Optimizing Forest Spatial Structure with Neighborhood-Based Indices: Four Case Studies from Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study Areas
2.2. Plot Measurements
2.3. Data Analysis
2.3.1. Nonspatial Structural Parameters
2.3.2. Spatial Structural Parameters
2.3.3. Comprehensive Thinning Index
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- State Forestry Bureau. National Forest Resources Continuous Inventory Technical Regulations; State Forestry Bureau: Beijing, China, 2003. (In Chinese)
- Whittaker, R.H. Evolution and measurement of species diversity. Taxon 1972, 21, 213–251. [Google Scholar] [CrossRef] [Green Version]
- Pommerening, A. Approaches to quantifying forest structures. Forestry 2002, 75, 305–324. [Google Scholar] [CrossRef]
- Barlow, J.; Gardner, T.A.; Araujo, I.S.; Avila-Pires, T.C.; Bonaldo, A.B.; Costa, J.E.; Esposito, M.C.; Ferreira, L.V.; Hawes, J.; Hernandez, M.I.M.; et al. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc. Natl. Acad. Sci. USA 2007, 104, 18555–18560. [Google Scholar] [CrossRef] [Green Version]
- Eyvindson, K.; Repo, A.; Mönkkönen, M. Mitigating forest biodiversity and ecosystem service losses in the era of bio-based economy. For. Policy Econ. 2018, 92, 119–127. [Google Scholar] [CrossRef]
- State Forestry Bureau. National Forest Management Plan (2016–2050). Available online: http://www.forestry.gov.cn/uploadfile/main/2016-7/file/2016-7-27-5b0861f937084243be5d17399f5f5f71.pdf (accessed on 7 April 2020). (In Chinese)
- Pastorella, F.; Paletto, A. Stand structure indices as tools to support forest management: An application in Trentino forests (Italy). J. For. Sci. 2013, 59, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Clark, P.J.; Evans, F.C. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 1954, 35, 445–453. [Google Scholar] [CrossRef]
- Pielou, E.C. Mathematical Ecology; Wiley: New York, NY, USA, 1977. [Google Scholar]
- Ripley, B.D. Modeling spatial patterns. J. R. Stat. Soc. Ser. B Stat. Meth. 1977, 39, 172–212. [Google Scholar]
- Wiegand, T.; Moloney, K.A. Rings, circles, and null-models for point pattern analysis in ecology. Oikos 2004, 104, 209–229. [Google Scholar] [CrossRef]
- Hui, G.Y.; Gadow, K.V.; Albert, M. The neighborhood pattern-a new structure parameter for describing distribution of forest tree position. Sci. Silvae Sin. 1999, 35, 37–42. (In Chinese) [Google Scholar]
- Hui, G.Y.; Zhao, X.H.; Zhao, Z.H.; von Gadow, K. Evaluating tree species spatial diversity based on neighborhood relationships. For. Sci. 2011, 57, 292–300. [Google Scholar]
- Aguirre, O.; Hui, G.Y.; von Gadow, K.; Javier, J. An analysis of spatial forest structure using neighbourhood-based variables. For. Ecol. Manag. 2003, 183, 137–145. [Google Scholar] [CrossRef]
- Zhao, Z.H.; Hui, G.Y.; Hu, Y.B.; Li, Y.F.; Wang, H.X. Method and application of stand spatial advantage degree based on the neighborhood comparison. J. Beijing For. Univ. 2014, 36, 78–82. (In Chinese) [Google Scholar]
