Naturalness Assessment of Forest Management Scenarios in Abies balsamea–Betula papyrifera Forests
Abstract
:1. Introduction
- Determine the naturalness of different mix of forest management practices to evaluate the bi-directional capacity of the model to assess both ecosystem degradation and restoration;
- Identify forest management strategies prone to improving ecosystem quality based on a naturalness evaluation;
- Analyze the model’s capacity to summarize the effect of different practices along a single alteration gradient.
2. Materials and Methods
2.1. Test Area
2.2. Naturalness Assessment
2.3. Description of Scenarios
2.4. Hypotheses
2.5. Sensitivity Analysis
3. Results
- ass_1:
- initial scenarios assessment with enhanced level of protection (ep);
- ass_2:
- scenarios with enhanced level of protection using registry’s reference data set;
- ass_3:
- scenarios with the initial level of protection (initial protection: ip);
- ass_4:
- scenarios with PL50 and enhanced level of protection;
- ass_5:
- scenarios with PL50 and initial level of protection;
- ass_6:
- scenarios with PL50 and enhanced level of protection and 90% of spruce at maturity in plantations;
- ass_7:
- scenarios with enhanced protection and alternate set of NDP factors.
3.1. Naturalness Index for the Current State of the Forest of the Experimental Forest
3.2. Naturalness of Different Forest Management Scenarios
3.3. Sensitivity Analysis
3.3.1. Test of a Variation of 10% of the Parameter Values
3.3.2. Test of an Alternative Reference Data Set
3.3.3. Naturalness of the Forest Management Scenarios Tested Using Various Hypothesis
Scenarios with Initial Protection
Scenarios with Enhanced Protection and Plantation with 50 Years Rotation
Scenarios with Initial Protection and Plantation with 50 Years Rotation
Plantation with Enhanced Protection and 50 Years Rotation and 90% of Merchantable Volume in Spruce at Maturity
Scenarios with Enhanced Protection and a Variant of NDP Factors
4. Discussion
4.1. Naturalness Assessment of FM-A And FM-B’s Current Forest
4.2. Naturalness Evolution through Time
4.3. Scenario Comparison
4.4. Recommandations for Model’s Improvement
- Historical data should be accurate to avoid bias;
- Historical data should include an estimation of the natural variability to improve the setting of the pni’s evaluation curves;
- Historical data acquisition must match the method used for current evaluation. In the case of methodology improvements—as seen with internal structure evaluation subject to recent technical evolution, or with the new method developed in Quebec’s forest inventory for species group identification by 10% of basal area, which would have been appropriate to evaluate the current importance of the white spruce in the stands—the historical data should be accordingly reassessed if possible;
- Improve NDP factors evaluation as these are used to evaluate model’s most sensitive variables;
- Improve the hypotheses used for projection of scenario components on a sustainable basis, considering that the model is applied over the whole landscape (not only on the most important ecological types), as some marginal types in terms of area, such as wetlands, could be important for biodiversity;
- Improve the hypotheses used for natural evolution considering that some condition indicators will probably not recover their initial status as a result of past management practices (e.g., some protected area are created in areas which have been subject to harvest in the past) and climate change;
- Explore the inclusion of variables characterizing landscape configuration and connectivity [43] in the landscape context.
