Stem Damage Modifies the Impact of Wind on Norway Spruces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Design
2.2. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sommerfeld, A.; Senf, C.; Buma, B.; D’Amato, A.W.; Després, T.; Díaz-Hormazábal, I.; Fraver, S.; Frelich, L.E.; Gutiérrez, Á.G.; Hart, S.J.; et al. Patterns and drivers of recent disturbances across the temperate forest biome. Nat. Commun. 2018, 9, 4355. [Google Scholar] [CrossRef] [PubMed]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thom, D.; Seidl, R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol. Rev. 2016, 91, 760–781. [Google Scholar] [CrossRef] [PubMed]
- Seidl, R.; Schelhaas, M.-J.; Lexer, M.J. Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob. Chang. Biol. 2011, 17, 2842–2852. [Google Scholar] [CrossRef]
- Gregow, H.; Laaksonen, A.; Alper, M.E. Increasing large scale windstorm damage in Western, Central and Northern European forests, 1951–2010. Sci. Rep. 2017, 7, 46397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seidl, R.; Rammer, W. Climate change amplifies the interactions between wind and bark beetle disturbances in forest landscapes. Landsc. Ecol. 2017, 32, 1485–1498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderegg, W.R.; Anderegg, L.D.L.; Kerr, K.L.; Trugman, A.T. Widespread drought - induced tree mortality at dry range edges indicates that climate stress exceeds species’ compensating mechanisms. Glob. Chang. Biol. 2019, 25, 3793–3802. [Google Scholar] [CrossRef]
- Millar, C.I.; Stephenson, N.L. Temperate forest health in an era of emerging megadisturbance. Science 2015, 349, 823–826. [Google Scholar] [CrossRef]
- Schelhaas, M.-J.; Nabuurs, G.-J.; Schuck, A. Natural disturbances in the European forests in the 19th and 20th centuries. Glob. Chang. Biol. 2003, 9, 1620–1633. [Google Scholar] [CrossRef]
- Mason, B.; Valinger, E. Managing forests to reduce storm damage. In Living with the Storm Damage; Gardiner, E., Schuck, A., Schelhaas, M.-J., Orazio, C., Blennow, K., Nicoll, B., Eds.; European Forest Institute: Joensuu, Finland, 2013; pp. 87–97. [Google Scholar]
- Suvanto, S.; Henttonen, H.M.; Nöjd, P.; Mäkinen, H. Forest susceptibility to storm damage is affected by similar factors regardless of storm type: Comparison of thunder storms and autumn extra-tropical cyclones in Finland. For. Ecol. Manag. 2016, 381, 17–28. [Google Scholar] [CrossRef]
- Schuck, A.; Schelhaas, M.-J. Storm damage in Europe—An overview. In Living with the Storm Damage; Gardiner, E., Schuck, A., Schelhaas, M.-J., Orazio, C., Blennow, K., Nicoll, B., Eds.; European Forest Institute: Joensuu, Finland, 2013; pp. 15–25. [Google Scholar]
- Donis, J.; Kitenberga, M.; Snepsts, G.; Dubrovskis, E.; Jansons, A. Factors affecting windstorm damage at the stand level in hemiboreal forests in Latvia: Case study of 2005 winter storm. Silva Fenn. 2018, 52, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Venäläinen, A.; Zeng, H.; Peltola, H.; Talkkari, A.; Strandman, H.; Wang, K.; Kellomäki, S. Simulations of the influence of forest management on wind climate on a regional scale. Agric. For. Meteorol. 2004, 123, 149–158. [Google Scholar] [CrossRef]
- Zeng, H.; Peltola, H.; Väisänen, H.; Kellomäki, S. The effects of fragmentation on the susceptibility of a boreal forest ecosystem to wind damage. For. Ecol. Manage. 2009, 257, 1165–1173. [Google Scholar] [CrossRef]
- Gardiner, B.A.; Berry, P.; Moulia, B. Review: Wind impacts on plant growth, mechanics and damage. Plant Sci. 2016, 245, 94–118. [Google Scholar] [CrossRef] [PubMed]