- Li, Y.F.; Ye, S.M.; Hui, G.Y.; Hu, Y.B.; Zhao, Z.H. Spatial structure of timber harvested according to structure-based forest management. For. Ecol. Manag. 2014, 322, 106–116. [Google Scholar] [CrossRef]
- Adams, D.M.; Latta, G.S. Effects of a forest health thinning program on land and timber values in eastern Oregon. J. For. 2004, 102, 9–13. [Google Scholar]
- Paletto, A.; Meo, I.D.; Grilli, G.; Nikodinoska, N. Effects of different thinning systems on the economic value of ecosystem services: A case-study in a black pine peri-urban forest in Central Italy. Ann. For. Res. 2017, 60, 313–326. [Google Scholar]
- Dařenová, E.; Crabbe, R.; Knott, R.; Uherkova, B.; Kadavy, J.; Darenova, E. Effect of coppicing, thinning and throughfall reduction on soil water content and soil CO2 efflux in a sessile oak forest. Silva Fenn 2018, 52. [Google Scholar]
- Gaztelurrutia, M.D.R.; Oviedo, J.A.B.; Pretzsch, H.; Magnus, L.; Ruiz-Peinado, R. A review of thinning effects on Scots pine stands: From growth and yield to new challenges under global change. For. Syst. 2017, 26, eR03S. [Google Scholar]
- Johnson, D.W.; Murphy, J.D.; Walker, R.F.; Miller, W.W.; Glass, D.W.; Todd, D.E. The combined effects of thinning and prescribed fire on carbon and nutrient budgets in a Jeffrey pine forest. Ann. For. Sci. 2008, 65, 601. [Google Scholar] [CrossRef] [Green Version]
- von Gadow, K.; Hui, G.Y. Modelling forest development. For. Sci. 1999, 57, 46–58. [Google Scholar]
- von Gadow, K.; Zhang, C.; Wehenkel, C.; Pommerening, A.; Corral-Rivas, J.; Korol, M.; Myklush, S.; Hui, G.Y.; Kiviste, A.; Zhao, X.H. Forest Structure and Diversity; Springer: Berlin, Germany, 2012; pp. 30–62. [Google Scholar]
- Song, Y.F. Individual Tree Growth Models and Competitors Harvesting Simulation for Target Tree-Oriented Management. Ph.D. Thesis, Chinese Academy of Forestry, Beijing, China, 2015. (In Chinese). [Google Scholar]
- Ye, S.X.; Zheng, Z.R.; Diao, Z.Y.; Ding, G.D.; Bao, Y.F.; Liu, Y.D.; Gao, G.L. Effects of thinning on the spatial structure of Larix principis-rupprechtii plantation. Sustainability 2018, 10, 1250. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Hui, G.Y.; Wang, H.X.; Zhang, L.J.; Ye, S.X. Selection priority for harvested trees according to stand structural indices. iForest 2017, 10, 561–566. [Google Scholar] [CrossRef] [Green Version]
- State Forestry Bureau. Forest Resources Statistics of China; China Forestry Press: Beijing, China, 2010. (In Chinese) [Google Scholar]
- Zhang, L.Y.; Dong, L.B.; Liu, Q.; Liu, Z.G. Spatial patterns and interspecific associations during natural regeneration in three types of secondary forest in the central part of the Greater Khingan Mountains, Heilongjiang Province, China. Forests 2020, 11, 152. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.Y.; Xiang, W.; Wang, G.X.; Hao, K.J.; Tang, S.Z. Additive crown width models comprising nonlinear simultaneous equations for Prince Rupprecht larch (Larix principis) in northern China. Trees 2017, 31, 1–13. [Google Scholar] [CrossRef]
