Variation in Near-Surface Airborne Bacterial Communities among Five Forest Types
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites
2.2. Field Sampling
2.3. Aerosol Sampling
2.4. DNA Extraction, PCR Amplification, and Sequencing
2.5. Bioinformatic Analysis and Phylogenetic Classification
2.6. Statistical Analyses
3. Results
3.1. Environmental Characteristics across Different Forest Types
3.2. Diversity and Composition of Airborne Bacterial Communities across Different Forest Types
3.3. Correlations between Environmental Factors and Diversity of Airborne Bacterial Communities
4. Discussion
4.1. The Variation of Airborne Bacterial Communities in Different Forest Types
4.2. Relationship between Airborne Bacterial Communities and the Environmental Factors
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miletto, M.; Lindow, S.E. Relative and contextual contribution of different sources to the composition and abundance of indoor air bacteria in residences. Microbiome 2015, 3, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prussin, A.J.I.; Marr, L.C. Sources of airborne microorganisms in the built environment. Microbiome 2015, 3, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meola, M.; Lazzaro, A.; Zeyer, J. Bacterial composition and survival on Sahara dust particles transported to the European Alps. Front. Microbiol. 2015, 6, 1454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, S.; Kang, Y.; Hwang, Y.; Yoo, S.; Jang, H.; Oh, H.; Kang, J.; Chang, D.; Na, K.; Kim, G. Evaluation of airborne bacteria and fungi in surgical areas at the animal hospital. J. Vet. Clin. 2017, 34, 76–81. [Google Scholar] [CrossRef]
- Murata, K.; Zhang, D. Concentration of bacterial aerosols in response to synoptic weather and land-sea breeze at a seaside site downwind of the Asian continent. J. Geophys. Res.-Atmos. 2016, 121, 11636–11647. [Google Scholar] [CrossRef]
- Bowers, R.M.; Clements, N.; Emerson, J.B.; Wiedinmyer, C.; Hannigan, M.P.; Fierer, N. Seasonal variability in bacterial and fungal diversity of the near-surface atmosphere. Environ. Sci. Technol. 2013, 47, 12097–12106. [Google Scholar] [CrossRef] [PubMed]
- Fierer, N.; Liu, Z.; Rodriguez-Hernandez, M.; Knight, R.; Henn, M.; Hernandez, M.T. Short-term temporal variability in airborne bacterial and fungal populations. Appl. Environ. Microb. 2008, 74, 200–207. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.; Zhang, D.; Shi, Y.; Li, B.; Yang, J.; Yu, X.; Chen, N.; Kakikawa, M. Cell concentration, viability and culture composition of airborne bacteria during a dust event in Beijing. J. Environ. Sci. China 2017, 55, 33–40. [Google Scholar] [CrossRef]
- Gou, H.; Lu, J.; Li, S.; Tong, Y.; Xie, C.; Zheng, X. Assessment of microbial communities in PM1 and PM10 of Urumqi during winter. Environ. Pollut. 2016, 214, 202–210. [Google Scholar] [CrossRef]
- Li, Y.; Fu, H.; Wang, W.; Liu, J.; Meng, Q.; Wang, W. Characteristics of bacterial and fungal aerosols during the autumn haze days in Xi’an, China. Atmos. Environ. 2015, 122, 439–447. [Google Scholar] [CrossRef]
