Arbuscular Mycorrhizal Fungi Inoculation as a Climate Adaptation Strategy for Establishment of Swietenia macrophylla King. Seedlings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Layout
2.2. Mass Multiplication of AMF
2.3. Preparation of Seedlings and Inoculation of AMF
2.4. Irrigation Scheduling
2.5. Parameters Measured
- Root colonization percentage
- Total spore count
2.6. Analysis of Data
3. Results
3.1. Physiological Parameters
3.1.1. Rate of Photosynthesis
3.1.2. Stomatal Conductance
3.1.3. Rate of Transpiration
3.1.4. Leaf Temperature
3.1.5. Chlorophyll Content
3.1.6. Plant Water Status
3.1.7. Relative Growth Rate (RGR)
3.2. Mycorrhizal Parameters
3.2.1. Root Colonization Percentage
3.2.2. Total Spore Count
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Williams, J.W.; Jackson, S.T.; Kutzbach, J.E. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl. Acad. Sci. USA 2007, 104, 5738–5742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engelbrecht, B.M.J.; Kursar, T.A. Comparative drought-resistance of seedlings of 28 species of co-occurring tropical woody plants. Oecologia 2003, 136, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Sneha, C.; Santhoshkumar, A.V.; Sunil, K.M. Quantifying water stress using crop water stress index in mahogany (Swietenia macrophylla King) seedlings. Curr. Sci. 2013, 104, 348–351. [Google Scholar]
- Mahari, A. Factors Affecting Survival of Tree Seedlings in the Drylands of Northern Ethiopia. Available online: https://www.semanticscholar.org/paper/Factors-Affecting-Survival-of-Tree-Seedlings-in-the-Mahari/0e9891093a560cee79cb11f9261fe6365f499cea (accessed on 16 April 2020).
- Lamb, D. Restoration of Degraded Tropical Forest Landscapes. Science 2005, 310, 1628–1632. [Google Scholar] [CrossRef] [Green Version]
- Dar, M.H.; Reshi, Z.A. Vesicular Arbuscular Mycorrhizal (VAM) fungi- as a major biocontrol agent in modern sustainable agriculture system. Russ. Agric. Sci. 2017, 43, 138–143. [Google Scholar] [CrossRef]
- Mosse, B.; Stribley, D.P.; LeTacon, F. Ecology of Mycorrhizae and Mycorrhizal Fungi. Adv. Microb. Ecol. 1981, 137–210. [Google Scholar] [CrossRef]
- Augé, R.M. Arbuscular mycorrhizae and soil/plant water relations. Can. J. Soil Sci. 2004, 84, 373–381. [Google Scholar] [CrossRef] [Green Version]
- Brenes-Arguedas, T.; Roddy, A.B.; Coley, P.D.; Kursar, T.A. Do differences in understory light contribute to species distributions along a tropical rainfall gradient? Oecologia 2010, 166, 443–456. [Google Scholar] [CrossRef] [Green Version]
- Bray, E.A. Plant responses to water deficit. Trends Plant Sci. 1997, 2, 48–54. [Google Scholar] [CrossRef]
- Rahimzadeh, S.; Pirzad, A. Arbuscular mycorrhizal fungi and Pseudomonas in reduce drought stress damage in flax (Linum usitatissimum L.): A field study. Mycorrhiza 2017, 27, 537–552. [Google Scholar] [CrossRef]