- Hann, D.W. An adjustable predictor of crown profile for stand-grown Douglas-fir trees. For. Sci. 1999, 45, 217–225. [Google Scholar]
- Lu, J.; Li, F.R.; Zhang, H.R.; Zhang, S.G. A crown ratio model for dominant species in secondary forests in Maoer Mountain. Sci. Silvae Sin. 2011, 47, 70–76. (In Chinese) [Google Scholar]
- Sharma, R.P.; Vacek, Z.; Vacek, S. Modeling individual tree height to diameter ratio for Norway spruce and European beech in Czech Republic. Trees 2016, 30, 1–14. [Google Scholar] [CrossRef]
- Kamimura, K.; Gardiner, B.; Kato, A.; Hiroshima, T.; Shiraishi, N. Developing a decision support approach to reduce wind damage risk-a case study on sugi (Cryptomeria japonica (L.f.) D. Don) forests in Japan. Forestry 2008, 81, 429–445. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, S.J. Wind as a natural disturbance agent in forests: A synthesis. Forestry 2013, 86, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Moore, J.R. Differences in maximum resistive bending moments of Pinus radiata trees grown on a range of soil types. For Ecol. Manag. 2000, 135, 63–71. [Google Scholar] [CrossRef]
- Richards, M.; Mcdonald, A.J.S.; Aitkenhead, M.J. Optimisation of competition indices using simulated annealing and artificial neural networks. Ecol. Model. 2008, 214, 375–384. [Google Scholar] [CrossRef]
- Bettinger, P.; Tang, M. Tree-level harvest optimization for structure-based forest management based on the species mingling index. Forests 2015, 6, 1121–1144. [Google Scholar] [CrossRef]
- Hui, G.Y.; von Gadow, K.; Hu, Y.B.; Chen, B.W. Characterizing forest spatial distribution pattern with the mean value of uniform angle index. Acta Ecol. Sin. 2004, 24, 1225–1229. (In Chinese) [Google Scholar]
- Hui, G.Y.; von Gadow, K.; Hu, Y.B. The optimum standard angle of the uniform angle index. For. Res. 2004, 17, 687–692. (In Chinese) [Google Scholar]
- Pukkala, T.; Ketonen, T.; Pykäläinen, J. Predicting timber harvests from private forests-a utility maximization approach. For. Policy Econ. 2003, 5, 285–296. [Google Scholar] [CrossRef]
- Lei, X.D.; Lu, Y.C.; Peng, C.H.; Zhang, X.P.; Chang, J.; Hong, L.X. Growth and structure development of semi-natural larch-spruce-fir (Larix olgensis-Picea jezoensis-Abies nephrolepis) forests in northeast China: 12-year results after thinning. For. Ecol. Manag. 2007, 240, 165–177. [Google Scholar] [CrossRef]
- Zhu, Y.J.; Dong, X.B. Evaluation of the effects of different thinning intensities on larch forest in Great Xing’an Mountains. Sci. Silvae Sin. 2016, 52, 29–38. (In Chinese) [Google Scholar]
- Dong, L.B.; Liu, Z.G.; Ma, Y.; Ni, B.L.; Li, Y. A new composite index of stand spatial structure for natural forest. J. Beijing For. Univ. 2013, 35, 16–22. (In Chinese) [Google Scholar]
