Long-Term Cultivation of Fruit Plantations Decreases Mineralization and Nitrification Rates in Calcareous Soil in the Karst Region in Southwestern China
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description and Sample Collection
2.2. 15N-Tracing Experiment
2.3. Analyses
2.4. Data and Statistical Analyses
3. Results
3.1. Soil Properties
3.2. N Cycling Rate
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, C.H.; Qi, X.K.; Wang, K.L.; Zhang, M.Y.; Yue, Y.M. The application of geospatial techniques in monitoring karst vegetation recovery in southwest China: A review. Prog. Phys. Geog. 2017, 41, 450–477. [Google Scholar] [CrossRef]
- Tong, X.W.; Brandt, M.; Yue, Y.M.; Horion, S.; Wang, K.L.; Keersmaecker, W.D.; Tian, F.; Schurgers, G.; Xiao, X.M.; Luo, Y.Q.; et al. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nat. Sustain. 2018, 1, 44–50. [Google Scholar] [CrossRef]
- Wang, K.L.; Zhang, C.H.; Chen, H.S.; Yue, Y.M.; Zhang, W.; Zhang, M.Y.; Qi, X.K.; Fu, Z.Y. Karst landscapes of China: Patterns, ecosystem processes and services. Landsc. Ecol. 2019, 34, 2743–2763. [Google Scholar] [CrossRef]
- Jiang, Z.H.; Liu, H.Y.; Wang, H.Y.; Peng, J.; Meersmans, J.; Green, S.M.; Quine, T.A.; Wu, X.C.; Song, Z.L. Bedrock geochemistry influences vegetation growth by regulating the regolith water holding capacity. Nat. Commun. 2020, 11, 2392. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.J.; Liu, Q.M.; Zhang, D.F. Karst rocky desertification in southwestern China: Geomorphology, landuse, impact and rehabilitation. Land Degrad. Dev. 2004, 15, 115–121. [Google Scholar] [CrossRef]
- Hartmann, A.; Goldscheider, N.; Wagener, T.; Weiler, J.L.M. Karst water resources in a changing world: Review of hydrological modeling approaches. Rev. Geophys. 2014, 52, 218–242. [Google Scholar] [CrossRef]
- Jiang, Z.C.; Lian, Y.Q.; Qin, X.Q. Rocky desertification in Southwest China: Impacts, causes, and restoration. Earth Sci. Rev. 2014, 132, 1–12. [Google Scholar] [CrossRef]
- Guillaume, T.; Holtkamp, A.M.; Muhammad, D.; Brümmer, B.; Kuzyakov, Y. Soil degradation in oil palm and rubber plantations under land resource scarcity. Agr. Ecosyst. Environ. 2016, 232, 110–118. [Google Scholar] [CrossRef]
- Kurniawan, S.; Corre, M.D.; Matson, A.L.; Schulte-Bisping, H.; Utami, S.R.; van Straaten, O.; Veldkamp, E. Conversion of tropical forests to smallholder rubber and oil palm plantations impacts nutrient leaching losses and nutrient retention efficiency in highly weathered soils. Biogeosciences 2018, 15, 5131–5154. [Google Scholar] [CrossRef]
- Garousi, F.; Zhijie Shan, Z.J.; Ni, K.; Yang, H.; Shan, J.; Cao, J.H.; Jiang, Z.C.; Yang, J.L.; Zhu, T.B.; Müller, C. Decreased inorganic N supply capacity and turnover in calcareous soil under degraded rubber plantation in the tropical karst region. Geoderma 2021, 381, 114754. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Howarth, R.W. Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 1991, 13, 87–115. [Google Scholar] [CrossRef]
- LeBauer, D.S.; Treseder, K.K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 2008, 89, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Schimel, J.P.; Bennett, J. Nitrogen mineralization: Challenges of a changing paradigm. Ecology 2004, 85, 591–602. [Google Scholar] [CrossRef]
- Hobbie, E.A.; Högberg, P. Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. New Phytol. 2012, 196, 367–382. [Google Scholar] [CrossRef]