- Giovannetti, M.; Avio, L.; Fortuna, P.; Pellegrino, E.; Sbrana, C.; Strani, P. At the Root of the Wood Wide Web. Plant Signal. Behav. 2006, 1, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marschner, H.; Dell, B. Nutrient uptake in mycorrhizal symbiosis. Plant Soil 1994, 159, 89–102. [Google Scholar] [CrossRef]
- Peng, S.; Eissenstat, D.M.; Graham, J.H.; Williams, K.; Hodge, N.C. Growth Depression in Mycorrhizal Citrus at High-Phosphorus Supply (Analysis of Carbon Costs). Plant Physiol. 1993, 101, 1063–1071. [Google Scholar] [CrossRef] [PubMed]
- Mathur, N.; Vyas, A. Influence of arbuscular mycorrhizae on biomass production, nutrient uptake and physiological changes in Ziziphus mauritiana Lam. under water stress. J. Arid Environ. 2000, 45, 191–195. [Google Scholar] [CrossRef]
- Begum, N.; Ahanger, M.A.; Su, Y.; Lei, Y.; Mustafa, N.S.A.; Ahmad, P.; Zhang, L. Improved Drought Tolerance by AMF Inoculation in Maize (Zea mays) Involves Physiological and Biochemical Implications. Plants 2019, 8, 579. [Google Scholar] [CrossRef] [Green Version]
- Begum, N.; Qin, C.; Ahanger, M.A.; Raza, S.; Khan, M.I.; Ashraf, M.; Ahmed, N.; Zhang, L. Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance? Front. Plant Sci. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Ryan, M.H.; Graham, J.H. Is there a role for arbuscular mycorrhizal fungi in production agriculture. In Diversity and Integration in Mycorrhizas; Smith, S.E., Smith, F.A., Eds.; Springer: Dordrecht, The Netherlands, 2002; pp. 263–271. ISBN 978-90-481-5933-8. [Google Scholar]
- Rillig, M.C.; Mummey, D.L. Mycorrhizas and soil structure. New Phytol. 2006, 171, 41–53. [Google Scholar] [CrossRef]
- Miller, R.M.; Jastrow, J.D. Mycorrhizal Fungi Influence Soil Structure. In Arbuscular Mycorrhizas: Physiology and Function; Kapulnik, Y., Douds, D.D., Eds.; Springer: Dordrecht, The Netherlands, 2000; pp. 3–18. ISBN 978-94-017-0776-3. [Google Scholar]
- Borowicz, V.A. Do Arbuscular Mycorrhizal Fungi Alter Plant–Pathogen Relations? Ecology 2001, 82, 3057–3068. [Google Scholar] [CrossRef]
- Karagiannidis, N.; Bletsos, F.; Stavropoulos, N. Effect of Verticillium wilt (Verticillium dahliae Kleb.) and mycorrhiza (Glomus mosseae) on root colonization, growth and nutrient uptake in tomato and eggplant seedlings. Sci. Hortic. 2002, 94, 145–156. [Google Scholar] [CrossRef]
- Larekeng, S.H.; Restu, M.; Arsyad, M.A. Mutia Observation of morphological and physiological characteristics on Abangares Mahogany (Swietenia macrophylla King) In South Sulawesi. IOP Conf. Ser. Earth Environ. Sci. 2019, 270, 012022. [Google Scholar] [CrossRef]
- Rodríguez-Morelos, V.H.; Soto-Estrada, A.; Pérez-Moreno, J.; Franco-Ramírez, A.; Díaz-Rivera, P. Arbuscular mycorrhizal fungi associated with the rhizosphere of seedlings and mature trees of Swietenia macrophylla (Magnoliophyta: Meliaceae) in Los Tuxtlas, Veracruz, Mexico. Rev. Chil. Hist. Nat. 2014, 87. [Google Scholar] [CrossRef] [Green Version]