- Dong, L.B.; Liu, Z.G. Visual management simulation for pinus Sylvestris var. mongolica plantation based on optimized spatial structure. Sci. Silvae Sin. 2012, 48, 77–85. [Google Scholar]
- Béland, M.; Lussier, J.M.; Bergeron, Y.; Longpre, M.H.; Béland, M. Structure, spatial distribution and competition in mixed jack pine (Pinus banksiana) stands on clay soils of eastern Canada. Ann. For. Sci. 2003, 60, 609–617. [Google Scholar] [CrossRef] [Green Version]
- Fraver, S.; D’Amato, A.W.; Bradford, J.B.; Jonsson, B.G.; Jonsson, M. Tree growth and competition in an old-growth Picea abies forest of boreal Sweden: Influence of tree spatial patterning. J. Veg. Sci. 2014, 25, 374–385. [Google Scholar] [CrossRef]
- State Forestry Bureau. Regulations for forest tending; China Standards Press: Beijing, China, 2015. (in Chinese) [Google Scholar]
- Makinen, H.; Isomaki, A. Thinning intensity and growth of Norway spruce stands in Finland. Forestry 2004, 77, 349–364. [Google Scholar] [CrossRef] [Green Version]
- Pérezdelis, G.; Garcíagonzález, I.; Rozas, V.; Arevalo, J.R. Effects of thinning intensity on radial growth patterns and temperature sensitivity in Pinus canariensis afforestations on Tenerife Island, Spain. Ann. For. Sci. 2011, 68, 1093–1104. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Liu, Y.; Li, G.L. Effects of the thinning intensity on the diversity of undergrowth vegetation in Pinus tabulaeformis plantations. J. Nanjing For. Univ. 2008, 32, 135–138. (In Chinese) [Google Scholar]
- Settineri, G.; Mallamaci, C.; Mitrović, M.; Sidari, M.; Muscolo, A. Effects of different thinning intensities on soil carbon storage in Pinus laricio forest of Apennine South Italy. Eur. J. For. Res. 2018, 137, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Fang, S.Z.; Lin, D.; Tian, Y.; Hong, S.X. Thinning intensity affects soil-atmosphere fluxes of greenhouse gases and soil nitrogen mineralization in a lowland poplar plantation. Forests 2016, 7, 141. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.Y.; Li, J.P.; Zhou, Y.Q.; Deng, C. Stand layer index and its relations with species diversity of understory shrubs of Cunninghamia lanceolata plantations. Chin. J. Ecol. 2015, 34, 589–595. (In Chinese) [Google Scholar]
- Falster, D.S.; Westoby, M. Plant height and evolutionary games. Trends Ecol. Evol. 2003, 18, 337–343. [Google Scholar] [CrossRef]
Variables | Plot a | Plot b | Plot c | Plot d |
---|---|---|---|---|
Site | Cuigang | Danqinghe | Maoershan | Maoershan |
Location | 52°19′13″N 123°47′23″E | 46°37′36″N 129°22′22″E | 45°13′21″N 127°37′40″E | 45°10′37″N 127°29′9″E |
Community type | Larch-birch mixed forest | Pine-broadleaved mixed forest | Natural secondary forest | Natural oak forest |
Mean elevation (m) | 546 | 399 | 339 | 407 |
Slope (°) | <5 | <5 | 13 | 23 |
Slope position | Flat | Flat | Down | Medium |
Slope aspect | None | None | North | South |
Density (trees/ha) | 2465 | 877 | 1359 | 1164 |
Mean DBH (cm) | 9.59 | 15.27 | 12.53 | 13.48 |
Mean height (m) | 10.94 | 12.75 | 11.84 | 11.2 |
