Linking Soil Acidity to P Fractions and Exchangeable Base Cations under Increased N and P Fertilization of Mono and Mixed Plantations in Northeast China
Abstract
1. Introduction
2. Materials and Methods
2.1. Soil Sampling Strategy
2.2. Soil Chemical Analyses
2.3. Calculations of the Effective Cation Exchange Capacity, Base Saturation%, Al:Ca Ratio, and Effective Acidity
2.4. Statistical Analysis
3. Results
3.1. Soil Chemical Properties
3.2. Soil P Fractions
3.3. Correlation between Soil P Fractions and Chemical Properties
4. Discussion
4.1. Effects of Additional N on the Soil Chemical Properties
4.2. Effects of Additional P on the Soil Chemical Properties
4.3. Effects of Fertilizations on P Fractions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Galloway, J.; Townsend, A.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.; Martinelli, L.; Seitzinger, S.; Sutton, M. Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science (New York, N.Y.) 2008, 320, 889–892. [Google Scholar] [CrossRef] [PubMed]
- Penuelas, J.; Janssens, I.; Ciais, P.; Sardans, J. Anthropogenic global shifts in biospheric N and P concentrations and ratios and their impacts on biodiversity, ecosystem productivity, food security, and human health. Glob. Chang. Biol. 2020, 26. [Google Scholar] [CrossRef]
- Jia, Y.; Yu, G.; He, N.; Zhan, X.; Fang, H.; Sheng, W.; Zuo, Y.; Zhang, D.; Wang, Q.-F. Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity. Sci. Rep. 2014, 4, 3763. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, Y.; Han, W.; Tang, A.; Shen, J.; Cui, Z.; Vitousek, P.; Erisman, J.W.; Goulding, K.; Christie, P.; et al. Enhanced Nitrogen Deposition over China. Nature 2013, 494, 459–462. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.P.; Wang, Y.S.; Tang, G.Q.; Wu, D. Wet and dry deposition of atmospheric nitrogen at ten sites in Northern China. Atmos. Chem. Phys. 2012, 12, 6515–6535. [Google Scholar] [CrossRef]
- Wen, Z.; Xu, W.; Li, Q.; Han, M.; Tang, A.; Zhang, Y.; Luo, X.; Shen, J.; Wang, W.; Li, K.; et al. Changes of nitrogen deposition in China from 1980 to 2018. Environ. Int. 2020, 144, 106022. [Google Scholar] [CrossRef]
- Suding, K.; Collins, S.; Gough, L.; Clark, C.; Cleland, E.; Gross, K.; Milchunas, D.; Pennings, S. Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. PNAS 2005, 102, 4387–4392. [Google Scholar] [CrossRef]
- Tian, D.; Niu, S. A global analysis of soil acidification caused by nitrogen addition. Environ. Res. Lett. 2015, 10. [Google Scholar] [CrossRef]
- Lucas, R.W.; Klaminder, J.; Futter, M.; Bishop, K.; Gustaf, E.; Laudon, H.; Högberg, P. A meta-analysis of the effects of nitrogen additions on base cations: Implications for plants, soils, and streams. For. Ecol. Manag. 2011, 262, 95–104. [Google Scholar] [CrossRef]
- Lebauer, D.; Treseder, K. Nitrogen Limitation of Net Primary Productivity in Terrestrial Ecosystems is Globally Distributed. Ecology 2008, 89, 371–379. [Google Scholar] [CrossRef]
- Vitousek, P.; Howarth, R. Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 1991, 13, 87–115. [Google Scholar] [CrossRef]
- Małek, S. Sustainability of Picea abies of Istebna provenance in Dupniański stream catchment as dependent on stand age class. Dendrobiology 2009, 61, 95–104. [Google Scholar]
