Variation in Foliar ẟ15N Reflects Anthropogenic Nitrogen Absorption Potential of Mangrove Forests
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Leaf Sample Collection
2.3. Processing of Leaf Samples and Analysis of Foliar N Content, C/N Ratio, and ẟ15N
2.4. Processing the Land-Use Map
2.5. Data Processing and Statistical Analysis
3. Results
3.1. Variation in Foliar N Content, C/N Ratio, and δ15N on Islands
3.2. Species Variation in Foliar δ15N in Watersheds
3.3. The Relationship among the Foliar N Content, C/N Ratio, ẟ15N and the Land-Use
4. Discussion
4.1. Variation in Foliar Traits of Mangroves and Non-Mangroves
4.2. Foliar ẟ15N of Mangroves and Non-Mangroves under Anthropogenic Impacts
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tam, N.F.Y.; Wong, Y.S. Mangrove soils as sinks for wastewater-borne pollutants. Hydrobiologia 1995, 295, 231–241. [Google Scholar] [CrossRef]
- Tam, N.F.Y.; Wong, Y.S. Retention and distribution of heavy metals in mangrove soils receiving wastewater. Environ. Pollut. 1996, 94, 283–291. [Google Scholar] [CrossRef]
- Alongi, D.M.; Mckinnon, A.D. The cycling and fate of terrestrially-derived sediments and nutrients in the coastal zone of the great barrier reef shelf. Mar. Pollut. Bull. 2005, 51, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Jordan, S.J.; Stoffer, J.; Nestlerode, J.A. Wetlands as sinks for reactive nitrogen at continental and global scales: A meta-analysis. Ecosystems 2011, 14, 144–155. [Google Scholar] [CrossRef]
- Thimdee, W.; Deein, G.; Thimdee, W.; Sangrungruang, C.; Matsunaga, K. High %N and δ15N values in mangrove leaves and sediments of a mangrove-fringed estuary, Thailand—Effects of shrimp pond effluents. Bull. Soc. Sea Water Sci. Jpn. 2002, 56, 166–173. [Google Scholar]
- Valiela, I.; Bartholomew, M.; Giblin, A.; Tucker, J.; Harris, C.; Martinetto, P.; Otter, M.; Camilli, L.; Stone, T. Watershed deforestation and down-estuary transformations alter sources, transport, and export of suspended particles in Panamanian mangrove estuaries. Ecosystems 2014, 17, 96–111. [Google Scholar] [CrossRef]
- Elser, J.J.; Bracken, M.E.S.; Cleland, E.E.; Gruner, D.S.; Harpole, W.S.; Hillebrand, H.; Ngai, J.T.; Seabloom, E.W.; Shurin, J.B.; Smith, J.E. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 2007, 10, 1135–1142. [Google Scholar] [CrossRef] [PubMed]
- Lebauer, D.S.; Treseder, K.K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 2008, 89, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Chapin, F.S., III; Matson, P.A.; Vitousek, P.M. Principles of Terrestrial Ecosystem Ecology; Springer: New York, NY, USA, 2011. [Google Scholar]
- Erisman, J.W.; Sutton, M.A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonium synthesis changed the world. Nat. Geosci. 2008, 1, 636–639. [Google Scholar] [CrossRef]
- Bleeker, A.; Hicks, W.K.; Dentener, F.; Galloway, J.; Erisman, J.W. N depposition as a threat to the world’s protected areas under the convention on biological diversity. Environ. Pollut. 2011, 159, 2280–2288. [Google Scholar] [CrossRef]
- Valiela, I.; Cole, M.L. Comparative evidence that salt marshes and mangroves may protect seagrass meadows from land-derived nitrogen loads. Ecosystems 2002, 5, 92–102. [Google Scholar] [CrossRef]
- Alongi, D.M. Present state and future of the world’s mangrove forests. Environ. Conserv. 2002, 29, 331–349. [Google Scholar] [CrossRef]
- Cloern, J.E. Our evolving conceptual model of the coastal eutrophication problem. Mar. Ecol. Prog. Ser. 2001, 210, 223–253. Available online: https://www.int-res.com/articles/meps/210/m210p223.pdf (accessed on 26 January 2001). [CrossRef]
- Wolters, J.W.; Gillis, L.G.; Bouma, T.J.; van Katwijk, M.M.; Ziegler, A.D. Land use effects on mangrove nutrient status in Phang Nga Bay, Thailand. L. Degrad. Dev. 2015, 27, 68–76. [Google Scholar] [CrossRef]
- Costanzo, S.D.; Donohue, M.J.O.Õ.; Dennison, W.C.; Loneragan, N.R.; Thomas, M. A new approach for detecting and mapping sewage impacts. Mar. Pollut. Bull. 2001, 42, 149–156. [Google Scholar] [CrossRef]
- Ansari, A.A.; Gill, S.S. Eutrophication, Causes, Consequences and Control; Springer Science and Business Media: Townsville, Australia, 2014; Available online: https://link.springer.com/book/10.1007/978-94-007-7814-6 (accessed on 17 October 2010).
