Stem Damage Modifies the Impact of Wind on Norway Spruces
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Design
2.2. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sommerfeld, A.; Senf, C.; Buma, B.; D’Amato, A.W.; Després, T.; Díaz-Hormazábal, I.; Fraver, S.; Frelich, L.E.; Gutiérrez, Á.G.; Hart, S.J.; et al. Patterns and drivers of recent disturbances across the temperate forest biome. Nat. Commun. 2018, 9, 4355. [Google Scholar] [CrossRef] [PubMed]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Thom, D.; Seidl, R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol. Rev. 2016, 91, 760–781. [Google Scholar] [CrossRef] [PubMed]
- Seidl, R.; Schelhaas, M.-J.; Lexer, M.J. Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob. Chang. Biol. 2011, 17, 2842–2852. [Google Scholar] [CrossRef]
- Gregow, H.; Laaksonen, A.; Alper, M.E. Increasing large scale windstorm damage in Western, Central and Northern European forests, 1951–2010. Sci. Rep. 2017, 7, 46397. [Google Scholar] [CrossRef] [PubMed]
- Seidl, R.; Rammer, W. Climate change amplifies the interactions between wind and bark beetle disturbances in forest landscapes. Landsc. Ecol. 2017, 32, 1485–1498. [Google Scholar] [CrossRef] [PubMed]
- Anderegg, W.R.; Anderegg, L.D.L.; Kerr, K.L.; Trugman, A.T. Widespread drought - induced tree mortality at dry range edges indicates that climate stress exceeds species’ compensating mechanisms. Glob. Chang. Biol. 2019, 25, 3793–3802. [Google Scholar] [CrossRef]
- Millar, C.I.; Stephenson, N.L. Temperate forest health in an era of emerging megadisturbance. Science 2015, 349, 823–826. [Google Scholar] [CrossRef]
- Schelhaas, M.-J.; Nabuurs, G.-J.; Schuck, A. Natural disturbances in the European forests in the 19th and 20th centuries. Glob. Chang. Biol. 2003, 9, 1620–1633. [Google Scholar] [CrossRef]
- Mason, B.; Valinger, E. Managing forests to reduce storm damage. In Living with the Storm Damage; Gardiner, E., Schuck, A., Schelhaas, M.-J., Orazio, C., Blennow, K., Nicoll, B., Eds.; European Forest Institute: Joensuu, Finland, 2013; pp. 87–97. [Google Scholar]
- Suvanto, S.; Henttonen, H.M.; Nöjd, P.; Mäkinen, H. Forest susceptibility to storm damage is affected by similar factors regardless of storm type: Comparison of thunder storms and autumn extra-tropical cyclones in Finland. For. Ecol. Manag. 2016, 381, 17–28. [Google Scholar] [CrossRef]
- Schuck, A.; Schelhaas, M.-J. Storm damage in Europe—An overview. In Living with the Storm Damage; Gardiner, E., Schuck, A., Schelhaas, M.-J., Orazio, C., Blennow, K., Nicoll, B., Eds.; European Forest Institute: Joensuu, Finland, 2013; pp. 15–25. [Google Scholar]
- Donis, J.; Kitenberga, M.; Snepsts, G.; Dubrovskis, E.; Jansons, A. Factors affecting windstorm damage at the stand level in hemiboreal forests in Latvia: Case study of 2005 winter storm. Silva Fenn. 2018, 52, 1–8. [Google Scholar] [CrossRef]
- Venäläinen, A.; Zeng, H.; Peltola, H.; Talkkari, A.; Strandman, H.; Wang, K.; Kellomäki, S. Simulations of the influence of forest management on wind climate on a regional scale. Agric. For. Meteorol. 2004, 123, 149–158. [Google Scholar] [CrossRef]
- Zeng, H.; Peltola, H.; Väisänen, H.; Kellomäki, S. The effects of fragmentation on the susceptibility of a boreal forest ecosystem to wind damage. For. Ecol. Manage. 2009, 257, 1165–1173. [Google Scholar] [CrossRef]