- Peltola, H.; Kellomäki, S. A mechanistic model for calculating windthrow and stem breakage of Scots pines at stand edge. Silva Fenn. 1993, 27, 99–111. [Google Scholar] [CrossRef] [Green Version]
- Dupont, S.; Ikonen, V.-P.; Väisänen, H.; Peltola, H. Predicting tree damage in fragmented landscapes using a wind risk model coupled with an airflow model. Can. J. For. Res. 2015, 45, 1065–1076. [Google Scholar] [CrossRef]
- Zeng, H.; Garcia-Gonzalo, J.; Peltola, H.; Kellomäki, S. The effects of forest structure on the risk of wind damage at a landscape level in a boreal forest ecosystem. Ann. For. Sci. 2009, 67, 111. [Google Scholar] [CrossRef] [Green Version]
- Simard, M.; Omme, W.R.; Griffin, J.M.; Turner, M.G. Do mountain pine beetle outbreaks change the probability of active crown fire in lodgepole pine forests? Ecol. Monogr. 2011, 81, 3–24. [Google Scholar] [CrossRef]
- Buma, B. Disturbance interactions: Characterization, prediction, and the potential for cascading effects. Ecosphere 2015, 6, 70. [Google Scholar] [CrossRef]
- Peltola, H.; Kellomäki, S.; Väisänen, H.; Ikonen, V.-P. A mechanistic model for assessing the risk of wind and snow damage to single trees and stands of Scots pine, Norway spruce, and birch. Can. J. For. Res. 1999, 29, 647–661. [Google Scholar] [CrossRef]
- Schroeder, L.M. Tree Mortality by the Bark Beetle Ips typographus (L.) in storm-disturbed stands. Integr. Pest Manag. Rev. 2001, 6, 169–175. [Google Scholar] [CrossRef]
- Csilléry, K.; Kunstler, G.; Courbaud, B.; Allard, D.; Lassègues, P.; Haslinger, K.; Gardiner, B.A. Coupled effects of wind-storms and drought on tree mortality across 115 forest stands from the Western Alps and the Jura mountains. Glob. Chang. Biol. 2017, 23, 5092–5107. [Google Scholar] [CrossRef] [PubMed]
- Gregow, H.; Peltola, H.; Laapas, M.; Saku, S.; Venäläinen, A. Combined Occurrence of Wind, Snow Loading and Soil Frost with Implications for Risks to Forestry in Finland under the Current and Changing Climatic Conditions. Silva Fenn. 2011, 45, 35–54. [Google Scholar] [CrossRef] [Green Version]
- Heinonen, T.; Pukkala, T.; Ikonen, V.P.; Peltola, H.; Gregow, H.; Venäläinen, A. Consideration of strong winds, their directional distribution and snow loading in wind risk assessment related to landscape level forest planning. For. Ecol. Manage. 2011, 261, 710–719. [Google Scholar] [CrossRef]
- Vasiliauskas, R.; Stenlid, J.; Johansson, M. Fungi in bark peeling wounds of Picea abies in central Sweden. Eur. J. Plant Pathol. 1996, 26, 285–296. [Google Scholar] [CrossRef]
- Arhipova, N.; Gaitnieks, T.; Donis, J.; Stenlid, J.; Vasaitis, R. Butt rot incidence, causal fungi, and related yield loss in Picea abies stands of Latvia. Can. J. For. Res. 2011, 41, 2337–2345. [Google Scholar] [CrossRef]
- Schulze, E.D.; Bouriaud, O.; Wäldchen, J.; Eisenhauer, N.; Walentowski, H.; Seele, C.; Heinze, E.; Pruschitzki, U.; Dǎnilǎ, G.; Marin, G.; et al. Ungulate browsing causes species loss in deciduous forests independent of community dynamics and sil- vicultural management in Central and Southeastern Europe. Ann. For. Res. 2014, 57, 267–288. [Google Scholar] [CrossRef] [Green Version]
- Borkowski, J.; Banul, R.; Jurkiewicz, J.; Hołdyński, C.; Świeczkowska, J.; Nasiadko, M.; Załuski, D. High density of keystone herbivore vs. conservation of natural resources: Factors affecting red deer distribution and impact on vegetation in Słowiński. For. Ecol. Manage. 2019, 450, 117503. [Google Scholar] [CrossRef]