- Gritcan, I.; Duxbury, M.; Leuzinger, S.; Alfaro, A.C. Leaf sable isotope and nutrient status of temperate mangroves as ecological indicators to assess anthropogenic activity and recovery from eutrophication. Front. Plant Sci. 2016, 7, 1–11. [Google Scholar] [CrossRef]
- Handley, L.L.; Scrimgeour, C.M. Terrestrial plant ecology and 15N natural abundance: The present limits to interpretation for uncultivated systems with original data from a Scottish old field. Adv. Ecol. Res. 1997, 27, 133–212. [Google Scholar] [CrossRef]
- McClelland, J.W.; Valiela, I. Linking nitrogen in estuarine producers to land-derived sources. Limnol. Oceanogr. 1998, 43, 577–585. [Google Scholar] [CrossRef]
- Fry, B.; Gace, A.; McClelland, J.W. Chemical indicators of anthropogenic nitrogen loading in four Pacific estuaries. Pac. Sci. 2003, 57, 77–101. [Google Scholar] [CrossRef]
- Rogers, K. Stable carbon and nitrogen isotope signatures indicate recovery of marine biota from sewage pollution at Moa Point, New Zealand. Mar. Pollut. Bull. 2003, 46, 821–827. [Google Scholar] [CrossRef]
- Fry, B. Stable Isotope Ecology; Science and Business Media, Springer: New York, NY, USA, 2006. [Google Scholar]
- McClelland, J.W.; Valiela, I.; Michener, R.H. Nitrogen-stable isotope signatures in estuarine food webs: A record of increasing urbanization in coastal watersheds. Limnol. Oceanogr. 1997, 42, 930–937. [Google Scholar] [CrossRef]
- Fry, B.; Bern, A.L.; Ross, M.S.; Meeder, J.F. δ15N studies of nitrogen use by the red mangrove, Rhizophora mangle L. in south Florida. Estuar. Coast. Shelf Sci. 2000, 50, 291–296. [Google Scholar] [CrossRef]
- Cole, M.L.; Valiela, I.; Kroeger, K.D.; Tomasky, G.L.; Cebrian, J.; Wigand, C.; McKinney, R.A.; Grady, S.P.; Carvalho da Silva, M.H. Assessment of a ẟ15N isotopic method to indicate anthropogenic eutrophication in aquatic ecosystems. J. Environ. Qual. 2004, 33, 124–132. Available online: https://www.ncbi.nlm.nih.gov/pubmed/14964366 (accessed on 1 January 2004). [CrossRef] [PubMed]
- Teichberg, M.; Fox, S.E.; Olsen, Y.S.; Valiela, I.; Martinetto, P.; Iribarne, O.; Muto, E.Y.; Petti, M.A.V.; Corbisier, T.N.; Soto-Jimenez, M.; et al. Eutrophication and macroalgal blooms in temperate and tropical coastal waters: Nutrient enrichment experiments with Ulva spp. Glob. Change Biol. 2010, 16, 2624–2637. [Google Scholar] [CrossRef]
- Hall, S.J.; Hale, R.L.; Baker, M.A.; Bowling, D.R.; Ehleringer, J.R.; Peters, D.P.C. Riparian plant isotopes reflect anthropogenic nitrogen perturbations: Robust patterns across land-use gradients. Ecosphere 2015, 6, 200. [Google Scholar] [CrossRef]
- Mazumder, D.; Saintilan, N.; Alderson, B.; Hollins, S. Inputs of anthropogenic nitrogen influence isotopic composition and trophic structure in SE Australian estuaries. Mar. Pollut. Bull. 2015, 100, 217–223. [Google Scholar] [CrossRef]
- Garten, C.T., Jr. Variation in foliar 15N abundance and the availability of soil nitrogen on Walker Branch watershed. Ecology 1993, 74, 2098–2113. [Google Scholar] [CrossRef]