- Gardiner, B.A.; Berry, P.; Moulia, B. Review: Wind impacts on plant growth, mechanics and damage. Plant Sci. 2016, 245, 94–118. [Google Scholar] [CrossRef] [PubMed]
- Peltola, H.; Kellomäki, S. A mechanistic model for calculating windthrow and stem breakage of Scots pines at stand edge. Silva Fenn. 1993, 27, 99–111. [Google Scholar] [CrossRef]
- Dupont, S.; Ikonen, V.-P.; Väisänen, H.; Peltola, H. Predicting tree damage in fragmented landscapes using a wind risk model coupled with an airflow model. Can. J. For. Res. 2015, 45, 1065–1076. [Google Scholar] [CrossRef]
- Zeng, H.; Garcia-Gonzalo, J.; Peltola, H.; Kellomäki, S. The effects of forest structure on the risk of wind damage at a landscape level in a boreal forest ecosystem. Ann. For. Sci. 2009, 67, 111. [Google Scholar] [CrossRef]
- Simard, M.; Omme, W.R.; Griffin, J.M.; Turner, M.G. Do mountain pine beetle outbreaks change the probability of active crown fire in lodgepole pine forests? Ecol. Monogr. 2011, 81, 3–24. [Google Scholar] [CrossRef]
- Buma, B. Disturbance interactions: Characterization, prediction, and the potential for cascading effects. Ecosphere 2015, 6, 70. [Google Scholar] [CrossRef]
- Peltola, H.; Kellomäki, S.; Väisänen, H.; Ikonen, V.-P. A mechanistic model for assessing the risk of wind and snow damage to single trees and stands of Scots pine, Norway spruce, and birch. Can. J. For. Res. 1999, 29, 647–661. [Google Scholar] [CrossRef]
- Schroeder, L.M. Tree Mortality by the Bark Beetle Ips typographus (L.) in storm-disturbed stands. Integr. Pest Manag. Rev. 2001, 6, 169–175. [Google Scholar] [CrossRef]
- Csilléry, K.; Kunstler, G.; Courbaud, B.; Allard, D.; Lassègues, P.; Haslinger, K.; Gardiner, B.A. Coupled effects of wind-storms and drought on tree mortality across 115 forest stands from the Western Alps and the Jura mountains. Glob. Chang. Biol. 2017, 23, 5092–5107. [Google Scholar] [CrossRef] [PubMed]
- Gregow, H.; Peltola, H.; Laapas, M.; Saku, S.; Venäläinen, A. Combined Occurrence of Wind, Snow Loading and Soil Frost with Implications for Risks to Forestry in Finland under the Current and Changing Climatic Conditions. Silva Fenn. 2011, 45, 35–54. [Google Scholar] [CrossRef]
- Heinonen, T.; Pukkala, T.; Ikonen, V.P.; Peltola, H.; Gregow, H.; Venäläinen, A. Consideration of strong winds, their directional distribution and snow loading in wind risk assessment related to landscape level forest planning. For. Ecol. Manage. 2011, 261, 710–719. [Google Scholar] [CrossRef]
- Vasiliauskas, R.; Stenlid, J.; Johansson, M. Fungi in bark peeling wounds of Picea abies in central Sweden. Eur. J. Plant Pathol. 1996, 26, 285–296. [Google Scholar] [CrossRef]
- Arhipova, N.; Gaitnieks, T.; Donis, J.; Stenlid, J.; Vasaitis, R. Butt rot incidence, causal fungi, and related yield loss in Picea abies stands of Latvia. Can. J. For. Res. 2011, 41, 2337–2345. [Google Scholar] [CrossRef]
- Schulze, E.D.; Bouriaud, O.; Wäldchen, J.; Eisenhauer, N.; Walentowski, H.; Seele, C.; Heinze, E.; Pruschitzki, U.; Dǎnilǎ, G.; Marin, G.; et al. Ungulate browsing causes species loss in deciduous forests independent of community dynamics and sil- vicultural management in Central and Southeastern Europe. Ann. For. Res. 2014, 57, 267–288. [Google Scholar] [CrossRef]
- Borkowski, J.; Banul, R.; Jurkiewicz, J.; Hołdyński, C.; Świeczkowska, J.; Nasiadko, M.; Załuski, D. High density of keystone herbivore vs. conservation of natural resources: Factors affecting red deer distribution and impact on vegetation in Słowiński. For. Ecol. Manage. 2019, 450, 117503. [Google Scholar] [CrossRef]