Number of species | 5 | 15 | 24 | 8 |
Disturbance type | Repeated intensive selective cutting-20 years ago | Repeated intensive selective cutting—20 years ago; slight under-tending—3 years ago | Clearcutting—60 years ago Understory replanting—15, 40 years ago | Clearcutting—60 years ago |
Parameter | Variable | Classes and Description |
---|---|---|
M-index∈[0, 1] | species | zero degree: M = 0.00 weak degree: M = 0.25 moderate degree: M = 0.50 strong degree: M = 0.75 extremely strong degree: M = 1.00 |
D-index∈[0, 1] | diameter | absolute inferior: U = 0.00 inferior: U = 0.25 homogeneous: U = 0.50 sub-superiority: U = 0.75 superiority: U = 1.00 |
U-index∈[0, 1] | angle | very regular: U = 0.00 regular: U = 0.25 random: U = 0.50 clumped: U = 0.75 very clumped: U = 1.00 |
H-index∈[0, 1] | distance and diameter | very low: H∈(0,2] low: H∈(2,4] medium: H∈(4,6] high: H∈(6,10] very high: H∈(10,+∞) |
Plot | Intensity | Number /Trees 1) | DBH /cm | HT/m | D-index | U-index | M-index | S-index | V-index | H-index | P-index | RIP/% 2) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Plot a | 0% | 2060 | 9.442 (4.008) | 10.535 (3.254) | 0.498 (0.358) | 0.565 (0.165) | 0.403 (0.346) | 1.183 (0.319) | 0.111 (0.041) | 3.588 (6.425) | 0.566 (0.161) | |
10% | 1854 | 9.641 (4.020) | 10.815 (2.932) | 0.500 (0.355) | 0.562 (0.161) | 0.421 (0.343) | 1.202 (0.242) | 0.114 (0.037) | 3.180 (2.003) | 0.599 (0.101) | 5.83 | |
20% | 1648 | 9.960 (4.096) | 10.975 (2.976) | 0.503 (0.353) | 0.557 (0.166) | 0.468 (0.334) | 1.179 (0.238) | 0.114 (0.037) | 2.952 (1.852) | 0.611 (0.096) | 2.00 | |
30% | 1443 | 10.169 (4.146) | 11.018 (3.006) | 0.509 (0.354) | 0.558 (0.164) | 0.505 (0.323) | 1.157 (0.234) | 0.114 (0.037) | 2.763 (1.751) | 0.620 (0.094) | 1.47 | |
40% | 1236 | 10.394 (4.247) | 11.086 (3.036) | 0.513 (0.350) | 0.553 (0.163) | 0.535 (0.314) | 1.138 (0.233) | 0.114 (0.038) | 2.566 (1.578) | 0.629 (0.092) | 1.45 | |
Plot b | 0% | 727 | 15.370 (9.087) | 12.546 (4.911) | 0.509 (0.351) | 0.578 (0.154) | 0.758 (0.261) | 0.913 (0.322) | 0.158 (0.068) | 2.577 (2.244) | 0.588 (0.197) | |
10% | 655 | 16.055 (9.236) | 13.247 (4.430) | 0.511 (0.346) | 0.572 (0.155) | 0.781 (0.248) | 0.940 (0.296) | 0.159 (0.066) | 2.449 (1.977) | 0.640 (0.100) | 8.84 | |
20% | 582 | 16.794 (9.394) | 13.503 (4.442) | 0.512 (0.352) | 0.562 (0.155) | 0.823 (0.208) | 0.908 (0.284) | 0.157 (0.067) | 2.247 (1.786) | 0.654 (0.091) | 2.19 | |
30% | 509 | 17.451 (9.544) | 13.703 (4.434) | 0.511 (0.353) | 0.554 (0.158) | 0.832 (0.207) | 0.879 (0.276) | 0.156 (0.069) | 2.059 (1.676) | 0.661 (0.089) | 1.07 | |
40% | 437 | 18.309 (9.692) | 14.026 (4.411) | 0.520 (0.354) | 0.556 (0.161) | 0.846 (0.204) | 0.852 (0.272) | 0.153 (0.069) | 1.864 (1.584) | 0.667 (0.087) | 0.91 | |
Plot c | 0% | 1102 | 13.156 (7.317) | 11.673 (5.171) | 0.501 (0.363) | 0.574 (0.159) | 0.711 (0.262) | 0.979 (0.349) | 0.143 (0.072) | 15.807 (49.881) | 0.600 (0.205) | |