- Hogberg, P. 15N natural abundance in soil-plant systems; Tansley review No 95. New Phytol. 1997, 137, 179–203. [Google Scholar] [CrossRef]
- Elmore, A.J.; Craine, J.M. Spectroscopic analysis of canopy nitrogen and nitrogen isotopes in managed pastures and hay land. IEEE T. Geosci. Remote 2011, 49, 2491–2498. [Google Scholar] [CrossRef]
- Letolle, R. Nitrogen-15 in the natural environment. In Handbook of Environmental Isotope Geochemistry; Fritz, P., Fontes, J.C., Eds.; Elsevier: Amsterdam, The Netherlands, 1980; Volume 1.4, pp. 407–433. ISBN 978-3-642-10637-8. [Google Scholar]
- Hoffman, J.C.; Kelly, J.R.; Peterson, G.S.; Cotter, A.M.; Starry, M.A.; Sierszen, M.E. Using δ15N in fish larvae as an indicator of watershed sources of anthropogenic nitrogen: Response at multiple spatial scales. Estuar. Coasts 2012, 35, 1453–1467. [Google Scholar] [CrossRef]
- Rowell, P.; James, W.; Smith, W.L.; Handley, L.L.; Scrimgeour, C.M. 15N discrimination in molybdenum- and vanadium-growth N2-fixing Anabaena variabilis and Azotobacter vinelandii. Soil Biol. Biochem. 1998, 30, 2177–2180. [Google Scholar] [CrossRef]
- Cifuentes, L.; Coffin, R.; Solorzano, L.; Cardenas, W.; Espinoza, J.; Twilley, R. Isotopic and elemental variations of carbon and nitrogen in a mangrove estuary. Estuar. Coast. Shelf Sci. 1996, 43, 781–800. [Google Scholar] [CrossRef]
- White, D.L.; Porter, D.E.; Lewitus, A.J. Spatial and temporal analyses of water quality and phytoplankton biomass in an urbanized versus a relatively pristine salt marsh estuary. J. Exp. Mar. Biol. Ecol. 2004, 298, 255–273. [Google Scholar] [CrossRef]
- Boëchat, I.G.; Paiva, A.B.M.; Hille, S.; Gücker, B. Land-use effects on river habitat quality and sediment granulometry along a 4th order tropical river. Rev. Ambient. Água 2013, 8, 54–64. [Google Scholar] [CrossRef]
- Dvorak, M.; Mora, G.; Graniero, L.; Surge, D. Carbon and nitrogen tracers of land use effects on net ecosystem metabolism in mangrove estuaries, southwest Florida. Estuar. Coast. Shelf Sci. 2016, 181, 14–26. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization of the United Nations). The World’s Mangroves 1980–2005; FAO Forestry Paper 153; FAO: Rome, Italy, 2007. [Google Scholar]
- Miyawaki, A. Phytosociological studies of mangroves in Japan and Thailand, with special reference to human impact. In Proceedings of the MAB/COMAR Regional Seminar, Tokyo, Japan, 13–16 November 1984; pp. 107–110. [Google Scholar]
- Onaga, K.; Komesu, R.; Arakaki, A. The outline of red soil loss and erosion control measure in Okinawa. Sci. Bull. College Agri. Univ. Ryukyus 1999, 46, 71–82. [Google Scholar]
- Ishiga, H.; Diallo, I.M.B. Geochemical evaluation of present mangrove soil in Okinawa Island, Japan. Earth Sci. (Chikyu Kagaku) 2016, 70, 119–128. Available online: https://www.jstage.jst.go.jp/article/agcjchikyukagaku/70/4/70_119/_pdf (accessed on 1 December 2019).
