Nutrient Status of Tree Seedlings in a Site Recovering from a Landslide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Soil Sampling
2.2. Laboratory Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Binkley, D.; Vitousek, P. Soil nutrient availability. In Plant Physiological Ecology; Pearcy, R.W., Ehleringer, J.R., Mooney, H.A., Rundel, P.W., Eds.; Springer: Dordrecht, The Netherlands, 1989; pp. 75–96. [Google Scholar]
- Marschner, P.; Rengel, Z. Nutrient Availability in Soil. In Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Academic Press: London, UK; Waltham, MA, USA, 2012; pp. 315–330. [Google Scholar]
- Shiels, A.B.; Walker, L.R.; Thompson, D.B. Organic matter inputs create variable resource patches on Puerto Rican landslides. Plant Ecol. 2006, 184, 223–236. [Google Scholar] [CrossRef]
- Walker, L.R.; Neris, L. Posthurricane seed rain dynamics in Puerto Rico. Biotropica 1993, 25, 408–418. [Google Scholar] [CrossRef]
- Adams, P.W.; Sidle, R.C. Soil conditions in three recent landslide in Southeast Alaska. For. Ecol. Mang. 1987, 18, 93–102. [Google Scholar] [CrossRef]
- Walker, L.R.; Shiels, A.B. Physical Causes and Consequences for Landslide Ecology. In Landslide Ecology; Walker, L.R., Shiels, A.B., Eds.; Cambridge University Press: Cambridge, UK, 2013; p. 1640. [Google Scholar]
- Cheng, C.; Hsiao, S.; Huang, Y.; Hung, C.; Pai, C.; Chen, C.; Menyailo, O.V. Landslide-induces chan ges of soil physicochemical properties in Xitou, Central Taiwan. Geoderma 2016, 265, 187–195. [Google Scholar] [CrossRef]
- Błońska, E.; Lasota, J.; Piaszczyk, W.; Wiecheć, M.; Klamerus-Iwan, A. The effect of landslide on soil organic carbon Stock and biochemical properties of soil. J. Soils Sediments 2018, 18, 2727–2737. [Google Scholar] [CrossRef]
- Walker, L.R.; Zarin, D.J.; Fetcher, N.; Myster, R.W.; Johnson, A.H. Ecosystem Development and Plant Succession on Landslides in the Caribbean. Biotropica 1996, 28, 566–576. [Google Scholar] [CrossRef]
- Walker, L.R.; Velázquez, E.; Shiels, A.B. Applying lessons from ecological succession to the restoration of landslides. Plant Soil 2009, 324, 157–168. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, C.; Lin, S. Mechanisms of Forest Restoration in Landslide Treatment Areas. Sustainability 2014, 6, 6766–6780. [Google Scholar] [CrossRef] [Green Version]
- Pang, C.; Ma, X.K.; Hung, T.T.; Hau, B.C. Early ecological succession on landslide trails, Hong Kong, China. Ėcoscience 2018, 25, 153–161. [Google Scholar] [CrossRef]
- Schomakers, J.; Jien, S.; Lee, T.; Huang, J.; Hseu, Z.; Lin, Z.; Lee, L.; Hein, T.; Mantler, A.; Zehetner, F. Soil and biomass carbon re-accumulation after landslide disturbances. Geomorphology 2019, 288, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Błońska, E.; Lasota, J.; Zwydak, M.; Klamerus-Iwan, A.; Gołąb, J. Restoration of forest soil and vegetation 15 years after landslides in a lower zone of mountains in temperate climates. Ecol. Eng. 2016, 97, 503–515. [Google Scholar] [CrossRef]