- Yang, K.; Zhu, J.; Gu, J.; Yu, L.; Wang, Z. Changes in soil phosphorus fractions after 9 years of continuous nitrogen addition in a Larix gmelinii plantation. Ann. For. Sci. 2015, 72, 435–442. [Google Scholar] [CrossRef]
- Sinsabaugh, R.; Gallo, M.; Lauber, C.; Waldrop, M.; Zak, D. Extracellular Enzyme Activities and Soil Organic Matter Dynamics for Northern Hardwood Forests receiving Simulated Nitrogen Deposition. Biogeochemistry 2005, 75. [Google Scholar] [CrossRef]
- Nave, L.E.; Vance, E.; Swanston, C.; Curtis, P.S. Impacts of elevated N inputs on north temperate forest soil C storage, C/N, and net N-mineralization. Geoderma 2009, 153. [Google Scholar] [CrossRef]
- Cusack, D.; Silver, W.; Torn, M.; Burton, S.; Firestone, M. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests. Ecology 2011, 92, 621–632. [Google Scholar] [CrossRef]
- Futa, B.; Mocek-Płóciniak, A. The influence of uncontrolled grass burning on biochemical qualities of soil. J. Agric. Eng. 2016, 61, 98–100. [Google Scholar]
- de Groot, C.; Marcelis, L.F.M.; Boogaard, R.; Lambers, H. Growth and dry-mass partitioning in tomato as affected by phosphorus nutrition and light. Plant Cell Environ. 2001, 24, 1309–1317. [Google Scholar] [CrossRef]
- Aber, J.; Nadelhoffer, K.; Steudler, P.; Melillo, J. Nitrogen Saturation in Northern Forest Ecosystems. Bioscience 1989, 39, 378–386. [Google Scholar] [CrossRef]
- Binkley, D.; Burnham, H.; Allen, H. Waterquality Impacts of Forest Fertilization with Nitrogen and Phosphorus. For. Ecol. Manag. 1999, 121, 191–213. [Google Scholar] [CrossRef]
- Hou, E.; Luo, Y.; Kuang, Y.; Chen, C.; Lu, X.; Jiang, L.; Luo, X.; Wen, D. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat. Commun. 2020, 11, 637. [Google Scholar] [CrossRef]
- Vitousek, P.; Porder, S.; Houlton, B.; Chadwick, O. Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecol. Appl. 2010, 20, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Fujii, K. Soil acidification and adaptations of plants and microorganisms in Bornean tropical forests. Ecol. Res. 2014, 29. [Google Scholar] [CrossRef]
- Mao, Q.; Xiankai, L.; Zhou, K.; Chen, H.; Zhu, X.; Mori, T.; Mo, J. Effects of long-term nitrogen and phosphorus additions on soil acidification in an N-rich tropical forest. Geoderma 2017, 285. [Google Scholar] [CrossRef]
- Zhang, H.; Shi, L.; Fu, S. Effects of nitrogen deposition and increased precipitation on soil phosphorus dynamics in a temperate forest. Geoderma 2020, 380, 114650. [Google Scholar] [CrossRef]
- Zhang, H.; Shi, L.; Wen, D.; Yu, K. Soil potential labile but not occluded phosphorus forms increase with forest succession. Biol. Fertil. Soils 2016, 52, 41–51. [Google Scholar] [CrossRef]
- Helfenstein, J.; Jegminat, J.; McLaren, T.I.; Frossard, E. Soil solution phosphorus turnover: Derivation, interpretation, and insights from a global compilation of isotope exchange kinetic studies. Biogeosciences 2018, 15, 105–114. [Google Scholar] [CrossRef]
- Walker, T.W.; Syers, J.K. The fate of phosphorus during pedogenesis. Geoderma 1976, 15, 1–19. [Google Scholar] [CrossRef]
- Bünemann, E.K. Assessment of gross and net mineralization rates of soil organic phosphorus—A review. Soil Biol. Biochem. 2015, 89, 82–98. [Google Scholar] [CrossRef]