- Higashi, T.; Katayama, T.C.; Shinagawa, A. Land development works and soil erosion in Okinawa Prefecture. Mem. Kagoshima Univ. Res. Center S. Pac. 1985, 6, 26–36. [Google Scholar]
- Banzai, K.; Nakamura, K. Red Soil Runoff From The Miyara River, And An Environmental Problem on Ishigaki Island; Japan International Research Center for Agricultural Sciences: Tsukuba, Japan, 2005; pp. 97–102. Available online: https://www.jircas.go.jp/en/publication/intlsymp/13/97 (accessed on 11 March 2005).
- Ishiga, H.; Diallo, I.M. Geochemical evaluation of present mangrove soil in Okinawa Island, Japan. Earth Sci. (Chikyu Kagaku) 2016, 70, 119–128. [Google Scholar]
- Miyawaki, A.; Suzuki, K.; Suzuki, S.; Nakamura, Y.; Murakami, Y.; Tsukagoshi, Y.; Nakata, E. Phytosociological survey of the mangrove vegetation in Japan:1. Mangrove forests of Iriomote Island. Bull. Institute Environ. Sci. Tech. Yokohama Natl Univ. 1982, 9, 77–89, (In Japanese with English abstract). [Google Scholar]
- Fujimura, N.; Fukamachi, K.; Shibata, S. The history of land use in Iriomote Island from the 1960s and its sociocultural background. J. Jpn. Ins. Landsc. Arch. 2017, 80, 713–718. (In Japanese) [Google Scholar] [CrossRef][Green Version]
- Hasegawa, H. The decline of coral reef conditions caused by the extensive land modification: A case study of the Shiraho Area on Ishigaki Island, Okinawa Prefecture, Japan. J. Remote Sens. Soc. Jpn. 2011, 31, 73–86, (In Japanese with English abstract). [Google Scholar]
- Cheeseman, J. Depressions of photosynthesis in mangrove canopies. In Photoinhibition of Photosynthesis: From Molecular Mechanisms to the Field; Baker, N.R., Bowyer, J.R., Eds.; Bios: Oxford, UK, 1994; pp. 377–389. [Google Scholar]
- García-Sanz, T.; Ruiz, J.M.; Pérez, M.; Ruiz, M. Assessment of dissolved nutrients dispersal derived from offshore fish-farm using nitrogen stable isotope ratios (δ15N) in macroalgal bioassays. Estuar. Coast. Shelf Sci. 2011, 91, 361–370. [Google Scholar] [CrossRef]
- Clough, B.F.; Boto, K.G.; Attiwill, P.M. Mangroves and sewage: A re-evaluation. In Biology and Ecology of Mangroves, Tasks for Vegetation Science Series; Teas, H.J., Ed.; Dr. W. Junk Publishers: Lancaster, UK, 1983; Volume 8, pp. 151–162. [Google Scholar]
- Bloom, A.J.; Sukrapanna, S.S.; Warner, R.L. Root respiration associated with ammonium and nitrate absorption and assimilation by barley. Plant Physiol. 1992, 99, 1294–1301. [Google Scholar] [CrossRef] [PubMed]
- Chapin, F.S. The mineral nutrition of wild plants. Annu. Rev. Ecol. Syst. 1980, 11, 233–260. Available online: https://www.jstor.org/stable/2096908 (accessed on 28 November 2003). [CrossRef]
- Alongi, D.M.; Clough, B.F.; Robertson, A.I. Nutrient-use efficiency in arid-zone forests of the mangroves Rhizophora stylosa and Avicennia marina. Aquat. Bot. 2005, 82, 121–131. [Google Scholar] [CrossRef]