- Restrepo, C.; Walker, L.R.; Shiels, A.B.; Bussmann, R.; Claessens, L.; Fisch, S.; Lozano, P.; Negi, G.; Paolini, L.; Poveda, G.; et al. Landsliding and Its Multiscale Influence on Mountainscapes. BioScience 2009, 59, 685–698. [Google Scholar] [CrossRef] [Green Version]
- Błońska, E.; Lasota, J.; Gruba, P. Enzymatic activity and stabilization of organic matter in soil with different detritus inputs. J. Soil Sci. Plant Nutr. 2017, 63, 242–247. [Google Scholar]
- Lasota, J.; Błońska, E. Polycyclic aromatic hydrocarbons content in contaminated forest soils with different humus type. Water Air Soil Pollut. 2018, 229, 204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lasota, J.; Błońska, E.; Łyszczarz, S.; Tibbett, M. Forest humus type governs heavy metal accumulation in specific organic matter fractions. Water Air Soil Pollut. 2020, 231, 80. [Google Scholar] [CrossRef] [Green Version]
- Kandeler, E.; Palli, S.; Stemmer, M.; Gerzabek, M.H. Tillage changes microbial biomass and enzymeactivities in particle size fractions. Soil Biol. Biochem. 1999, 31, 1253–1264. [Google Scholar] [CrossRef]
- Tabatabai, M.A.; Dick, W.A. Enzymes in soil. In Enzymes in the Environment: Activity, Ecology and Applications; Burns, R.G., Dick, R.P., Eds.; Marcel Dekker: New York, NY, USA, 2002; pp. 567–596. [Google Scholar]
- Adetunji, A.T.; Lewu, F.B.; Mulidzi, R.; Ncube, B. The biological activities of β-glucosidase, phosphatase and urease as soil quality indicators: A review. J. Soil Sci. Plant Nutr. 2017, 17, 794–807. [Google Scholar] [CrossRef] [Green Version]
- Pająk, M.; Błońska, E.; Szostak, M.; Gąsiorek, M.; Pietrzykowski, M.; Urban, O.; Derbis, P. Restoration of Vegetation in Relation to Soil Properties of Spoil Heap Heavily Contaminated with Heavy Metals. Water Air Soil Pollut. 2018, 229, 392. [Google Scholar] [CrossRef] [Green Version]
- Kacprzyk, M.; Błońska, E.; Lasota, J. Effect of spot burning of logging residues on the properties of mountain forest soils and the occurrence of ground beetles (Coleoptera, Carabidae). J. Mt. Sci. 2019, 17, 31–41. [Google Scholar] [CrossRef]
- Gawęda, T.; Błońska, E.; Małek, S. Soil organic carbon accumulation in post-agricultural soils under the influence birch stands. Sustainability 2019, 11, 4300. [Google Scholar] [CrossRef] [Green Version]
- IUSS Working Group WRB, World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soil and Creating Legends for Soil Maps; Update 2015, World Soil Resources Reports No. 106; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2015; p. 190. [Google Scholar]
- Pritsch, K.; Raidl, S.; Marksteiner, E.; Blaschke, H.; Agerer, R.; Schloter, M.; Hartmann, A. A rapid and highly sensitive method for measuring enzyme activities in single mycorrhizal tips using 4-methylumbelliferone-labelled fluorogenic substrates in a microplate system. J. Microbiol. Methods 2004, 58, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Sanaullah, M.; Razavi, B.S.; Blagodatskaya, E.; Kuzyakov, Y. Spatial distribution and catalytic mechanisms of β-glucosidase activity at the root-soil interface. Biol. Fertil. Soils 2016, 52, 505–514. [Google Scholar] [CrossRef]