5. Conclusions
6. Acronyms
ANT | Anthropization |
ANT_NDP | Naturalness degradation potential from anthropization |
CF | Close forests |
CF_pni | partial naturalness for close forests |
CL | careful clearcut logging |
Compo | composition |
Compo_PNI | Partial naturalness for composition |
Context | landscape context |
Context_PNI | Partial naturalness for landscape context |
CS | Companion species |
CS_NDP | Naturalness degradation potential related to companion species |
CT | cover type |
CT_pni | partial naturalness index for cover type |
DW | dead wood |
DW_NDP | Naturalness degradation potential related to dead wood |
DW_PNI | Partial naturalness index for dead wood |
ep | enhanced protection |
exo | exotic species |
exo_NDP | Naturalness degradation potential from exotic species |
for_area | forest or forested area |
HS | horizontal structure |
HS_NDP | Naturalness degradation potential related to horizontal structure |
ip | initial level of protection |
IR | irregular stands |
IR_pni | Partial naturalness index for irregular stands |
ISC | irregular shelterwood cutting |
LCA | Life cycle analysis |
LS | Late successional characteristic species (i.e., Picea spp.) |
LS_pni | Partial naturalness index for late sucessionnal characteristic species |
NDP | Naturalness degradation potential |
NE | natural evolution |
NI | Naturalness Index |
OF | Old forests |
OF_pni | Partial naturalness index for old forests |
PL | Plantation |
PNI | Partial naturalness index for a given characteristic of naturalness (characteristic_PNI) |
Pni | Partial naturalness index for a given condition indicator (condition_pni) |
Prod_area | productive area |
RP | regeneration process |
RP_NDP | Naturalness degradation potential related to regeneration process |
Struc | Structure |
Struc_PNI | Partial naturalness index for structure |
W_CC | Clearcuts on wetlands |
W_CC_NDP | Naturalness degradation potential related to clearcuts on wetlands |
Wm | Modified wetlands |
Wm_NDP | Naturalness degradation potential related to modified wetlands |
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Model Adaptation to Abies balsamea–Betula papyrifera Domain
Appendix A.1. Test Area Description and Localization
Appendix A.2. Model Adaptation to Balsam Fir-White Birch Domain
Appendix A.3. Determining Condition Indicator Curves
Territory | Cover Type (CT: % Forest Area of Coniferous Cover Type) | Late Successional Species (LS: % Merchantable Volume in Picea spp.) | Closed Forests (CF: % Terrestrial Area of Forests > 40 Years Old) | Old Forests (OF: % Forest Area of Forests > 80 Years Old) | Irregular Stands (IR: % Forest Area of Irregular Stands) |
---|---|---|---|---|---|
FM-A—historical-s | 79.3 1 | 32 2 | 79.9 1 | 23.7 1 | 17.8 1 |
FM-A—historical-r | 63.2 | 32 2 | 85.5 | 71.0 | 51.1 |
FM-A—current | 79.1 3 | 16 4 | 39.1 3 | 4.9 3 | 14.2 3 |
FM-B—historical-s | 85.7 5 | 39 2 | 76.19 1 | 57.9 6 | 40 7 |
FM-B—historical-r | 77.8 | 39 2 | 90.5 | 81.1 | 64.4 |
FM-B—current | 81.9 3 | 16 | 27.4 3 | 16.1 3 | 18.3 3 |
Appendix A.4. Determining the Naturalness Degradation Potentials
Territory: | FM-A | FM-B | |||
---|---|---|---|---|---|
Practice | NDP Factors | % Forest_Area | NDPx | % Forest_Area | NDPx |