- Helfenstein, J.; Pistocchi, C.; Oberson, A.; Tamburini, F.; Goll, D.S.; Frossard, E. Estimates of mean residence times of phosphorus in commonly considered inorganic soil phosphorus pools. Biogeosciences 2020, 17, 441–454. [Google Scholar] [CrossRef]
- Helfenstein, J.; Tamburini, F.; von Sperber, C.; Massey, M.S.; Pistocchi, C.; Chadwick, O.A.; Vitousek, P.M.; Kretzschmar, R.; Frossard, E. Combining spectroscopic and isotopic techniques gives a dynamic view of phosphorus cycling in soil. Nat. Commun. 2018, 9, 3226. [Google Scholar] [CrossRef] [PubMed]
- Lambers, H.; Chapin Iii, F.S.; Pons, T. Plant Physiological Ecology: Second Edition; Springer Science & Business Media: New York, NY, USA, 2008; pp. 1–604. [Google Scholar] [CrossRef]
- Lambers, H.; Raven, J.; Shaver, G.; Smith, S. Plant nutrient-acquisition strategies change with soil age. Trends Ecol. Evol. 2008, 23, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Rosling, A.; Midgley, M.; Cheeke, T.; Urbina, H.; Fransson, P.; Phillips, R. Phosphorus cycling in deciduous forest soil differs between stands dominated by ecto- and arbuscular mycorrhizal trees. New Phytol. 2015, 209. [Google Scholar] [CrossRef]
- Oberson, A.; Joner, E.J. Microbial turnover of phosphorus in soil. In Organic Phosphorus in the Environment; CABI Publishing: Wallingford, UK, 2005; pp. 133–164. [Google Scholar] [CrossRef]
- Rhoades, C. Single-tree influences on soil properties in agroforestry: Lessons from natural forest and savanna ecosystems. Agrofor. Syst. 1997, 35, 71–94. [Google Scholar] [CrossRef]
- Binkley, D.; Giardina, C. Why Do Tree Species Affect Soils? The Warp and Woof of Tree–Soil Interactions. Biogeochemistry 1998, 42, 89–106. [Google Scholar] [CrossRef]
- Bardgett, R.; Bowman, W.; Kaufmann, R.; Schmidt, S.; Bardgett, R.D.; Bowman, W.D.; Kaufmann, R.; Schmidt, S.K. A temporal approach to linking aboveground and belowground ecology. Trends Ecol. Evol. 2005, 20, 634–641. [Google Scholar] [CrossRef]
- West, J.B.; Hobbie, S.E.; Reich, P.B. Effects of plant species diversity, atmospheric [CO2], and N addition on gross rates of inorganic N release from soil organic matter. Glob. Chang. Biol. 2006, 12, 1400–1408. [Google Scholar] [CrossRef]
- Walker, T.N.; Ward, S.E.; Ostle, N.J.; Bardgett, R.D. Contrasting growth responses of dominant peatland plants to warming and vegetation composition. Oecologia 2015, 178, 141–151. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, G.-h.; Fu, B.-J.; Zheng, X. Relationship between plant species diversity and soil microbial functional diversity along a longitudinal gradient in temperate grasslands of Hulunbeir, Inner Mongolia, China. Ecol. Res. 2008, 23, 511–518. [Google Scholar] [CrossRef]
- Bragazza, L.; Bardgett, R.; Mitchell, E.; Buttler, A. Linking soil microbial communities to vascular plant abundance along a climate gradient. New Phytol. 2014, 205. [Google Scholar] [CrossRef]
- Fahey, T.J.; Yavitt, J.B.; Sherman, R.E.; Maerz, J.C.; Groffman, P.M.; Fisk, M.C.; Bohlen, P.J. Earthworm effects on the incorporation of litter C and N into soil organic matter in a sugar maple forest. Ecol. Appl. 2013, 23, 1185–1201. [Google Scholar] [CrossRef]