- Baumanis, J.; Ruņģis, E.D.; Gailīte, A.; Gaile, A.; Done, G.; Lūkins, M.; Howlett, S.J.; Ozoliņš, J. Genetic Structure of Red Deer (Cervus elaphus L.) A Review of the Population and its Reintroduction in Latvia. Balt. For. 2018, 24, 296–303. [Google Scholar]
- Bragina, E.V.; Ives, A.R.; Pidgeon, A.M.; Balčiauskas, L.; Csányi, S.; Khoyetskyy, P.; Kysucká, K.; Lieskovsky, J.; Ozolins, J.; Randveer, T.; et al. Wildlife population changes across Eastern Europe after the collapse of socialism. Front. Ecol. Environ. 2018, 16, 77–81. [Google Scholar] [CrossRef]
- Cukor, J.; Vacek, Z.; Linda, R.; Vacek, S.; Marada, P.; Šimůnek, V.; Havránek, F. Effects of Bark Stripping on Timber Production and Structure of Norway Spruce Forests in Relation to Climatic Factors. Forests 2019, 10, 320. [Google Scholar] [CrossRef]
- Metslaid, M.; Palli, T.; Randveer, T.; Sims, A.; Jõgiste, K. The condition of Scots pine stands in Lahemaa National Park, Estonia 25 years after browsing by moose (Alces alces). Boreal Environ. Res. 2013, 18, 25–34. [Google Scholar]
- Vasiliauskas, R. Damage to trees due to forestry operations and its pathological significance in temperate forests: A literature review. Forestry 2001, 74, 319–336. [Google Scholar] [CrossRef]
- Metslaid, M.; Köster, K.; Jõgiste, K.; Randveer, T.; Voolma, K.; Moser, K. The Effect of Simulated Bark Stripping by Moose on Scots Pine Height Growth: An Experimental Treatment. Balt. For. 2013, 19, 61–66. [Google Scholar]
- Gaitnieks, T.; Zaļuma, A.; Kenigsvalde, K.; Kļaviņa, D.; Brauners, I.; Piri, T. Susceptibility of Small-Diameter Norway Spruce Understory Stumps to Heterobasidion Spore Infection. Forests 2019, 10, 521. [Google Scholar] [CrossRef]
- Honkaniemi, J.; Lehtonen, M.; Väisänen, H.; Peltola, H. Effects of wood decay by Heterobasidion annosum on the vulnerability of Norway spruce stands to wind damage: A mechanistic modelling approach. Can. J. For. Res. 2017, 47, 777–787. [Google Scholar] [CrossRef]
- Gardiner, B.A.; Blennow, K.; Carnus, J.-M.; Fleischer, M.; Ingemarson, F.; Landmann, G.; Lindner, M.; Marzano, M.; Nicoll, B.C.; Orazio, C.; et al. Destructive storms in European Forests: Past and Forthcoming Impacts. Final Report to EC DG Environment. 2010. Available online: http://ec.europa.eu/environment/forests/fprotection.htm (accessed on 5 February 2020).
- Hanewinkel, M.; Peyron, J.L. The economic impact of storms. In Living with the Storm Damage; Gardiner, E., Schuck, A., Schelhaas, M.-J., Orazio, C., Blennow, K., Nicoll, B., Eds.; European Forest Institute: Joensuu, Finland, 2013; pp. 55–63. [Google Scholar]
- Kärhä, K.; Anttonen, T.; Poikela, A.; Palander, T.; Laurén, A.; Peltola, H.; Nuutinen, Y. Evaluation of salvage logging productivity and costs in windthrown Norway spruce-dominated forests. Forests 2018, 9, 280. [Google Scholar] [CrossRef]
- Peltola, H.; Kellomäki, S.; Hassinen, A.; Granander, M. Mechanical stability of Scots pine, Norway spruce and birch: An analysis of tree-pulling experiments in Finland. For. Ecol. Manage. 2000, 135, 143–153. [Google Scholar] [CrossRef]
- Zubizarreta-Gerendiain, A.; Pellikka, P.; Garcia-Gonzalo, J.; Ikonen, V.P.; Peltola, H. Factors affecting wind and snow damage of individual trees in a small management unit in Finland: Assessment based on inventoried damage and mechanistic modelling. Silva Fenn. 2012, 46, 181–196. [Google Scholar] [CrossRef]