Plantation − thinning | 1 | 2.50% | 0.0250 | 5.58% | 0.0558 |
Plantation | 0.9 | 4.32% | 0.0388 | 3.21% | 0.0289 |
Thinning (natural), strip cutting | 0.8 | 1.45% | 0.0116 | 0.17% | 0.0014 |
Precom. thinning (natural), release | 0.75 | 9.24% | 0.0693 | 23.40% | 0.1755 |
CL50 | 0.5 | 7.01% | 0.0351 | 13.28% | 0.0664 |
CL70 | 0.3 | 48.34% | 0.1451 | 13.17% | 0.0395 |
Partial cutting | 0.2 | 5.48% | 0.0110 | 1.38% | 0.0028 |
Undisturbed or natural disturbances | 0 | 21.64% | 0.0000 | 39.80% | 0.0000 |
Current HS_NDP | 0.3359 | 0.3702 |
Territory: | FM-A | FM-B | |||
---|---|---|---|---|---|
Practice | NDP Factors | % Forest_Area | NDPx | % Forest_Area | NDPx |
Biomass harvesting | 1 | 0.00% | 0.0000 | 0 | 0.0000 |
Plantation + thinnings | 0.95 | 2.50% | 0.0237 | 5.58% | 0.0530 |
Plantation − no thinnings | 0.85 | 5.76% | 0.0490 | 3.39% | 0.0288 |
Partial cutting and precom. thinnings | 0.8 | 14.72% | 0.1178 | 24.78% | 0.1983 |
CL50 | 0.7 | 7.01% | 0.0491 | 13.28% | 0.0930 |
CL70 | 0.55 | 48.35% | 0.2660 | 13.17% | 0.0725 |
Undisturbed or natural disturbances | 0 | 21.64% | 0.0000 | 39.80% | 0.0000 |
DW_NDP | 0.5056 | 0.4454 | |||
Current DW_PNI | 0.4944 | 0.5546 |
Territory: | FM-A | FM-B | |||
---|---|---|---|---|---|
Practice | NDP Factors | % Forest_Area | NDPx | % Forest_Area | NDPx |
Exotic plantations, afforestation | 1 | 0.00% | 0.0000 | 0.00% | 0.0000 |
Plantation | 0.9 | 6.82% | 0.0613 | 8.79% | 0.0791 |
Seeding | 0.7 | 2.78% | 0.0195 | 0.00% | 0.0000 |
Precommercial thinning | 0.65 | 9.24% | 0.0601 | 23.40% | 0.1521 |
In-fill planting | 0.6 | 2.48% | 0.0149 | 0.00% | 0.0000 |
CL50 | 0.5 | 4.53% | 0.0226 | 13.28% | 0.0664 |
Commercial thinning (natural) | 0.4 | 1.45% | 0.0058 | 0.17% | 0.0007 |
CL70 | 0.35 | 45.58% | 0.1595 | 13.17% | 0.0461 |
Partial cut | 0.2 | 5.48% | 0.0110 | 1.38% | 0.0028 |
Undisturbed or natural disturbances | 0 | 21.64% | 0.0000 | 39.80% | 0.0000 |
RP_NDP | 0.3547 | 0.3472 | |||
Current RP_PNI | 0.6453 | 0.6528 |
Territory: | FM-A | FM-B | ||
---|---|---|---|---|
Item | % Area 1 | NDPx | % Area 1 | NDPx |
Companion species | 0.00% | 0.0000 | 0.00% | 0.0000 |
Exotic species | 0.00% | 0.0000 | 0.00% | 0.0000 |
Wetlands with clear cuts | 42.37% | 0.2118 | 2.66% | 0.0133 |
Anthropization | 1.72% | 0.0172 | 2.68% | 0.0268 |
References
- Côté, S.; Bélanger, L.; Beauregard, R.; Thiffault, É.; Margni, M. A Conceptual Model for Forest Naturalness Assessment and Application in Quebec’s Boreal Forest. Forests 2019, 10, 325. [Google Scholar] [CrossRef] [Green Version]
- Life Cycle Initiative. Global Guidance for Life Cycle Impact Assessment Indicators; UNEP DTIE: Paris, France, 2016; Volume 1, p. 159. [Google Scholar]
- Curran, M.; De Souza, D.M.; Anton, A.; Teixeira, R.F.M.; Michelsen, O.; Vidal-Legaz, B.; Sala, S.; Mil, I.; Canals, L. How Well Does LCA Model Land Use Impacts on Biodiversity?—A Comparison with Approaches from Ecology and Conservation. Environ. Sci. Technol. 2016, 50, 2782–2795. [Google Scholar] [CrossRef] [PubMed]
- Gaudreault, C.; Wigley, T.B.; Margni, M.; Verschuyl, J.; Vice, K.; Titus, B. Addressing Biodiversity Impacts of Land Use in Life Cycle Assessment of Forest Biomass Harvesting. Wiley Interdiscip. Rev. Energy Environ. 2016. [Google Scholar] [CrossRef]