- Alongi, D.M. The Energetics of Mangrove Forests; Springer: Dordrechr, The Netherlands, 2009; pp. 1–216. [Google Scholar]
- Reis, C.R.G.; Nardoto, G.B.; Rochelle, A.L.C.; Vieira, S.A.; Oliveira, R.S. Nitrogen dynamics in subtropical fringe and basin mangrove forests inferred from stable isotopes. Oecologia 2017, 183, 841–848. [Google Scholar] [CrossRef]
- Feller, I.C.; Lovelock, C.E.; Piou, C. Growth and nutrient conservation in Rhizophora mangle in response to fertilization along latitudinal and tidal gradients. Smithson. Contrib. Mar. Sci. 2009, 38, 345–358. [Google Scholar]
- Peterson, B.J.; Fry, B. Stable Isotopes in Ecosystem Studies. Ann. Rev. Ecol. Sys. 1987, 18, 293–320. Available online: http://www.jstor.org/stable/2097134 (accessed on 1 December 2019). [CrossRef]
- Nadelhoffer, K.; Shaver, G.; Fry, B.; Giblin, A.; Johnson, L.; McKane, R. 15N natural abundances and N use by tundra plants. Oecologia 1996, 107, 386–394. [Google Scholar] [CrossRef]
- Mariotti, A.; Germon, J.C.; Leclerc, A.; Catroux, G.; Letoile, R. Experimental determination of kinetic isotope fractionation of nitrogen isotopes during denitrification. In Stable Isotopes; Schmidt, H.L., Forstel, H., Keinoingen, H., Eds.; Elsevier: Amsterdam, The Netherlands, 1982; pp. 459–464. [Google Scholar]
- Evans, R.D.; Bloom, A.J.; Sukrapanna, S.S.; Ehleringer, J.R. Nitrogen isotope composition of tomato (Lycopersicon esculentum Mill. cv. T-5) grown under ammonium or nitrate nutrition. Plant Cell Environ. 1996, 19, 1317–1323. [Google Scholar] [CrossRef]
- Yoneyama, T.; Omata, T.; Nakata, S.; Yazaki, J. Fractionation of nitrogen isotopes during the uptake and assimilation of ammonia by plants. Plant Cell Physiol. 1991, 32, 1211–1217. [Google Scholar] [CrossRef]
- Nadelhoffer, K.J.; Fry, B. Nitrogen isotope studies in forest ecosystems. In Stable Isotopes in Ecology and Environmental Science; Lajtha, K., Mitchener, R.H., Eds.; Blackwell Scientific Publications: Oxford, UK, 1994; pp. 22–44. [Google Scholar]
- Gartner, A.; Lavery, P.; Smit, A. Use of δ15N signatures of different functional forms of macroalgae and filter-feeders to reveal temporal and spatial patterns in sewage dispersal. Mar. Ecol. Prog. Ser. 2002, 235, 63–73. [Google Scholar] [CrossRef]
- Deutsch, B.; Voss, M. Anthropogenic nitrogen input traced by means of ẟ15N values in macroalgae: Results from in-situ incubation experiments. Sci. Total Env. 2006, 366, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Kendall, C.; Elliott, E.M.; Wankel, S.D. Tracing anthropogenic inputs of nitrogen to ecosystems. In Stable Isotopes in Ecology And Environmental Science; Michener, R., Lajtha, K., Eds.; Blackwell publishing: Hoboken, NJ, USA, 2007; pp. 375–449. [Google Scholar]