- Hoagland, D.R.; Arnon, D.I. The water-culture method for growing plants without soil. Circ. Calif. Agric. Exp. Stn. 1950, 347, 32. [Google Scholar]
- Philips, J.; Hayman, D.S. Improved procedure for declaring and staining parasitic and VAM fungi for rapid assessment of infection. Trans. Br. Mycol Soc. 1970, 55, 158–161. [Google Scholar] [CrossRef]
- Ajeesh, R.; Santhoshkumar, A.; Gopal, S.; Binu, N. Screening of selected native arbuscular mycorrhizal fungi at different levels for their symbiotic efficiency with tectona grandis seedlings. J. Trop. For. Sci. 2017, 29, 395–403. [Google Scholar]
- Sharma, M.P.; Gaur, A.; Bhatia, N.P.; Adholeya, A. Growth responses and dependence of Acacia nilotica var. cupriciformis on the indigenous arbuscular mycorrhizal consortium of a marginal wasteland soil. Mycorrhiza 1996, 6, 441–446. [Google Scholar] [CrossRef]
- Domuța, C.; Cărbunar, M.; Șandor, M.; Borza, I.; Brejea, R.; Domuța, C.; Gîtea, M.; Vușcan, A.; Oneț, C. Researches regarding the use of the piche evaporimeter in the irrigation scheduling of the tomatoes’ solarium crops. Analele Univ. Din Oradea Fasc. Protecția Mediu. 2011, 16, 229–234. [Google Scholar]
- Allen, M.F. Influence of vesicular-arbuscular mycorrhizae on water movement through bouteloua gracilis (h.b.k.) lag ex steud*. New Phytol. 1982, 91, 191–196. [Google Scholar] [CrossRef] [Green Version]
- Takebe, M.; Yoneyama, T. Measurement of leaf color scores and its implication to nitrogen nutrition of rice plants. Jpn. Agric. Res. Q. 1989, 23, 86–93. [Google Scholar]
- Scholander, P.F.; Bradstreet, E.D.; Hemmingsen, E.A.; Hammel, H.T. Sap Pressure in Vascular Plants: Negative hydrostatic pressure can be measured in plants. Science 1965, 148, 339–346. [Google Scholar] [CrossRef]
- Williams, R.F. The Physiology of Plant Growth with Special Reference to the Concept of Net Assimilation Rate. Ann. Bot. 1946, 10, 41–72. [Google Scholar] [CrossRef]
- Giovannetti, M.; Mosse, B. An Evaluation of Techniques for Measuring Vesicular Arbuscular Mycorrhizal Infection in Roots. New Phytol. 1980, 84, 489–500. [Google Scholar] [CrossRef]
- Gerdemann, J.W.; Nicolson, T.H. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans. Br. Mycol. Soc. 1963, 46, 235–244. [Google Scholar] [CrossRef]
- Rapparini, F.; Peñuelas, J. Mycorrhizal Fungi to Alleviate Drought Stress on Plant Growth. In Use of Microbes for the Alleviation of Soil Stresses, Volume 1; Miransari, M., Ed.; Springer: New York, NY, USA, 2014; pp. 21–42. ISBN 978-1-4614-9466-9. [Google Scholar]
- Rahnama, A.; Poustini, K.; Tavakkol-Afshari, R.; Tavakoli, A. Growth and Stomatal Responses of Bread Wheat Genotypes in Tolerance to Salt stress. Int. J. Biol. Life Sci. 2010, 7, 216–221. [Google Scholar]