- Souza, D.M.; Teixeira, R.F.; Ostermann, O.P. Assessing biodiversity loss due to land use with Life Cycle Assessment: Are we there yet? Glob. Chang. Biol. 2015, 21, 32–47. [Google Scholar] [CrossRef] [Green Version]
- Gossner, M.M.; Schall, P.; Ammer, C.; Ammer, U.; Engel, K.; Schubert, H.; Simon, U.; Utschick, H.; Weisser, W.W. Forest management intensity measures as alternative to stand properties for quantifying effects on biodiversity. Ecosphere 2014, 5, 1–111. [Google Scholar] [CrossRef] [Green Version]
- Gabel, V.M.; Meier, M.S.; Kopke, U.; Stolze, M. The challenges of including impacts on biodiversity in agricultural life cycle assessments. J. Environ. Manag. 2016, 181, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, A.; Brooks, T.M. Land Use Intensity-specific Global Characterization Factors to Assess Product Biodiversity Footprints. Environ. Sci. Technol. 2018, 52, 5094–5104. [Google Scholar] [CrossRef]
- Jolliet, O.; Antón, A.; Boulay, A.-M.; Cherubini, F.; Fantke, P.; Levasseur, A.; McKone, T.E.; Michelsen, O.; Milà i Canals, L.; Motoshita, M.; et al. Global guidance on environmental life cycle impact assessment indicators: Impacts of climate change, fine particulate matter formation, water consumption and land use. Int. J. Life Cycle Assess. 2018. [Google Scholar] [CrossRef] [Green Version]
- Winter, S. Forest naturalness assessment as a component of biodiversity monitoring and conservation management. Forestry 2012, 85, 293–304. [Google Scholar] [CrossRef] [Green Version]
- Hekkala, A.-M. Restoration of the Naturalness of Boreal Forests. Ph.D. Thesis, University of Oulu, Oulu, Finland, 2015. [Google Scholar]
- Kouki, J.; Hyvärinen, E.; Lappalainen, H.; Martikainen, P.; Similä, M. Landscape context affects the success of habitat restoration: Large-scale colonization patterns of saproxylic and fire-associated species in boreal forests. Divers. Distrib. 2012, 18, 348–355. [Google Scholar] [CrossRef]
- Brentrup, F.; Küsters, J.; Lammel, J.; Kuhlmann, H. Life Cycle Impact Assessment of Land Use Based on the Hemeroby Concept. Int. J. Life Cycle Assess. 2002, 7, 339–348. [Google Scholar] [CrossRef]
- Michelsen, O. Assessment of land use impact on biodiversity. Int. J. Life Cycle Assess. 2008, 13, 22–31. [Google Scholar] [CrossRef]
- Fehrenbach, H.; Grahl, B.; Giegrich, J.; Busch, M. Hemeroby as an impact category indicator for the integration of land use into life cycle (impact) assessment. Int. J. Life Cycle Assess. 2015, 20, 1511–1527. [Google Scholar] [CrossRef]
- Rossi, V.; Lehesvirta, T.; Schenker, U.; Lundquist, L.; Koski, O.; Taylor, R.; Humbert, S. Capturing the potential biodiversity effects of forestry practices in life cycle assessment. Int. J. Life Cycle Assess. 2017. [Google Scholar] [CrossRef]
- Farmery, A.K.; Jennings, S.; Gardner, C.; Watson, R.A.; Green, B.S. Naturalness as a basis for incorporating marine biodiversity into life cycle assessment of seafood. Int. J. Life Cycle Assess. 2017, 22, 1571–1587. [Google Scholar] [CrossRef]
- Leblanc, M.; Bélanger, L. La Sapinière Vierge de la Forêt Montmorency et de sa Région: Une Forêt Boréale Distincte; Gouvernement du Québec: Québec, QC, Cannada, 2000; p. 91.