- Nagel, T.A.; Diaci, J. Intermediate wind disturbance in an old-growth beech-fir forest in southeastern Slovenia. Can. J. For. Res. 2006, 36, 629–638. [Google Scholar] [CrossRef]
- Dubrovskis, E.; Donis, J.; Racenis, E. Wind-induced stem breakage height effect on potentially recovered timber value: Case study of the Scots pine (Pinus sylvestris L.) in Latvia. For. Stud. 2018, 69, 24–32. [Google Scholar] [CrossRef]
- Hart, E.; Sim, K.; Kamimura, K.; Meredieu, C.; Guyon, D.; Gardiner, B.A. Use of machine learning techniques to model wind damage to forests. Agric. For. Meteorol. 2019, 265, 16–29. [Google Scholar] [CrossRef]
- Gardiner, B.A.; Byrne, K.; Hale, S.E.; Kamimura, K.; Mitchell, S.J.; Peltola, H.; Ruel, J.C. A review of mechanistic modelling of wind damage risk to forests. Forestry 2008, 81, 447–463. [Google Scholar] [CrossRef]
- Kamimura, K.; Gardiner, B.A.; Dupont, S.; Guyon, D.; Meredieu, C. Mechanistic and statistical approaches to predicting wind damage to individual maritime pine (Pinus pinaster) trees in forests. Can. J. For. Res. 2015, 46, 88–100. [Google Scholar] [CrossRef]
- Jacobsen, M.K. History and Principles of Close to Nature Forest Management: A Central European Perspective. In Textbook 2—Tools for Preserving Woodland Biodiversity; Forfang, A.S., Marciau, R., Paltto, H., Andersson, L., Tardy, B., Eds.; Nature Conservation Exchange Experience, NACONEX, Pro-Natura: Göteborg, Sweden, 2001; pp. 56–60. Available online: http://www.pro-natura.net/naconex/news5/E2_11.pdf (accessed on 15 December 2019).
- Welch, D.; Scott, D. An estimate of timber degrade in Sitka spruce due to bark stripping by deer in a Scottish plantation. Forestry 2008, 81, 489–497. [Google Scholar] [CrossRef][Green Version]
- Ahti, T.; Hämet-ahti, L.; Jalas, J. Vegetation zones and their sections in northwestern Europe. Ann. Bot. Fenn. 1968, 5, 169–211. [Google Scholar]
- Silava Methodology of National Forest Inventory. Available online: http://www.silava.lv/userfiles/file/Nacionalais%20meza%20monitorings/Me%C5%BEa%20resursu%20monitoringa%20metodika%2026_04_2013.pdf (accessed on 3 February 2020). (In Latvian).
- Gschwantner, T.; Alberdi, I.; Balázs, A.; Bauwens, S.; Bender, S.; Borota, D.; Bosela, M.; Bouriaud, O.; Cañellas, I.; Donis, J.; et al. Harmonisation of stem volume estimates in European National Forest Inventories. Ann. For. Sci. 2019, 76, 1–23. [Google Scholar] [CrossRef]
- Díaz-Yáñez, O.; Mola-Yudego, B.; Eriksen, R.; González-Olabarria, J.R. Assessment of the main natural disturbances on Norwegian forest based on 20 years of national inventory. PLoS ONE 2016, 11, e0161361. [Google Scholar] [CrossRef]
- Wulff, S.; Roberge, C.; Ringvall, A.H.; Holm, S.; Ståhl, G. On the possibility to monitor and assess forest damage within large scale monitoring programmes. Silva Fenn. 2013, 47, 1000. [Google Scholar] [CrossRef]
- Bušs, K. Fundamentals of Forest Classification in Latvia SSR; LRZTIPI: Rīga, Latvia, 1976; p. 24. (In Latvian) [Google Scholar]
- R CoreTeam. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 1 March 2020).
- Bürkner, P.C. Advanced Bayesian Multilevel Modeling with the R Package brms. R J. 2018, 10, 395–411. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 26. [Google Scholar] [CrossRef]
- Lenth, R. Emmeans: Estimated Marginal Means, aka Least-Squares Means. R Package Version 1.4.4. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 5 March 2020).