- Duchaine, C. Assessing microbial decontamination of indoor air with particular focus on human pathogenic viruses. Am. J. Infect. Control. 2016, 44, S121–S126. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.H.; Park, W.M.; Ahn, J.K.; Lee, K.J.; Min, K.B.; Park, J.B. Relationship between culturable airborne bacteria concentrations and ventilation systems in underground subway stations in Seoul, South Korea. Air Qual. Atmos. Health 2016, 9, 173–178. [Google Scholar] [CrossRef]
- Mayol, E.; Arrieta, J.M.; Jimenez, M.A.; Martinez-Asensio, A.; Garcias-Bonet, N.; Dachs, J.; Gonzalez-Gaya, B.; Royer, S.; Benitez-Barrios, V.M.; Fraile-Nuez, E.; et al. Long-range transport of airborne microbes over the global tropical and subtropical ocean. Nat. Commun. 2017, 8, 201. [Google Scholar] [CrossRef] [PubMed]
- Froehlich-Nowoisky, J.; Kampf, C.J.; Weber, B.; Huffman, J.A.; Poehlker, C.; Andreae, M.O.; Lang-Yona, N.; Burrows, S.M.; Gunthe, S.S.; Elbert, W.; et al. Bioaerosols in the earth system: Climate, health, and ecosystem interactions. Atmos. Res. 2016, 182, 346–376. [Google Scholar] [CrossRef] [Green Version]
- Cuthbertson, L.; Amores-Arrocha, H.; Malard, L.; Els, N.; Sattler, B.; Pearce, D. Characterisation of arctic bacterial communities in the air above Svalbard. Biology 2017, 6, 29. [Google Scholar] [CrossRef]
- Iwata, K.; Watanabe, M.; Kurai, J.; Burioka, N.; Nakamoto, S.; Hantan, D.; Shimizu, E. Association between transported Asian dust and outdoor fungal concentration during winter in a rural area of western Japan. Genes Environ. 2017, 39, 19. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Jiang, W.; Wang, B.; Fang, J.; Lang, J.; Tian, G.; Jiang, J.; Zhu, T.F. Inhalable microorganisms in Beijing’s PM2.5 and PM10 pollutants during a severe smog event. Environ. Sci. Technol. 2014, 48, 1499–1507. [Google Scholar] [CrossRef]
- Malavelle, F.F.; Haywood, J.M.; Ones, A.J.; Gettelman, A.; Larisse, L.C.; Bauduin, S.; Allan, R.P.; Karset, I.H.H.; Kristjansson, J.E.; Oreopoulos, L.; et al. Strong constraints on aerosol-cloud interactions from volcanic eruptions. Nature 2017, 546, 485–491. [Google Scholar] [CrossRef]
- Bauer, H.; Giebl, H.; Hitzenberger, R.; Kasper-Giebl, A.; Reischl, G.; Zibuschka, F.; Puxbaum, H. Airborne bacteria as cloud condensation nuclei. J. Geophys. Res. Atmos. 2003, 108 (D21), 4658. [Google Scholar] [CrossRef]
- Šantl-Temkiv, T.; Sahyoun, M.; Finster, K.; Hartmann, S.; Augustin-Bauditz, S.; Stratmann, F.; Wex, H.; Clauss, T.; Nielsen, N.W.; Sørensen, J.H.; et al. Characterization of airborne ice-nucleation-active bacteria and bacterial fragments. Atmos. Environ. 2015, 109, 105–117. [Google Scholar] [CrossRef]
- Huffman, J.A.; Prenni, A.J.; DeMott, P.J.; Poehlker, C.; Mason, R.H.; Robinson, N.H.; Froehlich-Nowoisky, J.; Tobo, Y.; Despres, V.R.; Garcia, E.; et al. High concentrations of biological aerosol particles and ice nuclei during and after rain. Atmos. Chem. Phys. 2013, 13, 6151–6164. [Google Scholar] [CrossRef] [Green Version]
- Sorrell, E.M.; Schrauwen, E.; Linster, M.; De Graaf, M.; Herfst, S.; Fouchier, R. Predicting ’airborne’ influenza viruses: (trans-) mission impossible? Curr. Opin. Virol. 2011, 1, 635–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367. [Google Scholar] [CrossRef] [PubMed]
- Genitsaris, S.; Stefanidou, N.; Katsiapi, M.; Kormas, K.A.; Sommer, U.; Moustaka-Gouni, M. Variability of airborne bacteria in an urban Mediterranean area (Thessaloniki, Greece). Atmos. Environ. 2017, 157, 101–110. [Google Scholar] [CrossRef]