- Boucher, Y.; Grondin, P. Impact of logging and natural stand-replacing disturbances on high-elevation boreal landscape dynamics (1950–2005) in eastern Canada. For. Ecol. Manag. 2012, 263, 229–239. [Google Scholar] [CrossRef]
- Bouliane, J.; Bélanger, L.; Sansregret, H.; Pineault, P. Plan D’aménagement Forestier Intégré Tactique 2014–2019; Forêt Montmorency. Faculté de foresterie, de géographie et de géomatique, Université Lava; Presses de l’Université Laval: Quebec, QC, Canada, 2014; p. 200. [Google Scholar]
- Boucher, Y.; Bouchard, M.; Grondin, P.; Tardif, P. Le Registre des États de Référence: Intégration des Connaissances sur la Structure, la Composition et la Dynamique des Paysages Forestiers Naturels du Québec Méridional; Mémoire de recherche forestière No 161; Gouvernement du Québec, Ministère des Ressources Naturelles et de la Faune, Direction de la Recherche Forestière: Québec, QC, Canada, 2011; p. 21.
- MFFP. La Tordeuse des Bourgeons de L’épinette. Available online: https://mffp.gouv.qc.ca/forets/fimaq/insectes/fimaq-insectes-insectes-tordeuse.jsp (accessed on 24 October 2019).
- Côté, S.; Bélanger, L. Variations de la régénération préétablie dans les sapinièeres boréales en fonction de leurs caractéristiques écologiques. J. Can. De La Rech. For. 1991, 21, 1779–1795. [Google Scholar] [CrossRef]
- Thiffault, E. Data from Montmorency Forest; Université Laval: Québec, QC, Canada, 2019. [Google Scholar]
- Grondin, P.; Cimon, A. Les Enjeux de Biodiversité Relatifs à la Composition Forestière; Ministère des Ressources Naturelles, de la Faune et des Parcs: Québec, QC, Canada, 2003; p. 200.
- Harvey, B.; Brais, S. Effects of mechanized careful logging on natural regeneration and vegetation competition in the southeastern Canadian boreal forest. Can. J. For. Res. 2002, 32, 653–666. [Google Scholar] [CrossRef]
- Déry, S.; Bélanger, L.; Marchand, S.; Côté, S. Succession après épidémie de la tordeuse des bourgeons de l’épinette (Choristoneura fumiferana) dans des sapinières boréales pluviales de seconde venue. Can. J. For. Res. 2000, 30, 801–816. [Google Scholar] [CrossRef]
- Raymond, P.; Bédard, S.; Roy, V.; Larouche, C.; Tremblay, S. The Irregular Shelterwood System: Review, Classification, and Potential Application to Forests Affected by Partial Disturbances. J. For. 2009, 107, 405–413. [Google Scholar] [CrossRef]
- Bouchard, C.; Frédéric, C.; Langlais, D.; Leguerrier, J.; Lessard, F.; Venne, F. Réserve aquatique de la Forêt Montmorency; Rapport remis au Comité scientifique et d’aménagement de la Forêt Montmorency; Université Laval: Québec, QC, Canada, 2017. [Google Scholar]
- Paradis, L.; Thiffault, E.; Achim, A. Comparison of carbon balance and climate change mitigation potential of forest management strategies in the boreal forest of Quebec (Canada). For. Int. J. For. Res. 2019, 92, 264–277. [Google Scholar] [CrossRef]
- Senez-Gagnon, F.; Thiffault, E.; Paré, D.; Achim, A.; Bergeron, Y. Dynamics of detrital carbon pools following harvesting of a humid eastern Canadian balsam fir boreal forest. For. Ecol. Manag. 2018, 430, 33–42. [Google Scholar] [CrossRef]
- Raymond, P.; Ruel, J.-C.; Pineau, M. Effet d’une coupe d’ensemencement et du milieu de germination sur la régénération des sapinières boréales riches de seconde venue du Québec. For. Chron. 2000, 76, 643–652. [Google Scholar] [CrossRef] [Green Version]
- Urli, M.; Thiffault, N.; Barrette, M.; Bélanger, L.; Leduc, A.; Chalifour, D. Key ecosystem attributes and productivity of boreal stands 20 years after the onset of silviculture scenarios of increasing intensity. For. Ecol. Manag. 2017, 389, 404–416. [Google Scholar] [CrossRef]
- R Core Team. R 3.6.1: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria. Available online: https://www.r-project.org/ (accessed on 24 August 2019).