- Turner, B.L. Variation in pH Optima of Hydrolytic Enzyme Activities in Tropical Rain Forest Soils. Appl. Environ. Microbiol. 2010, 76, 6485–6493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Małek, S.; Januszek, K.; Keeton, W.; Barszcz, J.; Kroczek, M.; Błońska, E.; Wanic, T. Preliminary effects of fertilization on ecochemical soil condition in mature spruce stands experiencing dieback in the Beskid Śląski and Żywiecki Mts., Poland. Water Air Soil Pollut. 2014, 225, 1971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Błońska, E.; Małek, S.; Januszek, K.; Barszcz, J.; Wanic, T. Changes in forest soil properties and in spruce stands after dolomite, magnesite and serpentinite fertilization. Eur. J Forest Res. 2015, 134, 981–990. [Google Scholar] [CrossRef] [Green Version]
- Kreutzer, K. Effects of forest liming on soil processes. Plant Soil 1995, 168, 447–470. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Plant Physiology; Sinauer Associates, Inc.: Sunderland, MA, USA, 2002; p. 690. [Google Scholar]
- Rennenberg, H.; Dannenmann, M. Nitrogen Nutrition of Trees in Temperate Forests—The Significance of Nitrogen Availability in the Pedosphere and Atmosphere. Forests 2015, 6, 2820–2835. [Google Scholar] [CrossRef]
- Robertson, G.P.; Groffman, P.M. Nitrogen transformations. In Soil Microbiology, Ecology and Biochemistry, 4th ed.; Paul, E.A., Ed.; Academic Press: Burlington, MA, USA, 2015; pp. 421–446. [Google Scholar]
- Lemanowicz, J. Dynamics of phosphorus content and the activity of phosphatase in forest soil in the sustained nitrogen compounds emissions zone. Environ. Sci. Pollut. Res. 2018, 25, 33773–33782. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, S.; Sposito, G. On the mechanizm of specific phosphate adsorption by hydroxylated mineral surfaces: A review. Commun. Soil Sci. Plant 1985, 16, 801–821. [Google Scholar] [CrossRef]
- Giesler, R.; Petersson, T.; Högberg, P. Phosphorus Limitation in Boreal Forests: Effects of Aluminum and Iron Accumulation in the Humus Layer. Ecosystems 2002, 5, 300–314. [Google Scholar] [CrossRef]
- Kunito, T.; Hiruta, N.; Miyagishi, Y.; Sumi, H.; Moro, H. Changes in phosphorus fractions caused by increased microbial activity in forest soil in a short-term incubation study. Chem. Spec. Bioavailab. 2018, 30, 9–13. [Google Scholar] [CrossRef] [Green Version]
- Perala, D.; Alm, A.A. Reproductive Ecology of Birch: A Review. For. Ecol. Manag. 1990, 32, 1–38. [Google Scholar] [CrossRef]
- Fiedler, H.J.; Nebe, W.; Hoffmann, F. Forstliche Pflanzenernährung und Düngung; VEB Verlag Gustav Fischer: Jena, Germany, 1973; p. 481. [Google Scholar]
- Sobczak, R. Forest Nursery Production; Świat Publishing House: Warsaw, Poland, 1992; p. 192. (In Polish) [Google Scholar]
- Hagen-Thorn, A.; Varnagiryte, I.; Nihlgård, B.; Armolaitis, K. Autumn nutrient resorption and losses in four deciduous forest tree species. For. Ecol. Manag. 2006, 228, 33–39. [Google Scholar] [CrossRef]
pH H2O | pH KCl | Hh | He | C | N | C/N | Sand | Silt | Clay | |
---|---|---|---|---|---|---|---|---|---|---|
cmol (+)·kg−1 | % | % | ||||||||