- Garcia-Mena, J.; Murugesan, S.; Perez-Munoz, A.A.; Garcia-Espitia, M.; Maya, O.; Jacinto-Montiel, M.; Monsalvo-Ponce, G.; Pina-Escobedo, A.; Dominguez-Malfavon, L.; Gomez-Ramirez, M.; et al. Airborne bacterial diversity from the low atmosphere of greater Mexico city. Microb. Ecol. 2016, 72, 70–84. [Google Scholar] [CrossRef]
- Vokou, D.; Vareli, K.; Zarali, E.; Karamanoli, K.; Constantinidou, H.A.; Monokrousos, N.; Halley, J.M.; Sainis, I. Exploring biodiversity in the bacterial community of the mediterranean phyllosphere and its relationship with airborne bacteria. Microb. Ecol. 2012, 64, 714–724. [Google Scholar] [CrossRef]
- Innocente, E.; Squizzato, S.; Visin, F.; Facca, C.; Rampazzo, G.; Bertolini, V.; Gandolfi, I.; Franzetti, A.; Ambrosini, R.; Bestetti, G. Influence of seasonality, air mass origin and particulate matter chemical composition on airborne bacterial community structure in the Po Valley, Italy. Sci. Total Environ. 2017, 593, 677–687. [Google Scholar] [CrossRef]
- Itani, G.N.; Smith, C.A. Dust rains deliver diverse assemblages of microorganisms to the Eastern Mediterranean. Sci. Rep. 2016, 6, 22657. [Google Scholar] [CrossRef]
- Lymperopoulou, D.S.; Adams, R.I.; Lindow, S.E. Contribution of vegetation to the microbial composition of nearby outdoor air. Appl. Environ. Microb. 2016, 82, 3822–3833. [Google Scholar] [CrossRef] [Green Version]
- Berg, G.; Mahnert, A.; Moissl-Eichinger, C. Beneficial effects of plant-associated microbes on indoor microbiomes and human health? Front. Microbiol. 2014, 5, 15. [Google Scholar] [CrossRef] [Green Version]
- Adams, R.I.; Bhangar, S.; Pasut, W.; Arens, E.A.; Taylor, J.W.; Lindow, S.E.; Nazaroff, W.W.; Bruns, T.D. Chamber Bioaerosol Study: Outdoor air and human occupants as sources of indoor airborne microbes. PLoS ONE 2015, 10, e128022. [Google Scholar] [CrossRef] [Green Version]
- Heo, K.J.; Lim, C.E.; Kim, H.B.; Lee, B.U. Effects of human activities on concentrations of culturable bioaerosols in indoor air environments. J. Aerosol Sci. 2017, 104, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Park, E.H.; Lee, S.; Ko, G.; Honda, Y.; Hashizume, M.; Deng, F.; Yi, S.; Kim, H. Airborne bacterial communities in three East Asian cities of China, South Korea, and Japan. Sci. Rep. 2017, 7, 5545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, P.; Du, R.; Ren, W.; Lu, Z.; Fu, P. Seasonal variation characteristic of inhalable microbial communities in PM2.5 in Beijing city, China. Sci. Total Environ. 2018, 610, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Zhen, Q.; Deng, Y.; Wang, Y.; Wang, X.; Zhang, H.; Sun, X.; Ouyang, Z. Meteorological factors had more impact on airborne bacterial communities than air pollutants. Sci. Total Environ. 2017, 601, 703–712. [Google Scholar] [CrossRef]
- Bowers, R.M.; McLetchie, S.; Knight, R.; Fierer, N. Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. ISME J. 2011, 5, 601–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, H.D.B.Z. Long-term effect of re-vegetation on the microbial community of a severely eroded soil in sub-tropical China. Plant Soil 2010, 328, 447–458. [Google Scholar]
- Joung, Y.S.; Ge, Z.; Buie, C.R. Bioaerosol generation by raindrops on soil. Nat. Commun. 2017, 8, 14668. [Google Scholar] [CrossRef]