- Priedītis, A.; Howlett, S.J.; Baumanis, J.; Bagrade, G.; Done, G.; Jansons, Ā.; Neimane, U.; Ornicāns, A.; Stepanova, A.; Šmits, A.; et al. Quantification of Deer Browsing in Summer and Its Importance for Game Management in Latvia. Balt. For. 2017, 23, 423–431. [Google Scholar]
- Burneviča, N.; Jansons, Ā.; Zaļuma, A.; Kļaviņa, D.; Jansons, J.; Gaitnieks, T. Fungi Inhabiting Bark Stripping Wounds Made by Large Game on Stems of Picea abies (L.) Karst. in Latvia. Balt. For. 2016, 22, 2–7. [Google Scholar]
- Metzler, B.; Hecht, U.; Nill, M.; Brüchert, F.; Fink, S.; Kohnle, U. Comparing Norway spruce and silver fir regarding impact of bark wounds. For. Ecol. Manag. 2012, 274, 99–107. [Google Scholar] [CrossRef]
- Giordano, L.; Nicolotti, G.; Gonthier, P. Effect of Heterobasidion annosum s.l. Root and Butt Rots on the Stability of Norway Spruce: An Uprooting Test. In Proceedings of the XIII International Conference on Root and Butt Root of Forest Trees. Firenze (FI)—S. Martino di Castrozza (TN), Trento, Italy, 4–10 September 2012; Capretti, P., Comparini, P., Garbelotto, M., la Porta, N., Santini, A., Eds.; Unive: Venice, Italy, 2012; pp. 247–250. [Google Scholar]
- Krisans, O.; Matisons, R.; Burnevica, N.; Bruna, L.; Elferts, D.; Kalvane, L.; Jansons, A. Presence of Root Rot Reduces Stability of Norway Spruce (Picea abies): Results of Static Pulling Tests in Latvia. Forests 2020, 11, 416. [Google Scholar] [CrossRef]
- Brüchert, F.; Šeho, M.; Kohnle, U. Impact of bark wounds on sapwood in Norway spruce and silver fir. Eur. J. For. Res. 2017, 136, 957–969. [Google Scholar] [CrossRef]
- Mäkinen, H.; Hallaksela, A.-M.; Isomäki, A. Increment and decay in Norway spruce and Scots pine after artificial logging damage. Can. J. For. Res. 2007, 37, 2130–2141. [Google Scholar] [CrossRef]
- Stokes, A. Responses of Young Trees To Wind: Effects on Root Architecture and Anchorage Strength. Ph.D. Thesis, University of York, York, UK, 1994; p. 162. [Google Scholar]
- Valinger, E.; Fridman, J. Factors affecting the probability of windthrow at stand level as a result of Gudrun winter storm in southern Sweden. For. Ecol. Manag. 2011, 262, 398–403. [Google Scholar] [CrossRef]
- Schütz, J.-P.; Götz, M.; Schmid, W.; Mandallaz, D. Vulnerability of spruce (Picea abies) and beech (Fagus sylvatica) forest stands to storms and consequences for silviculture. Eur. J. For. Res. 2006, 125, 291–302. [Google Scholar] [CrossRef]
- Bošeľa, M.; Konôpka, B.; Šebeň, V.; Vladovič, J.; Tobin, B. Modelling height to diameter ratio—An opportunity to increase Norway spruce stand stability in the Western Carpathians Modelovanie štíhlostného kvocientu—Možnosti zvýšenia statickej stability smrekových porastov v Západných Karpatoch. Cent. Eur. For. J. 2014, 60, 71–80. [Google Scholar]
- Zeng, H.; Pukkala, T.; Peltola, H. The use of heuristic optimization in risk management of wind damage in forest planning. For. Ecol. Manag. 2007, 241, 189–199. [Google Scholar] [CrossRef]
- Peltola, H.; Ikonen, V.; Gregow, H.; Strandman, H.; Kilpeläinen, A.; Venäläinen, A.; Kellomäki, S. Impacts of climate change on timber production and regional risks of wind-induced damage to forests in Finland. For. Ecol. Manag. 2010, 260, 833–845. [Google Scholar] [CrossRef]