Zone of depletion | 5.12 ±0.74 a | 3.87 ±0.40 a | 7.26 ±3.62 a | 6.86 ±4.60 a | 0.92 ±0.20 b | 0.07 ±0.01 b | 14.20 ±2.34 a | 16.1 ±6.2 a | 69.4 ±3.7 a | 14.5 ±3.8 a |
Zone of accumulation | 4.72 ±0.88 a | 3.83 ±0.82 a | 10.30 ±3.92 a | 8.79 ±3.81 a | 1.91 ±0.49 a | 0.14 ±0.03 a | 14.08 ±1.22 a | 20.5 ±11.1 a | 67.3 ±6.8 a | 12.1 ±4.8 a |
Al | Ca | Mg | K | Na | P | Cu | Mn | Ni | Zn | |
---|---|---|---|---|---|---|---|---|---|---|
mg·kg−1 | ||||||||||
Zone of depletion | 24886.5 ±5340.5 a | 1377.3 ±899.2 a | 3706.9 ±1110.8 a | 8033.6 ±2893.6 a | 310.2 ±46.6 a | 182.4 ±65.4 b | 12.5 ±6.2 a | 568.8 ±233.1 a | 24.9 ±12.5 a | 43.0 ±11.5 a |
Zone of accumulation | 24170.9 ±7445.8 a | 1151.3 ±1195.5 a | 3414.9 ±1743.4 a | 7593.8 ±4547.4 a | 312.7 ±95.2 a | 242.5 ±40.4 a | 11.5 ±8.17 a | 705.7 ±503.5 a | 25.1 ±24.3 a | 43.4 ±14.9 a |
CB | BG | XYL | NAG | SP | PH | N-NH4 | N-NO3 | |
---|---|---|---|---|---|---|---|---|
nmol MUB·g−1d.s.·h−1 | mg·kg−1 | |||||||
Zone of depletion | 21.62 ±9.95 b | 83.11 ±51.54 b | 24.28 ±19.23 a | 56.11 ±31.20 b | 4.51 ±3.84 a | 310.76 ±141.47 b | 0.94 ±0.13 b | 12.48 ±4.19 b |
Zone of accumulation | 45.85 ±10.74 a | 169.62 ±48.65 a | 33.34 ±30.04 a | 253.98 ±72.45 a | 7.66 ±7.77 a | 686.35 ±294.69 a | 1.51 ±0.32 a | 24.33 ±3.84 a |
Zone | Species | C | N | C/N | Ca | Mg | K | Na | Al |
---|---|---|---|---|---|---|---|---|---|
% | mg·kg−1 d.m. | ||||||||
Zone of depletion | Birch | 44.43 ±4.54 a | 2.27 ±0.17 b | 19.60 ±1.53 a | 3546.2 ±718.8 a | 2159.2 ±606.4 a | 7494.1 ±968.5 a | 117.2 ±18.8 a | 1993.9 ±1703.4 a |
Fir | 46.43 ±1.45 a | 1.10 ±0.26 b | 44.58 ±11.53 a | 5992.9 ±968.8 a | 791.6 ±382.2 a | 6266.6 ±1141.2 a | 88.2 ±25.2 a | 1453.9 ±1620.0 a | |
Zone of accumulation | Birch | 43.86 ±3.88 a | 2.74 ±0.47 a | 16.25 ±1.78 b | 3171.1 ±555.5 a | 1918.3 ±358.0 a | 7755.3 ±1005.3 a | 132.1 ±32.8 a | 2122.3 ±1627.0 a |
Fir | 45.76 ±1.28 a | 1.40 ±0.24 a | 33.66 ±6.33 b | 5895.6 ±1355.0 a | 659.2 ±251.7 a | 5466.0 ±921.3 a | 70.4 ±18.3 a | 1248.2 ±777.9 a |
Zone | Species | Ca/Al | Mg/Al | Ca/Mg | P | Cu | Co | Mn | Ni | Zn |
---|---|---|---|---|---|---|---|---|---|---|
mg·kg−1 | ||||||||||
Zone of depletion | Birch | 3.56 ± 4.14 a | 2.13 ± 2.65 a | 1.72 ± 0.44 a | 2051.6 ± 515.2 a | 16.60 ± 1.53 b | 2.10 ± 1.53 a | 1668.4 ± 411.8 a | 11.26 ± 4.22 a | 120.13 ± 22.73 a |
Fir | 6.01 ± 2.26 a | 0.69 ± 0.22 a | 8.45 ± 2.29 a | 1150.0 ± 474.7 a | 16.39 ± 5.94 a | 0.83 ± 0.74 a | 1302.5 ± 519.6 a | 12.81 ± 4.93 a | 29.39 ± 8.06 a | |
Zone of accumulation | Birch | 2.73 ± 2.09 a | 1.56 ± 1.20 a | 1.68 ± 0.34 a | 1879.3 ± 288.7 a | 19.21 ± 2.90 a | 1.89 ± 1.19 a | 1786.9 ± 132.1 a | 11.64 ± 6.65 a | 137.71 ± 35.08 a |
Fir | 6.25 ± 3.31 a | 0.66 ± 0.34 a | 9.57 ± 2.79 a | 1120.8 ± 387.0 a | 12.11 ± 9.39 a | 0.60 ± 0.28 a | 1439.4 ± 650.0 a | 12.12 ± 8.10 a | 34.78 ± 6.98 a |
C | N | C/N | Ca | Mg | K | Na | Al | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | F | p | F | p | |
Zone of landslide | 0.33 | 0.568 | 15.19 | 0.000 | 8.89 | 0.006 | 0.53 | 0.471 | 1.58 | 0.218 | 0.60 | 0.445 | 0.03 | 0.855 | 0.01 | 0.941 |