- Cha, S.; Srinivasan, S.; Jang, J.H.; Lee, D.; Lim, S.; Kim, K.S.; Jheong, W.; Lee, D.; Park, E.; Chung, H.; et al. Metagenomic analysis of airborne bacterial community and diversity in Seoul, Korea, during december 2014, Asian dust event. PLoS ONE 2017, 12, e1706931. [Google Scholar] [CrossRef]
- Griffin, D.W.; Gonzalez, C.; Teigell, N.; Petrosky, T.; Northup, D.E.; Lyles, M. Observations on the use of membrane filtration and liquid impingement to collect airborne microorganisms in various atmospheric environments. Aerobiologia 2011, 27, 25–35. [Google Scholar] [CrossRef]
- Meheust, D.; Gangneux, J.; Cann, P.L. Comparative evaluation of three impactor samplers for measuring airborne bacteria and fungi concentrations. J. Occup. Environ. Hyg. 2013, 10, 455–459. [Google Scholar] [CrossRef] [PubMed]
- Jaffal, A.A.; Nsanze, H.; Bener, A.; Ameen, A.S.; Banat, I.M.; Mogheth, A.A.E. Hospital airborne microbial pollution in a desert country. Environ. Int. 1997, 23, 167–172. [Google Scholar] [CrossRef]
- Otano, N.N.; Pasquo, M.D.; Munoz, N. Airborne fungal richness: Proxies for floral composition and local climate in three sites at the El Palmar National Park (Coln, Entre Rios, Argentina). Aerobiologia 2015, 31, 537–547. [Google Scholar] [CrossRef]
- Frazer, G.W.; Fournier, R.A.; Trofymow, J.A.; Hall, R.J. A comparison of digital and film fisheye photography for analysis of forest canopy structure and gap light transmission. Agric. For. Meteorol. 2001, 109, 249–263. [Google Scholar] [CrossRef]
- Frazer, G.W.; Canham, C.D.; Lertzman, K.P. Gap Light Analyzer (GLA),Version 2.0: Imaging Software to Extract Canopy Structure and Gap Light Transmission from True-Colour Fisheye Photographs, Users Manual and Program Documentation; Simon Fraser University: Burnaby, BC, Canada; Institute of Ecosystem Studies: Millbrook, NY, USA, 1999. [Google Scholar]
- Blennow, K. Sky view factors from high-resolution scanned fish-eye lens photographic negatives. J. Atmos. Ocean. Tech. 1995, 12, 1357–1362. [Google Scholar] [CrossRef]
- Crandall, S.G.; Gilbert, G.S. Meteorological factors associated with abundance of airborne fungal spores over natural vegetation. Atmos. Environ. 2017, 162, 87–99. [Google Scholar] [CrossRef]
- Mhuireach, G.; Johnson, B.R.; Altrichter, A.E.; Ladau, J.; Meadow, J.F.; Pollard, K.S.; Green, J.L. Urban greenness influences airborne bacterial community composition. Sci. Total Environ. 2016, 571, 680–687. [Google Scholar] [CrossRef] [Green Version]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J.; Fierer, N.; Knight, R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 2011, 108, 4516–4522. [Google Scholar] [CrossRef] [Green Version]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microb. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015. [Google Scholar]
- Oksanen, J.; Blanchet, F.F.; Kindt, R.; Legendre, P.; Minchin, P.R. Vegan: Community Ecology Package, R Package Version 2.3-3; Github Inc.: San Francisco, CA, USA, 2016. [Google Scholar]
- Greenwell, B.; Boehmke, B.; Cunningha, J.; Developers, G.B.M. Gbm: Generalized Boosted Regression Models, R Package Version 2.1.5; Github Inc.: San Francisco, CA, USA, 2019. [Google Scholar]
- Ginestet, C. ggplot2: Elegant graphics for data analysis. J. R Stat. Soc. A Stat. 2011, 174, 245. [Google Scholar] [CrossRef]