- Milà i Canals, L.; Bauer, C.; Depestele, J.; Dubreuil, A.; Freiermuth Knuchel, R.; Gaillard, G.; Michelsen, O.; Müller-Wenk, R.; Rydgren, B. Key Elements in a Framework for Land Use Impact Assessment Within LCA (11 pp). Int. J. Life Cycle Assess. 2007, 12, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Morin, H.; Laprise, D.; Simard, A.-A.; Amouch, S. Régime des épidémies de la tordeuse des bourgeons de l’Épinette dans l’Est de l’Amérique du Nord. In Aménagement Écosystémique en Forêt Boréale; Gauthier, S., Ed.; Presses de l’Université du Québec: Québec, QC, Canada, 2008; pp. 167–192. [Google Scholar]
- Milài Canals, L.; Michelsen, O.; Teixeira, R.F.; Souza, D.M.; Curran, M.; Anton, A. Building consensus for assessing land use impacts on biodiversity in LCA. In Proceedings of the 9th International Conference on Life Cycle Assessment in the Agri-food Sector (LCA Food 2014), San Francisco, CA, USA, 8–10 October 2014; ACLCA: Vashon, WA, USA; pp. 823–834. [Google Scholar]
- MFFP. Espèce Faunique Menacée—Caribou des Bois. Available online: https://www3.mffp.gouv.qc.ca/faune/especes/menacees/fiche.asp?noEsp=53 (accessed on 16 September 2019).
- Leblond, M.; Dussault, C.; Ouellet, J.-P.; St-Laurent, M.-H. Caribou avoiding wolves face increased predation by bears—Caught between Scylla and Charybdis. J. Appl. Ecol. 2016, 53, 1078–1087. [Google Scholar] [CrossRef]
- Kawaguchi, T.; Desrochers, A. A time-lagged effect of conspecific density on habitat selection by snowshoe hare. PLoS ONE 2018, 13, e0190643. [Google Scholar] [CrossRef] [Green Version]
- Dornelas, M.; Gotelli, N.J.; McGill, B.; Shimadzu, H.; Moyes, F.; Sievers, C.; Magurran, A.E. Assemblage time series reveal biodiversity change but not systematic loss. Science (N. Y.) 2014, 344, 296. [Google Scholar] [CrossRef] [Green Version]
- Winter, L.; Lehmann, A.; Finogenova, N.; Finkbeiner, M. Including biodiversity in life cycle assessment—State of the art, gaps and research needs. Environ. Impact Assess. Rev. 2017, 67, 88–100. [Google Scholar] [CrossRef]
- Kuipers, K.J.J.; May, R.F.; Graae, B.J.; Verones, F. Reviewing the potential for including habitat fragmentation to improve life cycle impact assessments for land use impacts on biodiversity. Int. J. Life Cycle Assess. 2019. [Google Scholar] [CrossRef]
- MFFP. Système Hiérarchique de Classification Écologique du Territoire. Available online: https://mffp.gouv.qc.ca/forets/inventaire/inventaire-systeme.jsp (accessed on 24 May 2020).
- Hatcher, R.J. Croissance du Sapin Baumier Après une Coupe Rase Dans le Québec; Sylvicoles, D.d.r., Ed.; Ministère du Nord Canadien et des Ressources Nationales du Canada: Chicoutimi, QC, Canada, 1960; p. 24.