10% | 992 | 13.379 (7.343) | 12.208 (4.804) | 0.502 (0.362) | 0.570 (0.160) | 0.717 (0.261) | 1.023 (0.279) | 0.149 (0.065) | 12.195 (39.275) | 0.657 (0.096) | 9.50 | |
20% | 882 | 13.829 (7.515) | 12.367 (4.904) | 0.512 (0.358) | 0.567 (0.162) | 0.761 (0.235) | 0.998 (0.268) | 0.149 (0.065) | 6.829 (22.875) | 0.671 (0.086) | 2.13 | |
30% | 772 | 14.211 (7.697) | 12.502 (5.007) | 0.515 (0.354) | 0.563 (0.161) | 0.787 (0.228) | 0.977 (0.259) | 0.148 (0.066) | 5.996 (19.228) | 0.679 (0.082) | 1.19 | |
40% | 662 | 14.608 (7.783) | 12.729 (5.064) | 0.521 (0.352) | 0.560 (0.162) | 0.804 (0.222) | 0.958 (0.252) | 0.144 (0.064) | 3.649 (12.906) | 0.684 (0.080) | 0.74 | |
Plot d | 0% | 947 | 13.437 (9.007) | 11.177 (3.362) | 0.495 (0.350) | 0.573 (0.165) | 0.580 (0.305) | 1.002 (0.326) | 0.158 (0.086) | 3.235 (3.042) | 0.552 (0.209) | |
10% | 853 | 13.848 (9.172) | 11.447 (3.322) | 0.493 (0.350) | 0.572 (0.165) | 0.592 (0.304) | 1.009 (0.322) | 0.170 (0.078) | 3.019 (2.583) | 0.613 (0.104) | 11.05 | |
20% | 758 | 14.346 (9.490) | 11.468 (3.397) | 0.500 (0.347) | 0.562 (0.164) | 0.643 (0.270) | 0.973 (0.312) | 0.169 (0.080) | 2.762 (2.383) | 0.631 (0.092) | 2.94 | |
30% | 663 | 14.907 (9.841) | 11.575 (3.469) | 0.500 (0.349) | 0.554 (0.163) | 0.653 (0.268) | 0.945 (0.304) | 0.169 (0.083) | 2.578 (2.401) | 0.639 (0.088) | 1.27 | |
40% | 569 | 15.195 (10.072) | 11.561 (3.501) | 0.501 (0.352) | 0.551 (0.161) | 0.671 (0.266) | 0.916 (0.301) | 0.168 (0.086) | 2.372 (2.355) | 0.648 (0.084) | 1.41 |
Plot | Intensity | Number /Trees 1) | DBH /cm | HT /m | D-index | U-index | M-index | S-index | V-index | H-index | P-index | RIP /% 2) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Plot a | 0% | 2060 | 9.442 (4.008) | 10.535 (3.254) | 0.498 (0.358) | 0.565 (0.165) | 0.403 (0.346) | 1.183 (0.319) | 0.111 (0.041) | 3.588 (6.425) | 0.597 (0.161) | |
10% | 1854 | 9.636 (4.023) | 10.805 (2.936) | 0.498 (0.356) | 0.560 (0.162) | 0.422 (0.342) | 1.202 (0.242) | 0.114 (0.037) | 3.186 (2.009) | 0.633 (0.092) | 6.03 | |
20% | 1648 | 9.886 (4.127) | 10.909 (2.988) | 0.500 (0.356) | 0.558 (0.164) | 0.479 (0.327) | 1.184 (0.242) | 0.114 (0.037) | 2.993 (1.881) | 0.647 (0.087) | 2.21 | |
30% | 1443 | 10.032 (4.185) | 10.921 (3.017) | 0.508 (0.356) | 0.562 (0.164) | 0.528 (0.314) | 1.167 (0.241) | 0.114 (0.038) | 2.803 (1.780) | 0.658 (0.085) | 1.70 | |
40% | 1236 | 10.164 (4.287) | 10.899 (3.089) | 0.510 (0.354) | 0.561 (0.165) | 0.578 (0.294) | 1.148 (0.237) | 0.114 (0.038) | 2.649 (1.610) | 0.670 (0.081) | 1.82 | |
Plot b | 0% | 727 | 15.370 (9.087) | 12.546 (4.911) | 0.509 (0.351) | 0.578 (0.154) | 0.758 (0.261) | 0.913 (0.322) | 0.158 (0.068) | 2.577 (2.244) | 0.623 (0.201) | |
10% | 655 | 16.040 (9.249) | 13.233 (4.432) | 0.511 (0.346) | 0.573 (0.156) | 0.784 (0.243) | 0.941 (0.298) | 0.160 (0.066) | 2.449 (1.979) | 0.679 (0.089) | 8.99 | |
20% | 582 | 16.681 (9.429) | 13.445 (4.463) | 0.507 (0.351) | 0.562 (0.158) | 0.835 (0.196) | 0.914 (0.289) | 0.158 (0.067) | 2.212 (1.738) | 0.697 (0.076) | 2.65 | |