- Baumanis, J.; Ruņģis, E.D.; Gailīte, A.; Gaile, A.; Done, G.; Lūkins, M.; Howlett, S.J.; Ozoliņš, J. Genetic Structure of Red Deer (Cervus elaphus L.) A Review of the Population and its Reintroduction in Latvia. Balt. For. 2018, 24, 296–303. [Google Scholar]
- Bragina, E.V.; Ives, A.R.; Pidgeon, A.M.; Balčiauskas, L.; Csányi, S.; Khoyetskyy, P.; Kysucká, K.; Lieskovsky, J.; Ozolins, J.; Randveer, T.; et al. Wildlife population changes across Eastern Europe after the collapse of socialism. Front. Ecol. Environ. 2018, 16, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Cukor, J.; Vacek, Z.; Linda, R.; Vacek, S.; Marada, P.; Šimůnek, V.; Havránek, F. Effects of Bark Stripping on Timber Production and Structure of Norway Spruce Forests in Relation to Climatic Factors. Forests 2019, 10, 320. [Google Scholar] [CrossRef] [Green Version]
- Metslaid, M.; Palli, T.; Randveer, T.; Sims, A.; Jõgiste, K. The condition of Scots pine stands in Lahemaa National Park, Estonia 25 years after browsing by moose (Alces alces). Boreal Environ. Res. 2013, 18, 25–34. [Google Scholar]
- Vasiliauskas, R. Damage to trees due to forestry operations and its pathological significance in temperate forests: A literature review. Forestry 2001, 74, 319–336. [Google Scholar] [CrossRef] [Green Version]
- Metslaid, M.; Köster, K.; Jõgiste, K.; Randveer, T.; Voolma, K.; Moser, K. The Effect of Simulated Bark Stripping by Moose on Scots Pine Height Growth: An Experimental Treatment. Balt. For. 2013, 19, 61–66. [Google Scholar]
- Gaitnieks, T.; Zaļuma, A.; Kenigsvalde, K.; Kļaviņa, D.; Brauners, I.; Piri, T. Susceptibility of Small-Diameter Norway Spruce Understory Stumps to Heterobasidion Spore Infection. Forests 2019, 10, 521. [Google Scholar] [CrossRef] [Green Version]
- Honkaniemi, J.; Lehtonen, M.; Väisänen, H.; Peltola, H. Effects of wood decay by Heterobasidion annosum on the vulnerability of Norway spruce stands to wind damage: A mechanistic modelling approach. Can. J. For. Res. 2017, 47, 777–787. [Google Scholar] [CrossRef]
- Gardiner, B.A.; Blennow, K.; Carnus, J.-M.; Fleischer, M.; Ingemarson, F.; Landmann, G.; Lindner, M.; Marzano, M.; Nicoll, B.C.; Orazio, C.; et al. Destructive storms in European Forests: Past and Forthcoming Impacts. Final Report to EC DG Environment. 2010. Available online: http://ec.europa.eu/environment/forests/fprotection.htm (accessed on 5 February 2020).
- Hanewinkel, M.; Peyron, J.L. The economic impact of storms. In Living with the Storm Damage; Gardiner, E., Schuck, A., Schelhaas, M.-J., Orazio, C., Blennow, K., Nicoll, B., Eds.; European Forest Institute: Joensuu, Finland, 2013; pp. 55–63. [Google Scholar]
- Kärhä, K.; Anttonen, T.; Poikela, A.; Palander, T.; Laurén, A.; Peltola, H.; Nuutinen, Y. Evaluation of salvage logging productivity and costs in windthrown Norway spruce-dominated forests. Forests 2018, 9, 280. [Google Scholar] [CrossRef] [Green Version]
- Peltola, H.; Kellomäki, S.; Hassinen, A.; Granander, M. Mechanical stability of Scots pine, Norway spruce and birch: An analysis of tree-pulling experiments in Finland. For. Ecol. Manage. 2000, 135, 143–153. [Google Scholar] [CrossRef]
- Zubizarreta-Gerendiain, A.; Pellikka, P.; Garcia-Gonzalo, J.; Ikonen, V.P.; Peltola, H. Factors affecting wind and snow damage of individual trees in a small management unit in Finland: Assessment based on inventoried damage and mechanistic modelling. Silva Fenn. 2012, 46, 181–196. [Google Scholar] [CrossRef] [Green Version]