- Madigan, M.A.J.M. Brock Biology of Microorganisms, 11th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Filippidou, S.; Wunderlin, T.; Junier, T.; Jeanneret, N.; Dorador, C.; Molina, V.; Johnson, D.R.; Junier, P. A combination of extreme environmental conditions favor the prevalence of endospore-forming Firmicutes. Front. Microbiol. 2016, 7, 2101. [Google Scholar] [CrossRef]
- Wall, D.H.; Nielsen, U.N.; Six, J. Soil biodiversity and human health. Nature 2015, 528, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Bulgarelli, D.; Schlaeppi, K.; Spaepen, S.; Van Themaat, E.V.L.; Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 2013, 64, 807–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Striluk, M.L.; Aho, K.; Weber, C.F. The effect of season and terrestrial biome on the abundance of bacteria with plant growth-promoting traits in the lower atmosphere. Aerobiologia 2017, 33, 137–149. [Google Scholar] [CrossRef]
- Anding, L.; Chunyan, G.; Lifei, Y. The composition and structural feature of plant community in different karst stony desertification areas. Appl. Ecol. Environ. Res. 2017, 15, 1167–1183. [Google Scholar] [CrossRef]
- Wang, K.; Shao, R.; Shangguan, Z. Changes in species richness and community productivity during succession on the Loess Plateau (China). Pol. J. Ecol. 2010, 58, 501–510. [Google Scholar]
- Anderson, K.J. Temporal patterns in rates of community change during succession. Am. Nat. 2007, 169, 780–793. [Google Scholar] [CrossRef]
- Martirosyan, V.; Unc, A.; Miller, G.; Doniger, T.; Wachtel, C.; Steinberger, Y. Desert perennial shrubs shape the microbial-community miscellany in laimosphere and phyllosphere space. Microb. Ecol. 2016, 72, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Gandolfi, I.; Canedoli, C.; Imperato, V.; Tagliaferri, I.; Gkorezis, P.; Vangronsveld, J.; Padoa Schioppa, E.; Papacchini, M.; Bestetti, G.; Franzetti, A. Diversity and hydrocarbon-degrading potential of epiphytic microbial communities on Platanus x acerifolia leaves in an urban area. Environ. Pollut. 2017, 220, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Gusareva, E.S.; Acerbi, E.; Lau, K.; Luhung, I.; Premkrishnan, B.; Kolundzija, S.; Purbojati, R.W.; Wong, A.; Houghton, J.; Miller, D.; et al. Microbial communities in the tropical air ecosystem follow a precise diel cycle. Proc. Natl. Acad. Sci. USA 2019, 116, 23299–23308. [Google Scholar] [CrossRef] [Green Version]
- Barcenas-Moreno, G.; Gomez-Brandon, M.; Rousk, J.; Baath, E. Adaptation of soil microbial communities to temperature: Comparison of fungi and bacteria in a laboratory experiment. Glob. Chang. Biol. 2009, 15, 2950–2957. [Google Scholar] [CrossRef]
- Pietikainen, J.; Pettersson, M.; Baath, E. Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiol. Ecol. 2005, 52, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Dannemiller, K.C.; Weschler, C.J.; Peccia, J. Fungal and bacterial growth in floor dust at elevated relative humidity levels. Indoor Air 2017, 27, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Layton, D.W.; Beamer, P.I. Migration of contaminated soil and airborne particulates to indoor dust. Environ. Sci. Technol. 2009, 43, 8199–8205. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Zhao, X.; Gerlein-Safdi, C.; Mu, Y.; Wang, D.; Lu, Q. Global sources, emissions, transport and deposition of dust and sand and their effects on the climate and environment: A review. Front. Environ. Sci. Eng. 2017, 11, 11. [Google Scholar] [CrossRef]