- MFFP. QUEBEC’S ECOFOREST Map with Disturbances. Available online: https://www.donneesquebec.ca/recherche/fr/dataset/carte-ecoforestiere-avec-perturbations (accessed on 24 August 2018).
Naturalness Characteristic | Characteristic_PNI Equation |
---|---|
Landscape context | Context_PNI = CF_pni × (1 − (ANT_NDP + Wm_NDP + W_CC_NDP)) |
Forest Composition | Compo_PNI = ((CT_pni + LS_pni)/2) × (1 − (exo_NDP + CS_NDP)) |
Structure | Struc_PNI = ((OF_pni + IR_pni)/2) × (1 − HS_NDP) |
Dead wood | DW_PNI = 1 − DW_NDP |
Regeneration process | RP_PNI = 1 − RP_NDP |
Productive Area Proportions by Scenario Component | |||
---|---|---|---|
Scenario# | ISC | PL60 | CL |
1 | 0 | 1 | 0 |
2 | 0 | 1 | 0 |
3 | 0 | 0 | 1 |
4 | 0 | 0 | 1 |
5 | 0 | 0.1 | 0.9 |
6 | 0 | 0.2 | 0.8 |
7 | 0 | 0.3 | 0.7 |
8 | 0 | 0.4 | 0.6 |
9 | 0.1 | 0.1 | 0.8 |
10 | 0.2 | 0.1 | 0.7 |
11 | 0.1 | 0.2 | 0.7 |
12 | 0.1 | 0.3 | 0.6 |
13 | 0.2 | 0.2 | 0.6 |
14 | 0.3 | 0.1 | 0.6 |
15 | 0.1 | 0 | 0.9 |
16 | 0.2 | 0 | 0.8 |
17 | 0.3 | 0 | 0.7 |
18 | 0.4 | 0 | 0.6 |
19 | 0.5 | 0 | 0.5 |
20 | 0.5 | 0.5 | 0 |
21 | 1 | 0 | 0 |
22 | 1 | 0 | 0 |
Scenario Component | Cover Type (CT: % Prod Area of Coniferous Cover Type) | Late Successional Species (LS: % Merchantable Volume in Picea spp.) | Closed Forests (CF: % Productive Area of Forests > 40 Years Old) | Old Forests (OF: % Productive Area of Forests > 80 Years Old) | Irregular Stands (IR: % Productive Area of Irregular Stands) |
---|---|---|---|---|---|
CL50 1 | 1 | 20 | 0 | 0 | |
FM-A | 77.49 | ||||
FM-B | 79.79 | ||||
CL70 | 3.5 | 42.85 | 0 | 0 | |
FM-A | 81.54 | ||||
FM-B | 83.84 | ||||
PL60 | 50 | 33.33 | 0 | 0 | |
FM-A | 92.38 | ||||
FM-B | 94.64 | ||||
ISC | 15 | 90 | 90 | 90 | |
FM-A | 78.02 | ||||
FM-B | 80.41 | ||||
Protection | |||||
FM-A | 79.3 | 4 | 79.9 | 23.7 | 17.8 |
FM-B | 85.7 | 4 | 76.19 | 57.9 | 40 |
Scenario Sequential nb | Scenario Description 1 | Rank FM-A Studies | Rank FM-A Registry | Rank FM-B Studies | Rank FM-B Registry |
---|---|---|---|---|---|
22 | 100ISC_ep | 1 | 1 | 1 | 1 |
23 | 100ISC_ip | 2 | 2 | 3 | 2 |
20 | 50CL70_50ISC_ep | 3 | 3 | 2 | 3 |
19 | 60CL70_40ISC_ep | 4 | 4 | 4 | 4 |
18 | 70CL70_30ISC_ep | 5 | 7 | 5 | 7 |
15 | 60CL70_10PL60_30ISC_ep | 6 | 8 | 7 | 8 |