- Nagel, T.A.; Diaci, J. Intermediate wind disturbance in an old-growth beech-fir forest in southeastern Slovenia. Can. J. For. Res. 2006, 36, 629–638. [Google Scholar] [CrossRef]
- Dubrovskis, E.; Donis, J.; Racenis, E. Wind-induced stem breakage height effect on potentially recovered timber value: Case study of the Scots pine (Pinus sylvestris L.) in Latvia. For. Stud. 2018, 69, 24–32. [Google Scholar] [CrossRef] [Green Version]
- Hart, E.; Sim, K.; Kamimura, K.; Meredieu, C.; Guyon, D.; Gardiner, B.A. Use of machine learning techniques to model wind damage to forests. Agric. For. Meteorol. 2019, 265, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Gardiner, B.A.; Byrne, K.; Hale, S.E.; Kamimura, K.; Mitchell, S.J.; Peltola, H.; Ruel, J.C. A review of mechanistic modelling of wind damage risk to forests. Forestry 2008, 81, 447–463. [Google Scholar] [CrossRef] [Green Version]
- Kamimura, K.; Gardiner, B.A.; Dupont, S.; Guyon, D.; Meredieu, C. Mechanistic and statistical approaches to predicting wind damage to individual maritime pine (Pinus pinaster) trees in forests. Can. J. For. Res. 2015, 46, 88–100. [Google Scholar] [CrossRef]
- Jacobsen, M.K. History and Principles of Close to Nature Forest Management: A Central European Perspective. In Textbook 2—Tools for Preserving Woodland Biodiversity; Forfang, A.S., Marciau, R., Paltto, H., Andersson, L., Tardy, B., Eds.; Nature Conservation Exchange Experience, NACONEX, Pro-Natura: Göteborg, Sweden, 2001; pp. 56–60. Available online: http://www.pro-natura.net/naconex/news5/E2_11.pdf (accessed on 15 December 2019).
- Welch, D.; Scott, D. An estimate of timber degrade in Sitka spruce due to bark stripping by deer in a Scottish plantation. Forestry 2008, 81, 489–497. [Google Scholar] [CrossRef] [Green Version]
- Ahti, T.; Hämet-ahti, L.; Jalas, J. Vegetation zones and their sections in northwestern Europe. Ann. Bot. Fenn. 1968, 5, 169–211. [Google Scholar]
- Silava Methodology of National Forest Inventory. Available online: http://www.silava.lv/userfiles/file/Nacionalais%20meza%20monitorings/Me%C5%BEa%20resursu%20monitoringa%20metodika%2026_04_2013.pdf (accessed on 3 February 2020). (In Latvian).
- Gschwantner, T.; Alberdi, I.; Balázs, A.; Bauwens, S.; Bender, S.; Borota, D.; Bosela, M.; Bouriaud, O.; Cañellas, I.; Donis, J.; et al. Harmonisation of stem volume estimates in European National Forest Inventories. Ann. For. Sci. 2019, 76, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Yáñez, O.; Mola-Yudego, B.; Eriksen, R.; González-Olabarria, J.R. Assessment of the main natural disturbances on Norwegian forest based on 20 years of national inventory. PLoS ONE 2016, 11, e0161361. [Google Scholar] [CrossRef]
- Wulff, S.; Roberge, C.; Ringvall, A.H.; Holm, S.; Ståhl, G. On the possibility to monitor and assess forest damage within large scale monitoring programmes. Silva Fenn. 2013, 47, 1000. [Google Scholar] [CrossRef]
- Bušs, K. Fundamentals of Forest Classification in Latvia SSR; LRZTIPI: Rīga, Latvia, 1976; p. 24. (In Latvian) [Google Scholar]
- R CoreTeam. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 1 March 2020).
- Bürkner, P.C. Advanced Bayesian Multilevel Modeling with the R Package brms. R J. 2018, 10, 395–411. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 26. [Google Scholar] [CrossRef] [Green Version]
- Lenth, R. Emmeans: Estimated Marginal Means, aka Least-Squares Means. R Package Version 1.4.4. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 5 March 2020).