- Medrano, H. Regulation of Photosynthesis of C3 Plants in Response to Progressive Drought: Stomatal Conductance as a Reference Parameter. Ann. Bot. 2002, 89, 895–905. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.-C.; Song, F.-B.; Liu, S.-Q.; Liu, T.-D. Effects of arbuscular mycorrhizal fungus on photosynthesis and water status of maize under high temperature stress. Plant Soil 2011, 346, 189–199. [Google Scholar] [CrossRef]
- Cornic, G.; Massacci, A. Leaf Photosynthesis under Drought Stress. In Photosynthesis and the Environment; Springer: Dordrecht, The Netherlands, 1996; pp. 347–366. [Google Scholar] [CrossRef]
- Ludlow, M.M. Adaptive significance of stomatal responses to water stress. Adapt. Signif. Stomatal Responses Water Stress 1980, 123–138. [Google Scholar]
- Augé, R.M. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 2001, 11, 3–42. [Google Scholar] [CrossRef]
- Subramanian, K.S.; Charest, C. Nutritional, growth, and reproductive responses of maize (Zea mays L.) to arbuscular mycorrhizal inoculation during and after drought stress at tasselling. Mycorrhiza 1997, 7, 25–32. [Google Scholar] [CrossRef]
- Aroca, R.; Vernieri, P.; Ruiz-Lozano, J.M. Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. J. Exp. Bot. 2008, 59, 2029–2041. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.-S.; Xia, R.-X. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J. Plant Physiol. 2006, 163, 417–425. [Google Scholar] [CrossRef]
- Augé, R.M.; Schekel, K.A.; Wample, R.L. Osmotic Adjustment in Leaves of VA Mycorrhizal and Nonmycorrhizal Rose Plants in Response to Drought Stress. Plant Physiol. 1986, 82, 765–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Tang, M.; Sulpice, R.; Chen, H.; Tian, S.; Ban, Y. Arbuscular Mycorrhizal Fungi Alter Fractal Dimension Characteristics of Robinia pseudoacacia L. Seedlings Through Regulating Plant Growth, Leaf Water Status, Photosynthesis, and Nutrient Concentration Under Drought Stress. J. Plant Growth Regul. 2014, 33, 612–625. [Google Scholar] [CrossRef]
- Jones, H.G. Plants and Microclimate; Cambridge University Press: Cambridge, UK, 2009; ISBN 978-0-511-84572-7. [Google Scholar]
- Mott, K.A.; Peak, D. Stomatal responses to humidity and temperature in darkness. Plant Cell Environ. 2010, 33, 1084–1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lahr, E.C.; Schade, G.W.; Crossett, C.C.; Watson, M.R. Photosynthesis and isoprene emission from trees along an urban-rural gradient in Texas. Glob. Change Biol. 2015, 21, 4221–4236. [Google Scholar] [CrossRef] [PubMed]
- Cerasoli, S.; Wertin, T.; McGuire, M.A.; Rodrigues, A.; Aubrey, D.P.; Pereira, J.S.; Teskey, R.O. Poplar saplings exposed to recurring temperature shifts of different amplitude exhibit differences in leaf gas exchange and growth despite equal mean temperature. AoB PLANTS 2014, 6. [Google Scholar] [CrossRef] [Green Version]
- Wong, S.-C.; Cowan, I.R.; Farquhar, G.D. Leaf Conductance in Relation to Rate of CO2 Assimilation: II. Effects of Short-Term Exposures to Different Photon Flux Densities. Plant Physiol. 1985, 78, 826–829. [Google Scholar] [CrossRef] [Green Version]