- Savage, C.; Elmgren, R. Macroalgal (Fucus vesiculosus) δ15N values trace decrease in sewage influence. Ecol. Appl. 2004, 14, 517–526. [Google Scholar] [CrossRef]
- Fair, J.M.; Heikoop, J.M. Stable isotope dynamics of nitrogen sewage effluent uptake in a semi-arid wetland. Environ. Poll. 2006, 140, 500–505. [Google Scholar] [CrossRef]
- Holguin, G.; Vazquez, P.; Bashan, Y. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: An overview. Biol. Fertil. Soils. 2001, 33, 265–278. [Google Scholar] [CrossRef]
- Handley, L.L.; Austin, A.T.; Robinson, D.; Scrimgeour, C.M.; Raven, J.A.; Heaton, T.H.E.; Schmidt, S.; Stewart, G.R. The 15N natural abundance (δ15N) of ecosystem samples reflects measures of water availability. Aust. J. Plant Phys. 1999, 26, 185–199. [Google Scholar] [CrossRef]
- Craine, J.M.; Brookshire, E.N.J.; Cramer, M.D.; Hasselquist, N.J.; Koba, K.; Marin-Spiotta, E.; Wang, L. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil 2015, 396, 1–26. [Google Scholar] [CrossRef]
- Martin, C.E.; von Willert, D.J. Leaf epidermal hydathodes and the ecophysiological consequences of foliar water uptake in species of Crassula from the Namib Desert in southern Africa. Plant Biol. 2000, 2, 229–242. [Google Scholar] [CrossRef]
- Burgess, S.S.O.; Dawson, T.E. The contribution of fog to the water relations of Sequoia sempervirens (D. Don): Foliar uptake and prevention of dehydration. Plant Cell Env. 2004, 27, 1023–1034. [Google Scholar] [CrossRef]
- Eller, A.D.; Sparks, J.P. Predicting leaf-level fluxes of O3 and NO2: The relative roles of diffusion and biochemical processes. Plant Cell Environ. 2006, 29, 1742–1750. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, D.; Dey, M.; Sen, S.; Jana, T.K. Biosphere–atmosphere exchange of NOx in the tropical mangrove forest. J. Geophys. Res. 2009, 114, G04014. [Google Scholar] [CrossRef]
- Fogel, M.L.; Wooller, M.J.; Cheeseman, J.; Smallwood, B.J.; Roberts, Q.; Romero, I.; Meyers, J.M. Unusually negative nitrogen isotopic compositions (δ15N) of mangroves and lichens in an oligotrophic, microbially-influenced ecosystem. Biogeosci. Discuss. 2008, 5, 937–969. [Google Scholar] [CrossRef]
- Lambs, L.; Mangion, P.; Mougin, E.; Fromard, F. Water cycle and salinity dynamics in the mangrove forests of Europa and Juan de Nova Islands, southwest Indian Ocean. Rapid Comm. Mass Spec. 2016, 30, 311–320. Available online: https://www.ncbi.nlm.nih.gov/pubmed/27071220 (accessed on 30 January 2016). [CrossRef]
- Lovelock, C.E.; Reef, R.; Ball, M.C. Isotopic signatures of stem water reveal differences in water sources accessed by mangrove tree species. Hydrobiologia 2017, 803, 133–145. [Google Scholar] [CrossRef]