- Priedītis, A.; Howlett, S.J.; Baumanis, J.; Bagrade, G.; Done, G.; Jansons, Ā.; Neimane, U.; Ornicāns, A.; Stepanova, A.; Šmits, A.; et al. Quantification of Deer Browsing in Summer and Its Importance for Game Management in Latvia. Balt. For. 2017, 23, 423–431. [Google Scholar]
- Burneviča, N.; Jansons, Ā.; Zaļuma, A.; Kļaviņa, D.; Jansons, J.; Gaitnieks, T. Fungi Inhabiting Bark Stripping Wounds Made by Large Game on Stems of Picea abies (L.) Karst. in Latvia. Balt. For. 2016, 22, 2–7. [Google Scholar]
- Metzler, B.; Hecht, U.; Nill, M.; Brüchert, F.; Fink, S.; Kohnle, U. Comparing Norway spruce and silver fir regarding impact of bark wounds. For. Ecol. Manag. 2012, 274, 99–107. [Google Scholar] [CrossRef]
- Giordano, L.; Nicolotti, G.; Gonthier, P. Effect of Heterobasidion annosum s.l. Root and Butt Rots on the Stability of Norway Spruce: An Uprooting Test. In Proceedings of the XIII International Conference on Root and Butt Root of Forest Trees. Firenze (FI)—S. Martino di Castrozza (TN), Trento, Italy, 4–10 September 2012; Capretti, P., Comparini, P., Garbelotto, M., la Porta, N., Santini, A., Eds.; Unive: Venice, Italy, 2012; pp. 247–250. [Google Scholar]
- Krisans, O.; Matisons, R.; Burnevica, N.; Bruna, L.; Elferts, D.; Kalvane, L.; Jansons, A. Presence of Root Rot Reduces Stability of Norway Spruce (Picea abies): Results of Static Pulling Tests in Latvia. Forests 2020, 11, 416. [Google Scholar] [CrossRef] [Green Version]
- Brüchert, F.; Šeho, M.; Kohnle, U. Impact of bark wounds on sapwood in Norway spruce and silver fir. Eur. J. For. Res. 2017, 136, 957–969. [Google Scholar] [CrossRef]
- Mäkinen, H.; Hallaksela, A.-M.; Isomäki, A. Increment and decay in Norway spruce and Scots pine after artificial logging damage. Can. J. For. Res. 2007, 37, 2130–2141. [Google Scholar] [CrossRef]
- Stokes, A. Responses of Young Trees To Wind: Effects on Root Architecture and Anchorage Strength. Ph.D. Thesis, University of York, York, UK, 1994; p. 162. [Google Scholar]
- Valinger, E.; Fridman, J. Factors affecting the probability of windthrow at stand level as a result of Gudrun winter storm in southern Sweden. For. Ecol. Manag. 2011, 262, 398–403. [Google Scholar] [CrossRef]
- Schütz, J.-P.; Götz, M.; Schmid, W.; Mandallaz, D. Vulnerability of spruce (Picea abies) and beech (Fagus sylvatica) forest stands to storms and consequences for silviculture. Eur. J. For. Res. 2006, 125, 291–302. [Google Scholar] [CrossRef]
- Bošeľa, M.; Konôpka, B.; Šebeň, V.; Vladovič, J.; Tobin, B. Modelling height to diameter ratio—An opportunity to increase Norway spruce stand stability in the Western Carpathians Modelovanie štíhlostného kvocientu—Možnosti zvýšenia statickej stability smrekových porastov v Západných Karpatoch. Cent. Eur. For. J. 2014, 60, 71–80. [Google Scholar]
- Zeng, H.; Pukkala, T.; Peltola, H. The use of heuristic optimization in risk management of wind damage in forest planning. For. Ecol. Manag. 2007, 241, 189–199. [Google Scholar] [CrossRef]
- Peltola, H.; Ikonen, V.; Gregow, H.; Strandman, H.; Kilpeläinen, A.; Venäläinen, A.; Kellomäki, S. Impacts of climate change on timber production and regional risks of wind-induced damage to forests in Finland. For. Ecol. Manag. 2010, 260, 833–845. [Google Scholar] [CrossRef]