- Zhu, T.B.; Zhang, J.B.; Meng, T.Z.; Zhang, Y.C.; Yang, J.J.; Müller, C.; Cai, Z.C. Tea plantation destroys soil retention of NO3− and increases N2O emissions in subtropical China. Soil Biol. Biochem. 2014, 73, 106–114. [Google Scholar] [CrossRef]
- Xie, Y.; Yang, L.; Zhu, T.B.; Yang, H.; Zhang, J.B.; Yang, J.L.; Cao, J.H.; Bai, B.; Jiang, Z.C.; Liang, Y.M.; et al. Rapid recovery of nitrogen retention capacity in a subtropical acidic soil following afforestation. Soil Biol. Biochem. 2018, 120, 171–180. [Google Scholar] [CrossRef]
- Rütting, T.; Clough, T.J.; Müller, C.; Lieffering, M.; Newton, P.C.D. Ten years of elevated atmospheric carbon dioxide alters soil nitrogen transformations in a sheep–grazed pasture. Global Change Biol. 2010, 16, 2530–2542. [Google Scholar] [CrossRef]
- Zhu, T.B.; Meng, T.Z.; Zhang, J.B.; Yin, Y.F.; Cai, Z.C.; Yang, W.Y.; Zhong, W.H. Nitrogen mineralization, immobilization turnover, heterotrophic nitrification, and microbial groups in acid forest soils of subtropical China. Biol. Fert. Soils 2013, 49, 323–331. [Google Scholar] [CrossRef]
- Allen, K.; Corre, M.D.; Tjoa, A.; Veldkamp, E. Soil nitrogen-cycling responses to conversion of lowland forests to oil palm and rubber plantations in Sumatra, Indonesia. PLoS ONE 2015, 10, e0133325. [Google Scholar] [CrossRef]
- Portier, E.; Silver, W.L.; Yang, W.H. Invasive perennial forb effects on gross soil nitrogen cycling and nitrous oxide fluxes depend on phenology. Ecology 2019, 100, e02716. [Google Scholar] [CrossRef]
- Zhu, T.B.; Zeng, S.M.; Qin, H.L.; Zhou, K.X.; Lan, F.N.; Yang, H.; Huang, F.; Cao, J.H.; Müller, C. Low nitrate retention capacity in calcareous soil under woodland in the karst region of southwestern China. Soil Biol. Biochem. 2016, 97, 99–101. [Google Scholar] [CrossRef]
- Song, M.; He, T.G.; Chen, H.; Wang, K.L.; Li, D.J. Dynamics of soil gross nitrogen transformations during post-agricultural succession in a subtropical karst region. Geoderma 2019, 341, 1–9. [Google Scholar] [CrossRef]
- Bárcenas-Moreno, G.; Rousk, J.; Bååth, E. Fungal and bacterial recolonisation of acid and alkaline forest soils following artificial heat treatments. Soil Biol. Biochem. 2011, 43, 1023–1033. [Google Scholar] [CrossRef]
- Chen, H.; Li, D.J.; Xiao, K.C.; Wang, K.L. Soil microbial processes and resource limitation in karst and non-karst forests. Funct. Ecol. 2018, 32, 1400–1409. [Google Scholar] [CrossRef]
- Booth, M.S.; Stark, J.M.; Rastetter, E. Controls on nitrogen cycling in terrestrial ecosystems: A synthetic analysis of literature data. Ecol. Monogr. 2005, 75, 139–157. [Google Scholar] [CrossRef]
- Yang, L.Q.; Luo, P.; Wen, L.; Li, D.J. Soil organic carbon accumulation during post-agricultural succession in a karst area, southwest China. Sci. Rep. 2016, 6, 37118. [Google Scholar] [CrossRef] [PubMed]
- Rowley, M.C.; Grand, S.; Verrecchia, É.P. Calcium-mediated stabilization of soil organic carbon. Biogeochemistry 2018, 137, 27–49. [Google Scholar] [CrossRef]
- Chu, H.Y.; Fujii, T.; Morimoto, S.; Lin, X.G.; Yagi, K. Population size and specific nitrification potential of soil ammonia–oxidizing bacteria under long–term fertilizer management. Soil Biol. Biochem. 2008, 40, 1960–1963. [Google Scholar] [CrossRef]
- Norton, J.; Ouyang, Y. Controls and adaptive management of nitrification in agricultural soils. Front. Microbiol. 2019, 10, 1931. [Google Scholar] [CrossRef]