- Wam, H.K.; Hjeljord, O. Moose summer and winter diets along a large scale gradient of forage availability in southern Norway. Eur. J. Wildl. Res. 2010, 56, 745–755. [Google Scholar] [CrossRef]
- Díaz-Yáñez, O.; Mola-Yudego, B.; González-Olabarria, J.R. What variables make a forest stand vulnerable to browsing damage occurrence? Silva Fenn. 2017, 51, 1–11. [Google Scholar] [CrossRef][Green Version]
- Albrecht, A.; Hanewinkel, M.; Bauhus, J.; Kohnle, U. How does silviculture affect storm damage in forests of south-western Germany? Results from empirical modeling based on long-term observations. Eur. J. For. Res. 2012, 131, 229–247. [Google Scholar] [CrossRef]
- Kuboyama, H.; Oka, H. Climate Risks and Age-related Damage Probabilities—Effects on the Economically Optimal Rotation Length for Forest Stand Management in Japan. Silva Fenn. 2000, 34, 155–166. [Google Scholar] [CrossRef]
- Wood, C.J. Understanding wind forces on trees. In Wind and Trees; Coutts, M.P., Grace, J., Eds.; Cambridge University Press: Cambridge, UK, 1995; pp. 133–164. [Google Scholar]
Abbreviation | Description | Classes/Range | Number of Observations/Mean ± SD |
---|---|---|---|
Root dam | Root-stump damage (roots and stump—up to 30 cm from root collar) | 0–no damage | P1–27,490 P2–26,727 |
1–damaged | P1–120 P2–135 | ||
Stem dam | Stem damage | 0–no damage | P1–23,629 P2–21,905 |
1–damaged | P1–3981 P2–4957 | ||
Age | Stand age (years) | 12 to 160+ years | P1–61.0 ± 26.2 P2–62.9 ± 27.1 |
Height | Mean height of the dominant canopy trees (m) | 8–40 | P1–22.1 ± 5.85 P2–22.8 ± 5.91 |
Volume | Mean standing volume (m3 ha−1) | 2.5–850 | P1–291 ± 143 P2–304 ± 152 |
Species | Dominant tree species | Scots Pine (Pinus sylvestris L.) | P1–651, P2–567 |
Common Oak (Quercus robur L.) | P1–19, P2–17 | ||
Ash (Fraxinus excelsior L.) | P1–21, P2–7 | ||
Norway Spruce | P1–849, P2–823 | ||
Birch (Betula pendula Roth and B. pubescens Ehrh.) | P1–709, P2–675 | ||
Black alder (Alnus glutinosa (L.) Gaertn) | P1–126, P2–132 | ||
Aspen (Populus tremula L.) | P1–198, P2–173 | ||
Grey alder (Alnus incana (L.) Moench) | P1–110, P2–88 | ||
Number | Stand density (trees ha−1) | 100–17,180 | P1–1682 ± 1425 P2–1590 ± 1327 |
Basal area | Mean basal area of the dominant canopy layer (m2 ha−1) | 0.7–77 | P1–25.1 ± 9.57 P2–26.2 ± 9.82 |
Management | Harvesting operations | 1. thinned in the last 5 years 2. no management in the last 5 years 3. other management activity | P1–0, P2–186 P1–2683, P2–2211P1–0, P2–95 |
Soil group | Soil type (based on moisture regime) | 1. dry mineral soil | P1–1259, P2–1145 |
2. wet mineral soil | P1–300, P2–285 | ||
3. peat soil | P1–177, P2–166 | ||
4. drained mineral soil | P1–571, P2–526 | ||
5. drained peat soil | P1–376, P2–360 | ||
Slenderness ratio | Height2/diameter | 1.7–75.7 | P1–21.9 ± 5.52 |
P2–20.2 ± 5.15 | |||
d/dmax | Diameter/maximal diameter in stand | 0.2–0.9 | P1–0.591 ± 0.183 |
P2–0.593 ± 0.183 | |||
Break height | Snapping height (m) from the root collar | 1–24.5 | P1–7.38 ± 4.69 |
P2–7.73 ± 4.68 | |||
Damage intensity | The relative damaged area of stem circumference (%) | 0. no damage | P1–356, P2–280 |
1. ≤30% | P1–32, P2–18 | ||
2. >30% | P1–33, P2–12 |