- Hetherington, A.M.; Woodward, F.I. The role of stomata in sensing and driving environmental change. Nature 2003, 424, 901–908. [Google Scholar] [CrossRef]
- von Caemmerer, S.; Lawson, T.; Oxborough, K.; Baker, N.R.; Andrews, T.J.; Raines, C.A. Stomatal conductance does not correlate with photosynthetic capacity in transgenic tobacco with reduced amounts of Rubisco. J. Exp. Bot. 2004, 55, 1157–1166. [Google Scholar] [CrossRef]
- Zhu, X.C.; Song, F.B.; Liu, S.Q.; Liu, T.D.; Zhou, X. Arbuscular mycorrhizae improves photosynthesis and water status of Zea mays L. under drought stress. Plant Soil Environ. 2012, 58, 186–191. [Google Scholar] [CrossRef] [Green Version]
- Anjum, S.A.; Farooq, M.; Wang, L.C.; Xue, L.L.; Wang, S.G.; Wang, L.; Zhang, S.; Chen, M. Gas exchange and chlorophyll synthesis of maize cultivars are enhanced by exogenously-applied glycinebetaine under drought conditions. Plant Soil Environ. 2011, 57, 326–331. [Google Scholar] [CrossRef] [Green Version]
- Saravanavel, R.; Ranganathan, R.; Anantharaman, P. Effect of Sodium Chloride on Photosynthetic Pigments and Photosynthetic Characteristics of Avicennia Officinalis Seedlings. Recent Res. Sci. Technol. 2011, 3, 177–180. [Google Scholar]
- Biswal, B.; Raval, M.K.; Biswal, U.C.; Joshi, P. Response of Photosynthetic Organelles to Abiotic Stress: Modulation by Sulfur Metabolism. Sulfur Assim. Abiotic Stress Plants 2008, 167–191. [Google Scholar] [CrossRef]
- Din, J.; Khan, S.U.; Ali, I.; Gurmani, A.R. Physiological and agronomic response of canola varieties to drought stress. J. Anim. Plant Sci. 2011, 21, 78–82. [Google Scholar]
- Saraswathi, S.G.; Paliwal, K. Drought induced changes in growth, leaf gas exchange and biomass production in Albizia lebbeck and Cassia siamea seedlings. J. Environ. Biol. 2011, 32, 173–178. [Google Scholar]
- Morte, A.; Díaz, G.; Rodríguez, P.; Alarcón, J.J.; Sánchez-Blanco, M.J. Growth and Water Relations in Mycorrhizal and Nonmycorrhizal Pinus Halepensis Plants in Response to Drought. Biol. Plant. 2001, 44, 263–267. [Google Scholar] [CrossRef]
- Sánchez-Blanco, M.J.; Ferrández, T.; Morales, M.A.; Morte, A.; Alarcón, J.J. Variations in water status, gas exchange, and growth in Rosmarinus officinalis plants infected with Glomus deserticola under drought conditions. J. Plant Physiol. 2004, 161, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Ramos, F.R.; Freire, A.L.O. Physiological responses to drought of Cnidoscolus quercifolius Pohl in semi-arid conditions. Adv. For. Sci. 2019, 6, 493–499. [Google Scholar] [CrossRef]
- Augé, R.M.; Toler, H.D.; Sams, C.E.; Nasim, G. Hydraulic conductance and water potential gradients in squash leaves showing mycorrhiza-induced increases in stomatal conductance. Mycorrhiza 2008, 18, 115–121. [Google Scholar] [CrossRef]