- Payn, T.; Carnus, J.-M.; Freer-Smith, P.; Kimberley, M.; Kollert, W.; Liu, S.; Orazio, C.; Rodriguez, L.; Silva, L.N.; Wingfield, M.J. Changes in planted forests and future global implications. For. Ecol. Manag. 2015, 352, 57–67. [Google Scholar] [CrossRef]
- Frédéric, A.; Mollicone, D.; Stibig, H.-J.; Aksenov, D.; Laestadius, L.; Li, Z.; Popatov, P.; Yaroshenko, A. Areas of rapid forest-cover change in boreal Eurasia. For. Ecol. Manag. 2006, 237, 322–334. [Google Scholar] [CrossRef]
- Zhang, P.; Shao, G.; Zhao, G.; Le Master, D.C.; Parker, G.R.; Dunning, J.B.; Li, Q. China’s Forest Policy for the 21st Century. Science 2000, 288, 2135. [Google Scholar] [CrossRef]
- Yang, L.; Wang, P.; Kong, C.-H. Effect of larch (Larix gmelinii Rupr.) root exudates on Manchurian walnut (Juglans mandshurica Maxim.) growth and soil juglone in a mixed-species plantation. Plant Soil 2010, 329, 249–258. [Google Scholar] [CrossRef]
- Shi, F.; Chen, X.; Chen, N. Study on the artificial mixed forest of Juglans mandshurica and Larix olgensis. J. Northeast For. Univ. 1991, 19, 32–43. [Google Scholar]
- Razaq, M.; Salahuddin; Shen, H.-l.; Sher, H.; Zhang, P. Influence of biochar and nitrogen on fine root morphology, physiology, and chemistry of Acer mono. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef]
- Guo, D.; Li, H.; Mitchell, R.; Han, W.; Hendricks, J.; Fahey, T.; Hendrick, R. Fine root heterogeneity by branch order: Exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods. New Phytol. 2008, 177, 443–456. [Google Scholar] [CrossRef]
- Gundersen, P.; Rasmussen, L. Nitrification in Forest Soils: Effects from Nitrogen Deposition on Soil Acidification and Aluminum Release. Rev. Environ. Contam. Toxicol. 1990, 113, 1–45. [Google Scholar] [CrossRef]
- Bowden, R. Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. FEMS Microbiol. Lett. 2004. [Google Scholar] [CrossRef]
- Mei, l.; Gu, J.; Zhang, Z.; Wang, Z. Responses of fine root mass, length, production and turnover to soil nitrogen fertilization in Larix gmelinii and Fraxinus mandshurica forests in Northeastern China. J. For. Res. 2010, 15, 194–201. [Google Scholar] [CrossRef]
- Hedley, M.; Stewart, J.; Chauhan, B. Changes in Inorganic and Organic Soil Phosphorus Fractions Induced by Cultivation Practices and by Laboratory Incubations1. Soil Sci. Soc. Am. J. 1982, 46. [Google Scholar] [CrossRef]
- Tiessen, H.; Moir, J.O. Characterization of available P by sequential extraction. Soil Sampl. Methods Anal. 1993, 7, 75–86. [Google Scholar]
- Robertson, G.P.; Sollins, P.; Ellis, B.G.; Lajtha, K. Exchangeable ions, pH, and cation exchange capacity. Stand. Soil Methods Long Term Ecol. Res. 1999, 28, 462. [Google Scholar]
- Team, R.C. R: A Language and Environment for Statistical Computing; Team, R.C.: Vienna, Austria, 2013. [Google Scholar]
- Shi, L.; Zhang, H.; Liu, T.; Zhang, W.; Shao, Y.; Ha, D.; Li, Y.; Zhang, C.; Cai, X.-A.; Rao, X.; et al. Consistent effects of canopy vs. understory nitrogen addition on the soil exchangeable cations and microbial community in two contrasting forests. Sci. Total Environ. 2016, 553, 349–357. [Google Scholar] [CrossRef]
- Carreira, J.; García-Ruiz, R.; Lietor, J.; Harrison, A. Biochemistry. Changes in soil phosphatase activity and P transformation rates induced by application of N-and S-containing acid-mist to a forest canopy. Soil Biol. Biochem. 2000, 32, 1857–1865. [Google Scholar] [CrossRef]