Tree species | 3.29 | 0.079 | 160.64 | 0.000 | 78.40 | 0.000 | 63.74 | 0.000 | 78.32 | 0.000 | 25.48 | 0.000 | 30.81 | 0.000 | 1.90 | 0.178 |
Zone of landslide × Tree species | 0.00 | 0.964 | 0.76 | 0.389 | 2.50 | 0.124 | 0.18 | 0.671 | 0.13 | 0.717 | 2.32 | 0.138 | 3.99 | 0.054 | 0.11 | 0.747 |
Ca/Al | Mg/Al | Ca/Mg | P | Cu | Co | Mn | Ni | Zn | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | F | p | F | p | F | p | |
Zone of landslide | 0.08 | 0.784 | 0.34 | 0.566 | 0.75 | 0.394 | 0.45 | 0.507 | 0.19 | 0.670 | 0.37 | 0.548 | 0.45 | 0.508 | 0.01 | 0.940 | 2.70 | 0.111 |
Tree species | 7.81 | 0.009 | 4.96 | 0.033 | 136.39 | 0.000 | 30.61 | 0.000 | 3.52 | 0.070 | 12.36 | 0.001 | 3.51 | 0.071 | 0.25 | 0.623 | 191.76 | 0.000 |
Zone of landslide × Tree species | 0.25 | 0.620 | 0.27 | 0.608 | 0.85 | 0.363 | 0.23 | 0.637 | 3.13 | 0.087 | 0.00 | 0.987 | 0.00 | 0.962 | 0.07 | 0.794 | 0.76 | 0.390 |
Nbirch | Nfir | Pbirch | Pfir | Kbirch | Kfir | Mgbirch | Mgfir | Cabirch | Cafir | Ca/Albirch | Ca/Alfir | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
pH H2O | 0.151 | −0.504 * | 0.512 * | 0.622 * | 0.408 | 0.400 | 0.702 * | 0.637 * | 0.661 * | 0.598 * | 0.567 * | −0.118 |
pH KCl | 0.362 | −0.315 | 0.439 | 0.646 * | 0.279 | 0.327 | 0.504 * | 0.463 | 0.428 | 0.640 * | 0.430 | 0.070 |
Hh | −0.000 | 0.584 * | −0.483 * | −0.550 * | −0.336 | −0.398 | −0.766 * | −0.653 * | −0.678 * | −0.556 * | −0.476 | 0.265 |
He | −0.053 | 0.523 * | −0.462 | −0.566 * | −0.394 | −0.345 | −0.775 * | −0.659 * | −0.682 * | −0.544 * | −0.502 * | 0.240 |
C | 0.417 | 0.498 * | −0.358 | −0.301 | −0.050 | −0.458 | −0.457 | −0.341 | −0.401 | −0.287 | −0.249 | 0.200 |
N | 0.445 | 0.571 * | −0.313 | −0.323 | −0.046 | −0.457 | −0.494 * | −0.377 | −0.443 | −0.307 | −0.215 | 0.245 |
N-NH4 | 0.338 | 0.521 * | −0.375 | −0.320 | −0.141 | −0.400 | −0.505 * | −0.320 | −0.482 | −0.330 | −0.249 | 0.272 |
N-NO3 | 0.700 * | 0.574 * | −0.054 | −0.182 | 0.200 | −0.417 | −0.450 | −0.354 | −0.192 | −0.189 | 0.053 | 0.159 |
silt | −0.010 | −0.465 | 0.392 | 0.238 | 0.510* | 0.367 | 0.494* | 0.343 | 0.486 * | 0.192 | 0.421 | −0.147 |
clay | −0.066 | −0.127 | 0.334 | 0.421 | 0.152 | 0.433 | 0.271 | 0.469 | 0.352 | 0.365 | 0.140 | −0.359 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lasota, J.; Kraj, W.; Honkowicz, B.; Staszel, K.; Błońska, E. Nutrient Status of Tree Seedlings in a Site Recovering from a Landslide. Forests 2020, 11, 709. https://doi.org/10.3390/f11060709
Lasota J, Kraj W, Honkowicz B, Staszel K, Błońska E. Nutrient Status of Tree Seedlings in a Site Recovering from a Landslide. Forests. 2020; 11(6):709. https://doi.org/10.3390/f11060709
Chicago/Turabian StyleLasota, Jarosław, Wojciech Kraj, Bożena Honkowicz, Karolina Staszel, and Ewa Błońska. 2020. "Nutrient Status of Tree Seedlings in a Site Recovering from a Landslide" Forests 11, no. 6: 709. https://doi.org/10.3390/f11060709
APA StyleLasota, J., Kraj, W., Honkowicz, B., Staszel, K., & Błońska, E. (2020). Nutrient Status of Tree Seedlings in a Site Recovering from a Landslide. Forests, 11(6), 709. https://doi.org/10.3390/f11060709