- Wam, H.K.; Hjeljord, O. Moose summer and winter diets along a large scale gradient of forage availability in southern Norway. Eur. J. Wildl. Res. 2010, 56, 745–755. [Google Scholar] [CrossRef]
- Díaz-Yáñez, O.; Mola-Yudego, B.; González-Olabarria, J.R. What variables make a forest stand vulnerable to browsing damage occurrence? Silva Fenn. 2017, 51, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, A.; Hanewinkel, M.; Bauhus, J.; Kohnle, U. How does silviculture affect storm damage in forests of south-western Germany? Results from empirical modeling based on long-term observations. Eur. J. For. Res. 2012, 131, 229–247. [Google Scholar] [CrossRef]
- Kuboyama, H.; Oka, H. Climate Risks and Age-related Damage Probabilities—Effects on the Economically Optimal Rotation Length for Forest Stand Management in Japan. Silva Fenn. 2000, 34, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Wood, C.J. Understanding wind forces on trees. In Wind and Trees; Coutts, M.P., Grace, J., Eds.; Cambridge University Press: Cambridge, UK, 1995; pp. 133–164. [Google Scholar]
Abbreviation | Description | Classes/Range | Number of Observations/Mean ± SD |
---|---|---|---|
Root dam | Root-stump damage (roots and stump—up to 30 cm from root collar) | 0–no damage | P1–27,490 P2–26,727 |
1–damaged | P1–120 P2–135 | ||
Stem dam | Stem damage | 0–no damage | P1–23,629 P2–21,905 |
1–damaged | P1–3981 P2–4957 | ||
Age | Stand age (years) | 12 to 160+ years | P1–61.0 ± 26.2 P2–62.9 ± 27.1 |
Height | Mean height of the dominant canopy trees (m) | 8–40 | P1–22.1 ± 5.85 P2–22.8 ± 5.91 |
Volume | Mean standing volume (m3 ha−1) | 2.5–850 | P1–291 ± 143 P2–304 ± 152 |
Species | Dominant tree species | Scots Pine (Pinus sylvestris L.) | P1–651, P2–567 |
Common Oak (Quercus robur L.) | P1–19, P2–17 | ||
Ash (Fraxinus excelsior L.) | P1–21, P2–7 | ||
Norway Spruce | P1–849, P2–823 | ||
Birch (Betula pendula Roth and B. pubescens Ehrh.) | P1–709, P2–675 | ||
Black alder (Alnus glutinosa (L.) Gaertn) | P1–126, P2–132 | ||
Aspen (Populus tremula L.) | P1–198, P2–173 | ||
Grey alder (Alnus incana (L.) Moench) | P1–110, P2–88 | ||
Number | Stand density (trees ha−1) | 100–17,180 | P1–1682 ± 1425 P2–1590 ± 1327 |
Basal area | Mean basal area of the dominant canopy layer (m2 ha−1) | 0.7–77 | P1–25.1 ± 9.57 P2–26.2 ± 9.82 |
Management | Harvesting operations | 1. thinned in the last 5 years 2. no management in the last 5 years 3. other management activity | P1–0, P2–186 P1–2683, P2–2211P1–0, P2–95 |
Soil group | Soil type (based on moisture regime) | 1. dry mineral soil | P1–1259, P2–1145 |
2. wet mineral soil | P1–300, P2–285 | ||
3. peat soil | P1–177, P2–166 | ||
4. drained mineral soil | P1–571, P2–526 | ||
5. drained peat soil | P1–376, P2–360 | ||
Slenderness ratio | Height2/diameter | 1.7–75.7 | P1–21.9 ± 5.52 |
P2–20.2 ± 5.15 | |||
d/dmax | Diameter/maximal diameter in stand | 0.2–0.9 | P1–0.591 ± 0.183 |
P2–0.593 ± 0.183 | |||
Break height | Snapping height (m) from the root collar | 1–24.5 | P1–7.38 ± 4.69 |
P2–7.73 ± 4.68 | |||
Damage intensity | The relative damaged area of stem circumference (%) | 0. no damage | P1–356, P2–280 |
1. ≤30% | P1–32, P2–18 | ||
2. >30% | P1–33, P2–12 |