- Silva, M.B.; dos Anjos, L.H.C.; Pereira, M.G.; Schiavo, J.A.; Cooper, M.; de Souza Cavassani, R. Soils in the karst landscape of Bodoquena plateau in cerrado region of Brazil. Catena 2017, 154, 107–117. [Google Scholar] [CrossRef]
- Ross, D.S.; Ketterings, Q. Recommended Methods for Determining Soil Cation Exchange Capacity. In Recommended Soil Testing Procedures for the Northeastern United States; College of Agriculture, University of Delaware: Newark, NJ, USA, 1995. [Google Scholar]
- Kirkham, D.; Bartholomew, W.V. Equations for following nutrient transformations in soil utilizing tracer data. Soil Sci. Soc. Am. Proc. 1954, 18, 33–34. [Google Scholar] [CrossRef]
- Corre, M.D.; Brumme, R.; Veldkamp, E.; Beese, F.O. Changes in nitrogen cycling and retention processes in soils under spruce forests along a nitrogen enrichment gradient in Germany. Global Change Biol. 2007, 13, 1509–1527. [Google Scholar] [CrossRef]
- Sotta, E.D.; Corre, M.D.; Veldkamp, E. Differing N status and n retention processes of soils under old-growth lowland forest in Eastern Amazonia, Caxiuan, Brazil. Soil Biol. Biochem. 2008, 40, 740–750. [Google Scholar] [CrossRef]
- Zhang, J.B.; Cai, Z.C.; Zhu, T.B.; Yang, W.Y.; Müller, C. Mechanisms for the retention of inorganic N in acidic forest soils of southern China. Sci. Rep. 2013, 3, 2342. [Google Scholar] [CrossRef]
- Ueda, M.U.; Kachina, P.; Marod, D.; Nakashizuka, T.; Kurokawa, H. Soil properties and gross nitrogen dynamics in old growth and secondary forest in four types of tropical forest in Thailand. For. Ecol. Manag. 2017, 398, 130–139. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, W.; Wu, M.; Ye, Y.Y.; Wang, K.L.; Li, D.J. Changes in soil nitrogen stocks following vegetation restoration in a typical karst catchment. Land Degrad. Dev. 2019, 30, 60–72. [Google Scholar] [CrossRef]
- Zhang, J.B.; Zhu, T.B.; Cai, Z.C.; Müller, C. Nitrogen cycling in forest soils across climate gradients in Eastern China. Plant. Soil 2011, 342, 419–432. [Google Scholar] [CrossRef]
- Mariotte, P.; Mehrabi, Z.; Bezemer, T.M.; Deyn, G.B.D.; Kardol, P. Plant–soil feedback: Bridging natural and agricultural sciences. Trends Ecol. Evol. 2018, 33, 129–142. [Google Scholar] [CrossRef]
- Nicol, G.W.; Leininger, S.; Schleper, C.; Prosser, J.I. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ. Microbiol. 2008, 10, 2966–2978. [Google Scholar] [CrossRef]
- Nawaz, M.F.; Bourrié, G.; Trolard, F. Soil compaction impact and modelling. A review. Agron. Sustain. Dev. 2013, 33, 291–309. [Google Scholar] [CrossRef]
Parameter i | Jianshui | Pingguo | Guilin | |||
---|---|---|---|---|---|---|
Forest | Citrus | Forest | Pitaya | Forest | ‘Shatangju’ | |
SOC (g C kg−1) | 56.8 ± 5.12a ii | 8.75 ± 1.34b | 142 ± 92.0a | 28.5 ± 2.56b | 89.4 ± 10.8a | 31.6 ± 8.82b |
TN (g C kg−1) | 4.76 ± 0.63a | 1.08 ± 0.08b | 12.5 ± 6.74a | 3.06 ± 0.26b | 7.28 ± 0.75a | 2.77 ± 0.64b |
pH | 7.17 ± 0.43a | 4.50 ± 0.05b | 7.20 ± 0.40a | 6.00 ± 0.13b | 7.18 ± 0.25a | 5.91 ± 0.25b |
WHC | 1.11 ± 0.06a | 0.75 ± 0.03b | 1.43 ± 0.29a | 0.76 ± 0.04b | 1.25 ± 0.09a | 0.88 ± 0.04b |
CEC (cmol kg−1) | 35.9 ± 3.12a | 15.2 ± 0.36 | 50.4 ± 17.1a | 21.1 ± 0.67b | 41.5 ± 2.79a | 21.7 ± 2.79b |
CaO (%) | 2.03 ± 0.55a | 0.27 ± 0.05b | 4.01 ± 1.49a | 0.83 ± 0.04b | 2.15 ± 0.22a | 0.72 ± 0.17b |