Diameter Classes with and without Stem Damage | Live | Wind Damage | Damaged of the Total, % | Live | Wind Damage | Damaged of the Total, % |
---|---|---|---|---|---|---|
16–21 cm diameter | 16,310 | 580 | 3.4 | 15,213 | 570 | 3.6 |
No damage | 14,049 | 452 | 3.1 | 12,326 | 418 | 3.3 |
Damaged | 2261 | 128 | 5.4 | 2887 | 152 | 5.0 |
21.1–27 cm diameter | 5936 | 235 | 3.8 | 6148 | 247 | 3.9 |
No damage | 5005 | 185 | 3.6 | 5008 | 184 | 3.5 |
Damaged | 931 | 50 | 5.1 | 1140 | 63 | 5.2 |
27.1–33 cm diameter | 2674 | 123 | 4.4 | 2827 | 114 | 3.9 |
No damage | 2284 | 98 | 4.1 | 2384 | 92 | 3.7 |
Damaged | 390 | 25 | 6.0 | 443 | 22 | 4.7 |
33.1–39 cm diameter | 1110 | 55 | 4.7 | 1079 | 53 | 4.7 |
No damage | 975 | 44 | 4.3 | 919 | 45 | 4.7 |
Damaged | 135 | 11 | 7.5 | 160 | 8 | 4.8 |
39.1–45 cm diameter | 404 | 25 | 5.8 | 404 | 26 | 6.0 |
No damage | 359 | 21 | 5.5 | 343 | 23 | 6.3 |
Damaged | 45 | 4 | 8.2 | 61 | 3 | 4.7 |
>45.1 cm diameter | 207 | 13 | 5.9 | 226 | 10 | 4.2 |
No damage | 194 | 12 | 5.8 | 200 | 8 | 3.8 |
Damaged | 13 | 1 | 7.1 | 26 | 2 | 7.1 |
Variable | Estimate | Est. Error | l-95% CI | u-95% CI |
---|---|---|---|---|
Intercept | −7.20 | 0.29 | −7.79 | −6.64 |
Soil group | ||||
Wet mineral soil | −0.69 | 0.22 | −1.13 | −0.27 |
Peat soil | −0.91 | 0.32 | −1.55 | −0.29 |
Drained mineral soil | −0.57 | 0.17 | −0.92 | −0.24 |
Drained peat soil | −0.45 | 0.19 | −0.84 | −0.08 |
Damaged root | 3.27 | 0.29 | 2.71 | 3.85 |
Damaged stem | 0.52 | 0.09 | 0.35 | 0.69 |
Stand age | 0.47 | 0.08 | 0.31 | 0.62 |
Species: | ||||
Oak | −1.00 | 0.97 | −2.95 | 0.89 |
Ash | 0.74 | 0.71 | −0.67 | 2.12 |
Spruce | 1.34 | 0.19 | 0.96 | 1.72 |
Birch | 0.52 | 0.21 | 0.11 | 0.94 |
Black alder | 2.01 | 0.35 | 1.35 | 2.70 |
Aspen | 0.73 | 0.29 | 0.16 | 1.28 |
Grey alder | 0.90 | 0.44 | 0.02 | 1.74 |
Density | −0.37 | 0.07 | −0.51 | −0.23 |
Basal area | 0.14 | 0.07 | −0.00 | 0.27 |
Harvesting operations | ||||
Other management activity | −0.20 | 0.27 | −0.74 | 0.33 |
Thinning in the last 5 years | 0.24 | 0.23 | −0.21 | 0.69 |
h2/d | −1.20 | 0.07 | −1.34 | −1.07 |
d/dmax | 0.05 | 0.04 | −0.04 | 0.13 |
Explanatory Variables | Estimate | se | t-Value | p-Value |
---|---|---|---|---|
Intercept | 0.522 | 0.029 | 18.00 | <0.001 |
Stem damage intensity class ≤30% | −0.014 | 0.035 | −0.39 | 0.696 |
Stem damage intensity class >30% | −0.122 | 0.037 | −3.30 | 0.001 |
h2/d | −0.004 | 0.002 | −2.41 | 0.016 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Snepsts, G.; Kitenberga, M.; Elferts, D.; Donis, J.; Jansons, A. Stem Damage Modifies the Impact of Wind on Norway Spruces. Forests 2020, 11, 463. https://doi.org/10.3390/f11040463
Snepsts G, Kitenberga M, Elferts D, Donis J, Jansons A. Stem Damage Modifies the Impact of Wind on Norway Spruces. Forests. 2020; 11(4):463. https://doi.org/10.3390/f11040463
Chicago/Turabian StyleSnepsts, Guntars, Mara Kitenberga, Didzis Elferts, Janis Donis, and Aris Jansons. 2020. "Stem Damage Modifies the Impact of Wind on Norway Spruces" Forests 11, no. 4: 463. https://doi.org/10.3390/f11040463
APA StyleSnepsts, G., Kitenberga, M., Elferts, D., Donis, J., & Jansons, A. (2020). Stem Damage Modifies the Impact of Wind on Norway Spruces. Forests, 11(4), 463. https://doi.org/10.3390/f11040463