Diameter Classes with and without Stem Damage | Live | Wind Damage | Damaged of the Total, % | Live | Wind Damage | Damaged of the Total, % |
---|---|---|---|---|---|---|
16–21 cm diameter | 16,310 | 580 | 3.4 | 15,213 | 570 | 3.6 |
No damage | 14,049 | 452 | 3.1 | 12,326 | 418 | 3.3 |
Damaged | 2261 | 128 | 5.4 | 2887 | 152 | 5.0 |
21.1–27 cm diameter | 5936 | 235 | 3.8 | 6148 | 247 | 3.9 |
No damage | 5005 | 185 | 3.6 | 5008 | 184 | 3.5 |
Damaged | 931 | 50 | 5.1 | 1140 | 63 | 5.2 |
27.1–33 cm diameter | 2674 | 123 | 4.4 | 2827 | 114 | 3.9 |
No damage | 2284 | 98 | 4.1 | 2384 | 92 | 3.7 |
Damaged | 390 | 25 | 6.0 | 443 | 22 | 4.7 |
33.1–39 cm diameter | 1110 | 55 | 4.7 | 1079 | 53 | 4.7 |
No damage | 975 | 44 | 4.3 | 919 | 45 | 4.7 |
Damaged | 135 | 11 | 7.5 | 160 | 8 | 4.8 |
39.1–45 cm diameter | 404 | 25 | 5.8 | 404 | 26 | 6.0 |
No damage | 359 | 21 | 5.5 | 343 | 23 | 6.3 |
Damaged | 45 | 4 | 8.2 | 61 | 3 | 4.7 |
>45.1 cm diameter | 207 | 13 | 5.9 | 226 | 10 | 4.2 |
No damage | 194 | 12 | 5.8 | 200 | 8 | 3.8 |
Damaged | 13 | 1 | 7.1 | 26 | 2 | 7.1 |
Variable | Estimate | Est. Error | l-95% CI | u-95% CI |
---|---|---|---|---|
Intercept | −7.20 | 0.29 | −7.79 | −6.64 |
Soil group | ||||
Wet mineral soil | −0.69 | 0.22 | −1.13 | −0.27 |
Peat soil | −0.91 | 0.32 | −1.55 | −0.29 |
Drained mineral soil | −0.57 | 0.17 | −0.92 | −0.24 |
Drained peat soil | −0.45 | 0.19 | −0.84 | −0.08 |
Damaged root | 3.27 | 0.29 | 2.71 | 3.85 |
Damaged stem | 0.52 | 0.09 | 0.35 | 0.69 |
Stand age | 0.47 | 0.08 | 0.31 | 0.62 |
Species: | ||||
Oak | −1.00 | 0.97 | −2.95 | 0.89 |
Ash | 0.74 | 0.71 | −0.67 | 2.12 |
Spruce | 1.34 | 0.19 | 0.96 | 1.72 |
Birch | 0.52 | 0.21 | 0.11 | 0.94 |
Black alder | 2.01 | 0.35 | 1.35 | 2.70 |
Aspen | 0.73 | 0.29 | 0.16 | 1.28 |
Grey alder | 0.90 | 0.44 | 0.02 | 1.74 |
Density | −0.37 | 0.07 | −0.51 | −0.23 |
Basal area | 0.14 | 0.07 | −0.00 | 0.27 |
Harvesting operations | ||||
Other management activity | −0.20 | 0.27 | −0.74 | 0.33 |
Thinning in the last 5 years | 0.24 | 0.23 | −0.21 | 0.69 |
h2/d | −1.20 | 0.07 | −1.34 | −1.07 |
d/dmax | 0.05 | 0.04 | −0.04 | 0.13 |
Explanatory Variables | Estimate | se | t-Value | p-Value |
---|---|---|---|---|
Intercept | 0.522 | 0.029 | 18.00 | <0.001 |
Stem damage intensity class ≤30% | −0.014 | 0.035 | −0.39 | 0.696 |
Stem damage intensity class >30% | −0.122 | 0.037 | −3.30 | 0.001 |
h2/d | −0.004 | 0.002 | −2.41 | 0.016 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Snepsts, G.; Kitenberga, M.; Elferts, D.; Donis, J.; Jansons, A. Stem Damage Modifies the Impact of Wind on Norway Spruces. Forests 2020, 11, 463. https://doi.org/10.3390/f11040463
Snepsts G, Kitenberga M, Elferts D, Donis J, Jansons A. Stem Damage Modifies the Impact of Wind on Norway Spruces. Forests. 2020; 11(4):463. https://doi.org/10.3390/f11040463
Chicago/Turabian StyleSnepsts, Guntars, Mara Kitenberga, Didzis Elferts, Janis Donis, and Aris Jansons. 2020. "Stem Damage Modifies the Impact of Wind on Norway Spruces" Forests 11, no. 4: 463. https://doi.org/10.3390/f11040463
APA StyleSnepsts, G., Kitenberga, M., Elferts, D., Donis, J., & Jansons, A. (2020). Stem Damage Modifies the Impact of Wind on Norway Spruces. Forests, 11(4), 463. https://doi.org/10.3390/f11040463