- Bowman, W.; Cleveland, C.; Halada, L.; Hreško, J.; Baron, J. Negative impact of nitrogen deposition on soil buffering capacity. Nat. Geosci. 2008, 1, 767–770. [Google Scholar] [CrossRef]
- Lu, X.; Mo, J.; Gundersern, P.; Zhu, W.-X.; Zhou, G.-Y.; Li, D.; Zhang, X. Effect of Simulated N Deposition on Soil Exchangeable Cations in Three Forest Types of Subtropical China. Pedosphere 2009, 19, 189–198. [Google Scholar] [CrossRef]
- Bolan, N.; Hedley, M.; White, R. Processes of soil acidification during nitrogen cycling with emphasis on legume based pastures. Plant Soil 1991, 134, 53–63. [Google Scholar] [CrossRef]
- Raubuch, M.; Beese, F.; Bolger, T.; McCarthy, F.; Anderson, J.M.; Splatt, P.; Willison, T.; Coûteaux, M.M.; Ineson, P.; Berg, M.P.; et al. Acidifying processes and acid-base reactions in forest soils reciprocally transplanted along a European transect with increasing pollution. Biogeochemistry 1998, 41, 71–88. [Google Scholar] [CrossRef]
- Indian People Organizing for Change (IPOC). Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; ISBN 110705799X. [Google Scholar]
- Yan, E.-R.; Wang, X.; Huang, J.-J.; Li, G.-Y.; Zhou, W. Decline of soil nitrogen mineralization and nitrification during forest conversion of evergreen broad-leaved forest to plantations in the subtropical area of Eastern China. Biogeochemistry 2008, 89, 239–251. [Google Scholar] [CrossRef]
- Tafazoli, M.; Hojjati, S.; Jalilvand or Djalilvand, H.; Lamersdorf, N. Simulated Nitrogen Deposition Reduces the Concentration of Soil Base Cations in Acer velutinum Bioss. Plantation, North of Iran. J. Soil Sci. Plant Nutr. 2019, 19, 440–449. [Google Scholar] [CrossRef]
- Falkengren-Grerup, U.; Brunet, J.; Diekmann, M. Nitrogen mineralisation in deciduous forest soils in south Sweden in gradients of soil acidity and deposition. Environ. Pollut. 1998, 102, 415–420. [Google Scholar] [CrossRef]
- Eberwein, J.; Shen, W.; Jenerette, G. Michaelis-Menten kinetics of soil respiration feedbacks to nitrogen deposition and climate change in subtropical forests. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef]
- Katou, H. A pH-dependence implicit formulation of cation-and anion-exchange capacities of variable-charge soils. Soil Sci. Soc. Am. J. 2002, 66, 1218–1224. [Google Scholar] [CrossRef]
- Malhi, S.; Nyborg, M.; Harapiak, J. Effects of long-term N fertilizer-induced acidification and liming on micronutrients in soil and in bromegrass hay. Soil Till. Res. 1998, 48, 91–101. [Google Scholar] [CrossRef]
- Lu, X.; Mao, Q.; Gilliam, F.S.; Luo, Y.; Mo, J. Nitrogen deposition contributes to soil acidification in tropical ecosystems. Glob. Chang. Biol. 2014, 20, 3790–3801. [Google Scholar] [CrossRef]
- Mo, J.; Zhang, W.; Zhu, W.; Gundersen, P.E.R.; Fang, Y.; Li, D.; Wang, H.U.I. Nitrogen addition reduces soil respiration in a mature tropical forest in southern China. Glob. Chang. Biol. 2008, 14, 403–412. [Google Scholar] [CrossRef]
- Chen, H.; Gurmesa, G.A.; Zhang, W.; Zhu, X.; Zheng, M.; Mao, Q.; Zhang, T.; Mo, J. Nitrogen saturation in humid tropical forests after 6 years of nitrogen and phosphorus addition: Hypothesis testing. Funct. Ecol. 2015, 30. [Google Scholar] [CrossRef]