P (g kg−1) | 1.47 ± 0.30a | 1.36 ± 0.14a | 1.10 ± 0.78b | 3.33 ± 0.08a | 0.93 ± 0.09a | 0.69 ± 0.14a |
Clay (<2 µm, %) | 27.5 ± 5.60b | 42.9 ± 1.21a | 34.5 ± 3.84a | 39.5 ± 3.74a | 32.3 ± 2.49b | 46.0 ± 1.90a |
Silt (2~50 µm, %) | 56.2 ± 3.51a | 49.3 ± 1.17a | 42.1 ± 5.30a | 37.5 ± 2.21a | 51.4 ± 2.72a | 44.0 ± 0.20b |
Sand (50~2000 µm, %) | 16.2 ± 3.67a | 7.73 ± 0.30b | 23.5 ± 6.49a | 23.0 ± 3.97a | 16.3 ± 0.30a | 9.99 ± 1.74b |
NH4+ (mg N kg−1) | 10.2 ± 1.11a | 9.31 ± 1.54a | 7.08 ± 0.96a | 4.99 ± 0.35a | 3.38 ± 1.01a | 6.47 ± 2.68a |
NO3− (mg N kg−1) | 13.1 ± 3.15b | 33.6 ± 10.1a | 13.5 ± 2.99b | 22.5 ± 2.56a | 21.9 ± 3.84a | 24.8 ± 10.7a |
NO3−/NH4+ | 1.28 ± 0.18b | 3.72 ± 1.55a | 1.89 ± 0.27b | 4.45 ± 0.59a | 6.47 ± 1.14a | 4.24 ± 2.26a |
ONH4 | MRT NH4+ | MRT NO3− | SOC | TN | pH | NH4+ | NO3− | WHC | Clay | Silt | Sand | CEC | P | CaO | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MNorg | 0.94 ** | −0.66 ** | −0.54 * | 0.95 ** | 0.96 ** | 0.58 * | 0.03 | −0.44 | 0.91 ** | −0.54 * | 0.06 | 0.52 * | 0.92 ** | −0.04 | 0.95 ** |
ONH4 | 1 | −0.71 ** | −0.61 ** | 0.94 ** | 0.95 ** | 0.65 ** | −0.11 | −0.39 | 0.90 ** | −0.60 ** | 0.16 | 0.47 * | 0.94 ** | 0.00 | 0.93 ** |
MRT NH4+ | 1 | 0.71 ** | −0.64 ** | −0.65 ** | −0.80 ** | 0.41 | 0.54 * | −0.69 ** | 0.69 ** | 0.00 | −0.73 ** | −0.73 ** | −0.16 | −0.70 ** | |
MRT NO3− | 1 | −0.51 * | −0.53 * | −0.79 ** | 0.13 | 0.79 ** | −0.60 * | 0.67 ** | −0.07 | −0.64 * | −0.63 ** | −0.15 | −0.61 * | ||
SOC | 1 | 0.99 ** | 0.59 * | −0.13 | −0.38 | 0.94 ** | −0.49 * | 0.08 | 0.43 | 0.96 ** | −0.10 | 0.93 ** | |||
TN | 1 | 0.60* | −0.13 | -0.40 | 0.93 ** | −0.47 | 0.02 | 0.48 * | 0.95 ** | −0.08 | 0.95 ** | ||||
pH | 1 | −0.21 | −0.71 ** | 0.72 ** | −0.66 ** | 0.18 | 0.52 * | 0.76 ** | −0.17 | 0.73 ** | |||||
NH4+ | 1 | 0.04 | −0.08 | −0.04 | 0.35 | −0.31 | −0.09 | −0.07 | −0.03 | ||||||
NO3− | 1 | −0.50 * | 0.60 * | −0.07 | −0.56 * | −0.50 * | 0.05 | −0.52 * | |||||||
WHC | 1 | −0.60 * | 0.23 | 0.40 | 0.98 ** | −0.31 | 0.93 ** | ||||||||
Clay | 1 | −0.54 * | −0.51 * | −0.63 * | −0.02 | −0.53 * | |||||||||
Silt | 1 | -0.45 | 0.20 | −0.38 | 0.10 | ||||||||||
Sand | 1 | 0.46 | 0.40 | 0.46 | |||||||||||
CEC | 1 | −0.17 | 0.95 ** | ||||||||||||
P | 1 | −0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, Z.; Yin, Z.; Yang, H.; Zuo, C.; Zhu, T. Long-Term Cultivation of Fruit Plantations Decreases Mineralization and Nitrification Rates in Calcareous Soil in the Karst Region in Southwestern China. Forests 2020, 11, 1282. https://doi.org/10.3390/f11121282
Shan Z, Yin Z, Yang H, Zuo C, Zhu T. Long-Term Cultivation of Fruit Plantations Decreases Mineralization and Nitrification Rates in Calcareous Soil in the Karst Region in Southwestern China. Forests. 2020; 11(12):1282. https://doi.org/10.3390/f11121282
Chicago/Turabian StyleShan, Zhijie, Zhe Yin, Hui Yang, Changqing Zuo, and Tongbin Zhu. 2020. "Long-Term Cultivation of Fruit Plantations Decreases Mineralization and Nitrification Rates in Calcareous Soil in the Karst Region in Southwestern China" Forests 11, no. 12: 1282. https://doi.org/10.3390/f11121282
APA StyleShan, Z., Yin, Z., Yang, H., Zuo, C., & Zhu, T. (2020). Long-Term Cultivation of Fruit Plantations Decreases Mineralization and Nitrification Rates in Calcareous Soil in the Karst Region in Southwestern China. Forests, 11(12), 1282. https://doi.org/10.3390/f11121282