- Miller, T.W.; Omori, K.; Hamaoka, H.; Shibata, J.Y.; Hidejiro, O. Tracing anthropogenic inputs to production in the Seto Inland Sea, Japan - A stable isotope approach. Mar. Pollut. Bull. 2010, 60, 1803–1809. [Google Scholar] [CrossRef]
- Lin, D.T.; Fong, P. Macroalgal bioindicators (growth, tissue N, δ15N) detect nutrient enrichment from shrimp farm effluent entering Opunohu Bay, Moorea, French Polynesia. Mar. Pollut. Bull. 2008, 56, 245–249. [Google Scholar] [CrossRef]
- Fong, P.; Fong, J.J.; Fong, C.R. Growth, nutrient storage, and release of dissolved organic nitrogen by Enteromorpha intestinalis in response to pulses of nitrogen and phosphorus. Aquat. Bot. 2004, 78, 83–95. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, X.; Zhang, H.; Fan, H.; Lin, G. Nutrient conservation strategies of a mangrove species Rhizophora stylosa under nutrient limitation. Plant Soil 2010, 326, 469–479. [Google Scholar] [CrossRef]
- Saenger, P. Mangrove Ecology, Silviculture and Conservation; Kluwer: Dordrecht, The Netherlands, 2002. [Google Scholar]
Island | Watershed | Number of Sampling Points | Vegetation Type | Coordinates |
---|---|---|---|---|
Iriomote | Urauchi | 5 | Non-mangrove | N 24°22′45.02” E 123°46′58.04″ |
Mangrove | N 24°23′00.04” E 123°46′40.04″ | |||
Mangrove | N 24°23′55.04” E 123°46′54.05″ | |||
Mangrove | N 24°24′08.08” E 123°46′43.01″ | |||
Mangrove | N 24°24′15.59′′ E 123°46′38.57″ | |||
Kura | 1 | Mangrove + Non-mangrove | N 24°24′06.55′′ E 123°50′40.71″ | |
Shiira | 1 | Mangrove + Non-mangrove | N 24°19′26.29′′ E 123°54′37.88″ | |
Maera | 1 | Mangrove | N 24°18′49.82′′ E 123°54′22.55″ | |
Mare | 2 | Non-mangrove | N 24°23′14.84′′ E 123°48′43.36″ | |
Non-mangrove | N 24°23′25.86′′ E 123°48′53.62″ | |||
Hinai | 3 | Non-mangrove | N 24°23′05.86′′ E 123°49′14.09″ | |
Mangrove | N 24°23′22.25′′ E 123°49′07.24″ | |||
Mangrove | N 24°23′24.36′′ E 123°48′59.57″ | |||
Nakama | 1 | Mangrove | N 24°16′31.60′′ E 123°52′48.40″ | |
Ishigaki | Nagura | 4 | Mangrove | N 24°24′00.03” E 124°08′36.92″ |
Mangrove | N 24°24′04.05” E 124° 08′43.03″ | |||
Mangrove | N 24°24′06.24′′ E 124°09′01.54″ | |||
Non-mangrove | N 24°24′12.01” E 124°09′12.01″ | |||
Fukido | 1 | Mangrove + Non-mangrove | N 24°29′08.03” E 124°13′51.03″ | |
Miyara | Mangrove | N 24°21′30.53′′ E 124°12′40.94″ | ||
Mangrove | N 24°21′32.89′′ E 124°12′38.30″ | |||
Hirakubo | 2 | Mangrove + Non-mangrove | N 24°35′33.69” E 124°18′42.37″ | |
Mangrove + Non-mangrove | N 24°35′33.50” E 124°18′40.70″ | |||
Todoroki | 1 | Mangrove + Non-mangrove | N 24°22′38.00” E 124°14′35.06″ | |
Okinawa | Manko | 3 | Mangrove + Non-mangrove | N 26°11′43.06” E 127°41′20.05″ |
Mangrove + Non-mangrove | N 26°11′49.09” E 127°41′10.03″ | |||
Mangrove + Non-mangrove | N 26°11′54.41” E 127°41′02.28″ | |||
