample Size | Optical Porosity | |
---|---|---|---|

Average | Standard Deviation | ||

K. senegalensis | 5 | 0.1237 | 0.0711 |

H. odorata | 5 | 0.1005 | 0.0732 |

S. saman | 7 | 0.1864 | 0.0743 |

S. macrophylla | 11 | 0.1424 | 0.0506 |

S. grande | 7 | 0.1157 | 0.0573 |

T. rosea | 12 | 0.1172 | 0.0421 |

P. pterocarpum | 7 | 0.1583 | 0.0499 |

K. senegalensis at 0° Rotation | ||||
---|---|---|---|---|

Experiment | Simulations | |||

Δ = 5^{3} | Δ = 10^{3} | Δ = 20^{3} | ||

Drag, N | 2.040 ± 0.016 | 1.90 | 2.00 | 2.02 |

Difference, % | −6.75 | −2.03 | −0.86 |

Tree Species | Rotation Angle, ° | Drag, N | Difference, % | |
---|---|---|---|---|

Experiment | Simulations | |||

K. senegalensis | 0 | 2.040 ± 0.016 | 2.00 | −2.03 |

45 | 2.022 ± 0.007 | 2.11 | 4.18 | |

90 | 1.896 ± 0.007 | 2.00 | 5.41 | |

H. odorata | 0 | 2.402 ± 0.011 | 2.35 | −2.00 |

45 | 2.286 ± 0.016 | 2.28 | −0.08 | |

90 | 2.262 ± 0.013 | 2.27 | 0.23 | |

S. saman^{1} | 0 | 3.116 ± 0.039 | 3.13 | 0.34 |

45 | 3.080 ± 0.041 | 3.27 | 6.01 | |

90 | 2.745 ± 0.012 | 2.88 | 4.96 | |

S. macrophylla | 0 | 1.842 ± 0.025 | 1.87 | 1.43 |

45 | 1.700 ± 0.011 | 1.79 | 5.17 | |

90 | 1.526 ± 0.009 | 1.54 | 1.12 | |

S. grande | 0 | 1.749 ± 0.016 | 1.72 | −1.56 |

45 | 1.608 ± 0.013 | 1.64 | 1.77 | |

90 | 1.658 ± 0.014 | 1.72 | 3.94 | |

T. rosea | 0 | 1.969 ± 0.012 | 1.92 | −2.49 |

45 | 1.584 ± 0.017 | 1.57 | −1.14 | |

90 | 1.056 ± 0.007 | 1.04 | −1.14 | |

P. pterocarpum^{1} | 0 | 4.288 ± 0.022 | 4.65 | 8.33 |

45 | 3.814 ± 0.044 | 4.09 | 7.20 | |

90 | 3.355 ± 0.016 | 3.74 | 3.93 |

^{1}Simulated at Δ = 20

^{3}.

Tree Species | Wind Speed, m/s | ${\mathit{C}}_{\mathit{D}}$ | Tree Species | Wind Speed, m/s | ${\mathit{C}}_{\mathit{D}}$ |
---|---|---|---|---|---|

Populus trichocarpa^{1} | 5 | 0.780 | Thuja plicata^{2} | 5 | 0.886 |

10 | 0.642 | 10 | 0.696 | ||

15 | 0.574 | 15 | 0.596 | ||

Populus tremuloides^{1} | 5 | 0.817 | Hibiscus syriacus^{3} | 5 | 0.607 |

10 | 0.688 | 10 | 0.531 | ||

15 | 0.647 | 15 | 0.491 | ||

Alnus rubra^{1} | 5 | 0.738 | Thuja occidentalis^{3} | 5 | 0.856 |

10 | 0.595 | 10 | 0.791 | ||

15 | 0.551 | 15 | 0.753 | ||

Betula papyrifera^{1} | 5 | 0.765 | Ilex crenata^{3} | 5 | 0.807 |

10 | 0.660 | 10 | 0.780 | ||

15 | 0.640 | 15 | 0.765 | ||

Acer macrophyllum^{1} | 5 | 0.813 | S. grande^{4} | 1 | 1.521 |

10 | 0.635 | 2 | 0.509 | ||

15 | 0.599 | 3 | 0.319 | ||

Tsuga heterophylla^{2} | 5 | 1.117 | K. senegalensis^{4} | 1 | 1.565 |

10 | 1.030 | 2 | 0.506 | ||

15 | 0.941 | 3 | 0.390 | ||

Pinus contorta^{2} | 5 | 1.037 | |||

10 | 0.940 | ||||

15 | 0.836 |

^{1}Hardwood saplings in wind tunnel. ${C}_{D}$ calculated using wind-speed-specific frontal area [18].

^{2}Conifer saplings in wind tunnel. ${C}_{D}$ calculated using wind-speed-specific frontal area [19].

^{3}Real trees in wind tunnel. ${C}_{D}$ calculated using wind-speed-specific frontal area [21].

^{4}Real mature trees in field tests. ${C}_{D}$ calculated using still air frontal area [37].

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Chan, W.-L.; Eng, Y.; Ge, Z.; Lim, C.W.C.; Gobeawan, L.; Poh, H.J.; Wise, D.J.; Burcham, D.C.; Lee, D.; Cui, Y.; Khoo, B.C. Wind Loading on Scaled Down Fractal Tree Models of Major Urban Tree Species in Singapore. *Forests* **2020**, *11*, 803.
https://doi.org/10.3390/f11080803

**AMA Style**

Chan W-L, Eng Y, Ge Z, Lim CWC, Gobeawan L, Poh HJ, Wise DJ, Burcham DC, Lee D, Cui Y, Khoo BC. Wind Loading on Scaled Down Fractal Tree Models of Major Urban Tree Species in Singapore. *Forests*. 2020; 11(8):803.
https://doi.org/10.3390/f11080803

**Chicago/Turabian Style**

Chan, Woei-Leong, Yong Eng, Zhengwei Ge, Chi Wan Calvin Lim, Like Gobeawan, Hee Joo Poh, Daniel Joseph Wise, Daniel C. Burcham, Daryl Lee, Yongdong Cui, and Boo Cheong Khoo. 2020. "Wind Loading on Scaled Down Fractal Tree Models of Major Urban Tree Species in Singapore" *Forests* 11, no. 8: 803.
https://doi.org/10.3390/f11080803