- Poorter, H.; Remkes, C.; Lambers, H. Carbon and Nitrogen Economy of 24 Wild Species Differing in Relative Growth Rate. Plant Physiol. 1990, 94, 621–627. [Google Scholar] [CrossRef] [Green Version]
- Ananthakrishnan, G.; Ravikumar, R.; Girija, S.; Ganapathi, A. Selection of efficient arbuscular mycorrhizal fungi in the rhizosphere of cashew and their application in the cashew nursery. Sci. Hortic. 2004, 100, 369–375. [Google Scholar] [CrossRef]
- Rajan, S.K.; Reddy, B.J.D.; Bagyaraj, D.J. Screening of arbuscular mycorrhizal fungi for their symbiotic efficiency with Tectona grandis. For. Ecol. Manag. 2000, 126, 91–95. [Google Scholar] [CrossRef]
- Bagyaraj, D.J. 19 Vesicular-arbuscular Mycorrhiza: Application in Agriculture. In Methods in Microbiology; Norris, J.R., Read, D.J., Varma, A.K., Eds.; Academic Press: Cambridge, MA, USA, 1992; Volume 24, pp. 359–373. [Google Scholar]
Treatment | Irrigation Levels (in Percentage) |
---|---|
Control | Treatment with daily irrigation ad abundantium |
IW/ET = 1 | Treatment with irrigation at 100% weekly cumulative ET applied once weekly |
IW/ET = 0.8 | Treatment with irrigation at 80% weekly cumulative ET applied once weekly |
IW/ET = 0.6 | Treatment with irrigation at 60% weekly cumulative ET applied once weekly |
IW/ET = 0.4 | Treatment with irrigation at 40% weekly cumulative ET applied once weekly |
Factors | Treatments | Rate of Photosynthesis (µmoL CO2 m−2 s−1) | Stomatal Conductance (moL H2O m−2 s−1) | Rate of Transpiration (mmoL H2O m−2 s−1) | Leaf Temperature (°C) | Chlorophyll Content (SPAD Units) | Water Potential (MPa) | Relative Growth Rate (g g−1 day−1) |
---|---|---|---|---|---|---|---|---|
AMF | Non inoculated (±SE) | 1.04 c (±87 × 10−2) | 0.07 (±82 × 10−4) | 3.16 a (±90 × 10−3) | 39.05 a (±76 × 10−2) | 31.36 c (±13 × 10−1) | −1.87 c (±15 × 10−1) | 0.003 c (±80 × 10−5) |
R. intraradices (±SE) | 1.44 a (±10 × 10−2) | 0.08 (±10 × 10−3) | 2.88 b (±14 × 10−2) | 37.62 ab (±90 × 10−2) | 35.38 b (±14 × 10−1) | −1.76 b (±13 × 10−1) | 0.006 a (±82 × 10−5) | |
C. etunicatum (±SE) | 1.29 ab (±93 × 10−3) | 0.08 (±87 × 10−4) | 2.61 c (±14 × 10−2) | 35.19 c (±10 × 10−1) | 38.57 a (±15 × 10−1) | −1.65 a (±15 × 10−1) | 0.006 a (±62 × 10−5) | |
F. mosseae (±SE) | 1.16 bc (±98 × 10−3) | 0.09 (±84 × 10−4) | 3.02 ab (±64 × 10−3) | 36.56 bc (±99 × 10−2) | 33.82 b (±14 × 10−1) | −1.85 c (±15 × 10−1) | 0.004 ab (±50 × 10−5) | |
F value | 5.34 * | 0.66 ns | 9.08 * | 5.46 * | 14.27 * | 22.01 * | 4.94 * | |
SEM (AMF) | ± 75 × 10−3 | ± 7 × 10−3 | ± 78 × 10−3 | ± 69 × 10−2 | ± 79 × 10−2 | ± 20 × 10−2 | ± 1 × 10−3 | |
Irrigation | Control (±SE) | 1.12 b (±11 × 10−2) | 0.06 b (±82 × 10−4) | 3.22 a (±10 × 10−2) | 32.61 c (±11 × 10−1) | 45.06 a (±13 × 10−1) | −0.91 a (±37 × 10−2) | 0.005 b (±59 × 10−5) |
IW/ET = 1 (±SE) | 1.59 a (±11 × 10−2) | 0.11 a (±12 × 10−3) | 3.10 a (±12 × 10−2) | 34.82 b (±11 × 10−1) | 41.04 b (±14 × 10−1) | −1.31 b (±25 × 10−2) | 0.002 c (±38 × 10−5) | |