17 | 80CL70_20ISC_ep | 7 | 9 | 10 | 10 |
11 | 70CL70_10PL60_20ISC_ep | 8 | 11 | 11 | 11 |
21 | 50PL60_50ISC_ep | 9 | 5 | 8 | 5 |
14 | 60CL70_20PL60_20ISC_ep | 10 | 12 | 12 | 12 |
40 | 50CL50_50ISC_ep | 11 | 6 | 6 | 6 |
16 | 90CL70_10ISC_ep | 12 | 13 | 14 | 13 |
39 | 60CL50_40ISC_ep | 13 | 10 | 9 | 9 |
10 | 80CL70_10PL60_10ISC_ep | 14 | 14 | 16 | 16 |
12 | 70CL70_20PL60_10ISC_ep | 15 | 15 | 17 | 17 |
13 | 60CL70_30PL60_10ISC_ep | 16 | 16 | 18 | 19 |
38 | 70CL50_30ISC_ep | 17 | 19 | 13 | 14 |
35 | 60CL50_10PL60_30ISC_ep | 18 | 17 | 15 | 15 |
34 | 60CL50_20PL60_20ISC_ep | 19 | 25 | 22 | 25 |
37 | 80CL50_20ISC_ep | 20 | 26 | 20 | 22 |
31 | 70CL50_10PL60_20ISC_ep | 21 | 27 | 21 | 24 |
5 | 100CL70_ep | 22 | 18 | 19 | 18 |
6 | 90CL70_10PL60_ep | 23 | 20 | 23 | 20 |
7 | 80CL70_20PL60_ep | 24 | 21 | 24 | 21 |
8 | 70CL70_30PL60_ep | 25 | 22 | 25 | 23 |
1 | Current_ip | 26 | 28 | 33 | 33 |
9 | 60CL70_40PL60_ep | 27 | 23 | 26 | 26 |
4 | 100CL70_ip | 28 | 24 | 32 | 31 |
33 | 60CL50_30PL60_10ISC_ep | 29 | 29 | 28 | 28 |
32 | 70CL50_20PL60_10ISC_ep | 30 | 31 | 30 | 30 |
36 | 90CL50_10PL60_ep | 31 | 32 | 27 | 27 |
30 | 80CL50_10PL60_10ISC_ep | 32 | 33 | 29 | 29 |
3 | 100PL60_ep | 33 | 30 | 31 | 32 |
29 | 60CL50_40PL60_ep | 34 | 34 | 34 | 34 |
28 | 70CL50_30PL60_ep | 35 | 35 | 36 | 36 |
27 | 80CL50_20PL60_ep | 36 | 36 | 38 | 38 |
25 | 100CL50_ep | 37 | 37 | 35 | 35 |
26 | 90CL50_10PL60_ep | 38 | 38 | 37 | 37 |
2 | 100PL60_ip | 39 | 39 | 39 | 39 |
24 | 100CL50_ip | 40 | 40 | 40 | 40 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Côté, S.; Bélanger, L.; Beauregard, R.; Thiffault, É.; Margni, M. Naturalness Assessment of Forest Management Scenarios in Abies balsamea–Betula papyrifera Forests. Forests 2020, 11, 601. https://doi.org/10.3390/f11050601
Côté S, Bélanger L, Beauregard R, Thiffault É, Margni M. Naturalness Assessment of Forest Management Scenarios in Abies balsamea–Betula papyrifera Forests. Forests. 2020; 11(5):601. https://doi.org/10.3390/f11050601
Chicago/Turabian StyleCôté, Sylvie, Louis Bélanger, Robert Beauregard, Évelyne Thiffault, and Manuele Margni. 2020. "Naturalness Assessment of Forest Management Scenarios in Abies balsamea–Betula papyrifera Forests" Forests 11, no. 5: 601. https://doi.org/10.3390/f11050601