Southern Manko | 4 | Mangrove + Non-mangrove | N 26°11′22.04” E 127°41′12.03″ | |
Mangrove | N 26°11′37.02” E 127°41′01.91″ | |||
Mangrove + Non-mangrove | N 26°11′45.07” E 127°40′53.01″ | |||
Mangrove + Non-mangrove | N 26°11′54.,05” E 127°40′48.04″ | |||
Kesaji | 3 | Mangrove + Non-mangrove | N 26°36′26.05” E 128°08′26.03″ | |
Mangrove + Non-mangrove | N 26°36′32.05” E 128°08′17.00″ | |||
Mangrove + Non-mangrove | N 26°37′17.01” E 128°08′40.02″ | |||
Okukubi | 3 | Mangrove + Non-mangrove | N 26°27′23.02” E 127°56′32.05″ | |
Mangrove + Non-mangrove | N 26°27′30.00” E 127°56′19.06″ | |||
Mangrove + Non-mangrove | N 26°27′34.05” E 127°56′09.05″ |
Island | Watershed | Total Area (km2) | Forest Area (%) | Mangrove Area (%) | Agriculture Area (%) | Residential Area (%) | Lake Area (%) | Population Density (Number of People km−2) |
---|---|---|---|---|---|---|---|---|
Iriomote | Maera | 7.68 | 92.0 | 2.50 | 5.00 | 0.00 | 0.80 | 7.14 |
Shiira | 8.47 | 99.2 | 0.60 | 0.25 | 0.00 | 0.00 | 0 | |
Kura | 1.64 | 95.5 | 0.60 | 4.00 | 0.00 | 0.00 | 0 | |
Hinai | 3.65 | 99.3 | 0.65 | 0.00 | 0.00 | 0.05 | 0 | |
Nakama | 34.4 | 88.0 | 4.00 | 6.00 | 0.20 | 2.00 | 9.92 | |
Urauchi | 68.2 | 95.0 | 1.95 | 2.75 | 0.00 | 0.70 | 80.9 | |
Mare | 3.70 | 99.4 | na | 0.61 | 0.00 | na | na | |
Ishigaki | Nagura | 23.8 | 70.0 | 1.50 | 27.0 | 0.15 | 1.85 | 22.5 |
Miyara | 36.3 | 49.4 | 0.15 | 46.0 | 0.54 | 4.00 | 23.6 | |
Hirakubo | 3.15 | 61.0 | 1.35 | 37.8 | 0.18 | 0.00 | 22.1 | |
Todoroki | 12.3 | 34.4 | 0.08 | 65.5 | 0.00 | 0.00 | 6.98 | |
Fukido | 3.18 | 79. 0 | 6.50 | 14.0 | 0.50 | 0.00 | 28.3 | |
Okinawa | Manko | 38.2 | 13.7 | 0.09 | 55.9 | 28.6 | 1.80 | 5460 |
Kesaji | 7.30 | 77.0 | 1.10 | 22.0 | 0.00 | 0.00 | 54.6 | |
Okukubi | 17.0 | 47.0 | 0.15 | 45.0 | 7.00 | 1.00 | 373 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanu, F.Z.; Asakura, Y.; Takahashi, S.; Hinokidani, K.; Nakanishi, Y. Variation in Foliar ẟ15N Reflects Anthropogenic Nitrogen Absorption Potential of Mangrove Forests. Forests 2020, 11, 133. https://doi.org/10.3390/f11020133
Tanu FZ, Asakura Y, Takahashi S, Hinokidani K, Nakanishi Y. Variation in Foliar ẟ15N Reflects Anthropogenic Nitrogen Absorption Potential of Mangrove Forests. Forests. 2020; 11(2):133. https://doi.org/10.3390/f11020133
Chicago/Turabian StyleTanu, Ferdouse Zaman, Yasuhiro Asakura, Satoshi Takahashi, Ko Hinokidani, and Yasuhiro Nakanishi. 2020. "Variation in Foliar ẟ15N Reflects Anthropogenic Nitrogen Absorption Potential of Mangrove Forests" Forests 11, no. 2: 133. https://doi.org/10.3390/f11020133
APA StyleTanu, F. Z., Asakura, Y., Takahashi, S., Hinokidani, K., & Nakanishi, Y. (2020). Variation in Foliar ẟ15N Reflects Anthropogenic Nitrogen Absorption Potential of Mangrove Forests. Forests, 11(2), 133. https://doi.org/10.3390/f11020133