IW/ET = 0.8 (±SE) | 1.58 a (±10 × 10−2) | 0.13 a (±11 × 10−3) | 3.21 a (±94 × 10−3) | 40.30 a (±69 × 10−2) | 37.31 c (±11 × 10−1) | −1.83 c (±19 × 10−2) | 0.008 a (±10 × 10−4) | |
IW/ET = 0.6 (±SE) | 1.09 b (±87 × 10−3) | 0.06 b (±68 × 10−4) | 2.64 b (±11 × 10−2) | 36.66 b (±10 × 10−1) | 27.31 d (±73 × 10−2) | −2.27 d (±50 × 10−2) | 0.005 b (±91 × 10−5) | |
IW/ET = 0.4 (±SE) | 0.78 c (±83 × 10−3) | 0.04 c (±22 × 10−4) | 2.43 b (±16 × 10−2) | 41.17 a (±65 × 10−2) | 23.19 e (±35 × 10−2) | −2.62 e (±32 × 10−2) | 0.003 bc (±69 × 10−5) | |
F value | 17.19 * | 23.58 * | 17.19 * | 21.24 * | 106.86 * | 9.44 * | 9.74 * | |
SEM (Irrigation) | ± 84 × 10−3 | ± 8 × 10−3 | ± 88 × 10−3 | ± 78 × 10−2 | ± 89 × 10−2 | ± 22 × 10−2 | ± 1 × 10−3 | |
AMF × Irrigation | F value | 8.22 * | 7.75 * | 17.34 * | 8.86 * | 5.37 * | 4.11 * | 4.82 * |
SEM (Interaction) | ± 17 × 10−2 | ± 15 × 10−3 | ± 17 × 10−2 | ± 16 × 10−1 | ± 18 × 10−1 | ± 45 × 10−2 | ± 1 × 10−3 |
Factors | Treatments | Rate of Photosynthesis (µmoL CO2 m−2 s−1) | Stomatal Conductance (moL H2O m−2 s−1) | Rate of Transpiration (mmoL H2O m−2 s−1) | Leaf Temperature (°C) | Chlorophyll Content (SPAD Units) | Water Potential (MPa) | Relative Growth Rate (g g−1 day−1) |
---|---|---|---|---|---|---|---|---|
AMF | Non inoculated (±SE) | 1.60 (±11 × 10−2) | 0.02 b (±11 × 10−4) | 0.87 d (±23 × 10− 3) | 42.67 a (±32 × 10−2) | 35.44 b (±16 × 10−1) | −2.15 c (±14 × 10−1) | 0.001 c (±48 × 10−5) |
R. intraradices (±SE) | 1.68 (±16 × 10−2) | 0.02 b (±98 × 10−5) | 0.94 c (±26 × 10−3) | 42.89 a (±38 × 10−2) | 38.45 ab (±15 × 10−1) | −1.94 b (±14 × 10−1) | 0.004 b (±42 × 10−5) | |
C. etunicatum (±SE) | 2.00 (±21 × 10−2) | 0.03 a (±73 × 10−4) | 1.06 a (±38 × 10−3) | 41.07 b (±82 × 10−2) | 40.21 a (±14 × 10−1) | −1.75 a (±15 × 10−1) | 0.006 a (±54 × 10−5) | |
F. mosseae (±SE) | 1.84 (±11 × 10−2) | 0.02 b (±77 × 10−5) | 0.99 b (±22 × 10−3) | 43.11 a (±31 × 10−2) | 36.46 b (±18 × 10−1) | −1.99 b (±14 × 10−1) | 0.001 c (±62 × 10−5) | |
F value | 2.41 ns | 9.16 * | 19.93 * | 9.04 * | 4.13 * | 43.61 * | 41.31 * | |
SEM (AMF) | ± 11 × 10−2 | ± 3 × 10−3 | ± 18 × 10−3 | ± 31 × 10−2 | ± 10 × 10−1 | ± 24 × 10−2 | ± 1 × 10−3 | |
Irrigation | Control (±SE) | 1.50 c (±95 × 10−2) | 0.02 b (±95 × 10−5) | 1.03 b (±32 × 10−3) | 41.79 b (±35 × 10−2) | 48.6 a (±13 × 10−1) | −1.16 a (±39 × 10−2) | 0.003 b (±38 × 10−5) |
IW/ET = 1 (±SE) | 1.92 b (±18 × 10−2) | 0.04 a (±90 × 10−4) | 0.90 cd (±25 × 10− 3) | 39.39 c (±97 × 10−2) | 45.16 b (±15 × 10−1) | −1.45 b (±41 × 10−2) | 0.003 b (±56 × 10−5) | |
IW/ET = 0.8 (±SE) | 2.98 a (±21 × 10−2) | 0.01 b (±36 × 10−5) | 1.11 a (±43 × 10−3) | 43.21 a (±11 × 10−2) | 39.38 c (±16 × 10−1) | −2.00 c (±70 × 10−2) | 0.004 ab (±77 × 10−5) | |
IW/ET = 0.6(±SE) | 1.40 cd (±11 × 10−2) | 0.01 b (±78 × 10−4) | 0.94 c (±25 × 10−3) | 43.96 a (±31 × 10−2) | 30.07 d (±12 × 10−1) | −2.35 d (±51 × 10−2) | 0.005 a (±77 × 10−5) | |