30% | 509 | 17.298 (9.614) | 13.639 (4.478) | 0.509 (0.355) | 0.555 (0.156) | 0.853 (0.197) | 0.886 (0.282) | 0.158 (0.068) | 2.026 (1.533) | 0.707 (0.072) | 1.43 | |
40% | 437 | 17.902 (9.763) | 13.850 (4.457) | 0.519 (0.357) | 0.553 (0.158) | 0.859 (0.196) | 0.867 (0.284) | 0.157 (0.071) | 1.847 (1.422) | 0.713 (0.073) | 0.85 | |
Plot c | 0% | 1102 | 13.156 (7.317) | 11.673 (5.171) | 0.501 (0.363) | 0.574 (0.159) | 0.711 (0.262) | 0.979 (0.349) | 0.143 (0.072) | 15.807 (49.881) | 0.638 (0.212) | |
10% | 992 | 13.373 (7.347) | 12.203 (4.805) | 0.503 (0.362) | 0.570 (0.160) | 0.718 (0.261) | 1.023 (0.280) | 0.149 (0.065) | 11.554 (37.640) | 0.700 (0.087) | 9.72 | |
20% | 882 | 13.751 (7.515) | 12.306 (4.913) | 0.507 (0.360) | 0.566 (0.164) | 0.768 (0.228) | 1.001 (0.272) | 0.150 (0.065) | 6.388 (19.418) | 0.716 (0.077) | 2.29 | |
30% | 772 | 13.984 (7.730) | 12.366 (4.999) | 0.510 (0.358) | 0.563 (0.163) | 0.801 (0.215) | 0.987 (0.269) | 0.151 (0.067) | 5.075 (16.522) | 0.726 (0.071) | 1.40 | |
40% | 662 | 14.167 (7.874) | 12.345 (5.030) | 0.513 (0.357) | 0.565 (0.161) | 0.834 (0.195) | 0.968 (0.260) | 0.151 (0.067) | 3.462 (9.937) | 0.735 (0.068) | 1.24 | |
Plot d | 0% | 947 | 13.437 (9.007) | 11.177 (3.362) | 0.495 (0.350) | 0.573 (0.165) | 0.580 (0.305) | 1.002 (0.326) | 0.158 (0.086) | 3.235 (3.042) | 0.585 (0.213) | |
10% | 853 | 13.848 (9.172) | 11.447 (3.322) | 0.493 (0.350) | 0.572 (0.165) | 0.592 (0.304) | 1.009 (0.322) | 0.170 (0.078) | 3.019 (2.583) | 0.650 (0.093) | 11.11 | |
20% | 758 | 14.244 (9.523) | 11.430 (3.386) | 0.501 (0.350) | 0.558 (0.164) | 0.656 (0.259) | 0.985 (0.320) | 0.171 (0.081) | 2.729 (2.358) | 0.673 (0.079) | 3.54 | |
30% | 663 | 14.479 (9.898) | 11.359 (3.479) | 0.503 (0.349) | 0.548 (0.164) | 0.699 (0.239) | 0.968 (0.317) | 0.172 (0.083) | 2.584 (2.417) | 0.687 (0.074) | 2.08 | |
40% | 569 | 14.923 (10.108) | 11.424 (3.516) | 0.502 (0.351) | 0.551 (0.167) | 0.699 (0.249) | 0.933 (0.306) | 0.172 (0.087) | 2.338 (1.936) | 0.691 (0.071) | 0.58 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, L.; Wei, H.; Liu, Z. Optimizing Forest Spatial Structure with Neighborhood-Based Indices: Four Case Studies from Northeast China. Forests 2020, 11, 413. https://doi.org/10.3390/f11040413
Dong L, Wei H, Liu Z. Optimizing Forest Spatial Structure with Neighborhood-Based Indices: Four Case Studies from Northeast China. Forests. 2020; 11(4):413. https://doi.org/10.3390/f11040413
Chicago/Turabian StyleDong, Lingbo, Hongyang Wei, and Zhaogang Liu. 2020. "Optimizing Forest Spatial Structure with Neighborhood-Based Indices: Four Case Studies from Northeast China" Forests 11, no. 4: 413. https://doi.org/10.3390/f11040413
APA StyleDong, L., Wei, H., & Liu, Z. (2020). Optimizing Forest Spatial Structure with Neighborhood-Based Indices: Four Case Studies from Northeast China. Forests, 11(4), 413. https://doi.org/10.3390/f11040413