- Kanakidou, M.; Myriokefalitakis, S.; Tsigaridis, A.K. Aerosols in atmospheric chemistry and biogeochemical cycles of nutrients. Environ. Res. Lett. 2018, 13, 063004. [Google Scholar] [CrossRef]
- Puglisi, E.; Hamon, R.; Vasileiadis, S.; Coppolecchia, D.; Trevisan, M. Adaptation of soil microorganisms to trace element contamination: A review of mechanisms, methodologies, and consequences for risk assessment and remediation. Crit. Rev. Environ. Sci. Technol. 2012, 42, 2435–2470. [Google Scholar] [CrossRef]
- Bershova, O.I. Effect of trace elements on the synthesis of hetero-auxins by soil microorganisms. Mikrobiolohichnyi Zhurnal 1959, 21, 3–10. [Google Scholar] [PubMed]
- Yao, Q.; Li, Z.; Song, Y.; Wright, S.J.; Guo, X.; Tringe, S.G.; Tfaily, M.M.; Pasa-Tolic, L.; Hazen, T.C.; Turner, B.L.; et al. Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil. Nat. Ecol. Evol. 2018, 2, 499–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, C.; Sun, P.; Kang, D.; Zhao, F.; Feng, Y.; Ren, G.; Han, X.; Yang, G. Responsiveness of soil nitrogen fractions and bacterial communities to afforestation in the Loess Hilly Region (LHR) of China. Sci. Rep. 2016, 6, 28469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, D.; Huang, Y.; An, S.; Sun, H.; Bhople, P.; Chen, Z. Soil physicochemical and microbial characteristics of contrasting land-use types along soil depth gradients. Catena 2018, 162, 345–353. [Google Scholar] [CrossRef]
- Jia, R.; Zhao, X.; Huang, Z. Correlative analyses between quantities of microbial populations and soil physicochemical property under different accumulation of soil plastic film. Adv. Mater. Res. 2013, 610, 3091–3095. [Google Scholar] [CrossRef]
BF | CK | CL | LC | MF | PH | |
---|---|---|---|---|---|---|
Sequencing information | ||||||
Effective tag number a | 88,090 | 88,907 | 85,382 | 77,269 | 80,025 | 76,888 |
Effective ratio b (%) | 91.54 | 85.58 | 91.64 | 89.75 | 93.88 | 87.79 |
Number OTUs, PD_whole_tree and observed_species index under the level of 97% | ||||||
OTUs c | 80,693 | 75,939 | 78,228 | 69,416 | 75,106 | 67,506 |
observed_species d | 74 | 66 | 95 | 65 | 80 | 70 |
PD_whole_tree e | 9 | 7 | 11 | 7 | 10 | 8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, J.; Dong, Q.; Shen, W.; Liu, X.; Dou, N.; Xian, L.; Chen, H. Variation in Near-Surface Airborne Bacterial Communities among Five Forest Types. Forests 2020, 11, 561. https://doi.org/10.3390/f11050561
Fang J, Dong Q, Shen W, Liu X, Dou N, Xian L, Chen H. Variation in Near-Surface Airborne Bacterial Communities among Five Forest Types. Forests. 2020; 11(5):561. https://doi.org/10.3390/f11050561
Chicago/Turabian StyleFang, Jianbo, Qiyu Dong, Weijun Shen, Xiaoling Liu, Ning Dou, Lihua Xian, and Hongyue Chen. 2020. "Variation in Near-Surface Airborne Bacterial Communities among Five Forest Types" Forests 11, no. 5: 561. https://doi.org/10.3390/f11050561
APA StyleFang, J., Dong, Q., Shen, W., Liu, X., Dou, N., Xian, L., & Chen, H. (2020). Variation in Near-Surface Airborne Bacterial Communities among Five Forest Types. Forests, 11(5), 561. https://doi.org/10.3390/f11050561