IW/ET = 0.4 (±SE) | 1.12 d (±82 × 10− 3) | 0.02 b (±14 × 10−4) | 0.86 d (±28 × 10−3) | 43.82 a (±42 × 10−2) | 24.98 e (±36 × 10−2) | −2.81 e (±28 × 10−2) | 0.001 c (±73 × 10−5) | |
F value | 32.21 * | 13.04 * | 24.79 * | 30.64 * | 72.65 * | 614.59 * | 11.63 * | |
SEM (Irrigation) | ± 13 × 10−2 | ± 3 × 10−3 | ± 20 × 10−3 | ± 34 × 10−2 | ± 12 × 10−1 | ± 27 × 10−2 | ± 1 × 10−3 | |
AMF × Irrigation | F value | 7.28 * | 13.73 * | 21.14 * | 23.98 * | 4.15 * | 3.61 * | 3.11 * |
SEM (Interaction) | ± 26 × 10−2 | ± 6 × 10−2 | ± 40 × 10−3 | ± 69 × 10−2 | ± 23 × 10−1 | ± 56 × 10−2 | ± 1 × 10−3 |
Factors | Treatments | Root Colonization Percentage (%) | Total Spore Count | ||
---|---|---|---|---|---|
90 Days | 180 Days | 90 Days | 180 Days | ||
AMF | R. intraradices (±SE) | 35.07 b (±4.21) | 32.68 b (±4.22) | 114.8 a (± 8.00) | 64.00 b (± 8.12) |
C. etunicatum (±SE) | 45.48 a (±3.22) | 44.89 a (±3.54) | 82.05 a (± 5.91) | 85.55 a (± 6.67) | |
F. mosseae (±SE) | 27.13 c (±3.38) | 27.38 b (±3.91) | 50.60 ab (± 5.96) | 54.30 b (± 7.08) | |
F value | 147.24 * | 91.64 * | 3.70 * | 95.20 * | |
SEM (AMF) | (±1.60) | (± 1.98) | (± 3.19) | (± 3.73) | |
Irrigation | Control (±SE) | 29.65 b (±5.31) | 26.04 c (± 4.82) | 52.81 (± 9.61) | 49.81 c (± 9.08) |
IW/ET = 1 (±SE) | 40.59 a (± 6.28) | 42.11 a (± 6.94) | 138.12 (± 12.37) | 79.87 a (± 13.68) | |
IW/ET = 0.8 (±SE) | 33.80 b (± 5.53) | 32.59 b (± 5.52) | 60.75 (± 10.19) | 64.81 b (± 11.06) | |
IW/ET = 0.6 (±SE) | 17.22 c (± 4.07) | 17.49 d (± 3.96) | 31.44 (± 6.99) | 33.50 d (± 7.52) | |
IW/ET = 0.4 (±SE) | 13.34 c (± 2.78) | 12.95 d (± 2.87) | 26.19 (± 5.22) | 26.81 d (± 5.40) | |
F value | 40.47 * | 27.78 * | 2.51 ns | 27.55 * | |
SEM (Irrigation) | (± 1.79) | (± 2.21) | (± 3.57) | (± 4.17) | |
AMF × Irrigation | F value | 5.86 * | 4.13 * | 1.27 * | 4.54 * |
SEM (Interaction) | (± 3.58) | (± 4.43) | (± 7.14) | (± 8.34) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajan, L.J.; A. V., S.; K., S.G.; T. K., K. Arbuscular Mycorrhizal Fungi Inoculation as a Climate Adaptation Strategy for Establishment of Swietenia macrophylla King. Seedlings. Forests 2020, 11, 488. https://doi.org/10.3390/f11050488
Rajan LJ, A. V. S, K. SG, T. K. K. Arbuscular Mycorrhizal Fungi Inoculation as a Climate Adaptation Strategy for Establishment of Swietenia macrophylla King. Seedlings. Forests. 2020; 11(5):488. https://doi.org/10.3390/f11050488
Chicago/Turabian StyleRajan, Lakshmy J., Santhoshkumar A. V., Surendra Gopal K., and Kunhamu T. K. 2020. "Arbuscular Mycorrhizal Fungi Inoculation as a Climate Adaptation Strategy for Establishment of Swietenia macrophylla King. Seedlings" Forests 11, no. 5: 488. https://doi.org/10.3390/f11050488
APA StyleRajan, L. J., A. V., S., K., S. G., & T. K., K. (2020). Arbuscular Mycorrhizal Fungi Inoculation as a Climate Adaptation Strategy for Establishment of Swietenia macrophylla King. Seedlings. Forests, 11(5), 488. https://doi.org/10.3390/f11050488