- Homeier, J.; Hertel, D.; Camenzind, T.; Cumbicus, N.; Maraun, M.; Martinson, G.; Poma López, L.; Rillig, M.; Sandmann, D.; Scheu, S.; et al. Tropical Andean Forests Are Highly Susceptible to Nutrient Inputs—Rapid Effects of Experimental N and P Addition to an Ecuadorian Montane Forest. PLoS ONE 2012, 7, e47128. [Google Scholar] [CrossRef]
- Zhu, F.; Lu, X.; Liu, L.; Mo, J. Phosphate addition enhanced soil inorganic nutrients to a large extent in three tropical forests. Sci. Rep. 2015, 5, 7923. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, B. Natural and anthropogenic components of soil acidification. Zeitschrift für Pflanzenernährung und Bodenkunde 1986, 149, 702–717. [Google Scholar] [CrossRef]
- Chen, H. Phosphatase activity and P fractions in soils of an 18-year-old Chinese fir (Cunninghamia lanceolata) plantation. For. Ecol. Manag. 2003, 178, 301–310. [Google Scholar] [CrossRef]
- Dossa, E.; Diedhiou, S.; Compton, J.; Assigbetse, K.; Dick, R. Spatial patterns of P fractions and chemical properties in soils of two native shrub communities in Senegal. Plant Soil 2009, 327, 185–198. [Google Scholar] [CrossRef]
- Guo, J.; Liu, X.; Zhang, Y.; Shen, J.; Han, X.-W.; Zhang, W.; Christie, P.; Goulding, K.; Vitousek, P.M.; Zhang, F.S. Significant Acidification in Major Chinese Croplands. Science (New York, N.Y.) 2010, 327, 1008–1010. [Google Scholar] [CrossRef]
- Mitchell, A.D.; Smethurst, P.J. Surface soil changes in base cation concentrations in fertilised hardwood and softwood plantations in Australia. For. Ecol. Manag. 2004, 191, 253–265. [Google Scholar] [CrossRef]
- Weand, M.; Arthur, M.; Lovett, G.; Sikora, F.; Weathers, K. The phosphorus status of northern hardwoods differs by species but is unaffected by nitrogen fertilization. Biogeochemistry 2010, 97, 159–181. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, X.Y.; Hu, Y.; Zeng, D.-H. Effects of nitrogen addition on nutrient allocation and nutrient resorption efficiency in Larix gmelinii. Sci. Silvae Sin. 2010, 46, 14–19. [Google Scholar]
- Khan, K.S.; Joergensen, R.G. Relationships between P fractions and the microbial biomass in soils under different land use management. Geoderma 2012, 173–174, 274–281. [Google Scholar] [CrossRef]
- Sardans, J.; Penuelas, J. Increasing drought decreases phoshorus availability in an evergreen Mediterranean forest. Plant Soil 2004, 267, 367–377. [Google Scholar] [CrossRef]
- Cross, A.; Schlesinger, W. A Literature Review and Evaluation of the Hedley Fractionation: Applications to the Biogeochemical Cycle of Soil Phosphorus in Natural Ecosystems. Geoderma 1995, 64, 197–214. [Google Scholar] [CrossRef]
- Liu, Q.; Loganathan, P.; Hedley, M.; Skinner, M. The mobilisation and fate of soil and rock phosphate in the rhizosphere of ectomycorrhizal Pinus radiata seedlings in an Allophanic soil. Plant Soil 2004, 264, 219–229. [Google Scholar] [CrossRef]
- Beck, M.; Sanchez, P. Soil Phosphorus Fraction Dynamics during 18 Years of Cultivation on a Typic Paleudult. Soil Sci. Soc. Am. J. 1994, 58, 1424–1431. [Google Scholar] [CrossRef]
Forest Type | Species | Density (ha−1) | DBH (cm) | Height (m) |
---|---|---|---|---|
Mono-Culture | Walnut | 1495 | 57.3 | 12.0 |
Mixed-Culture | Walnut | 650 | 67.1 | 12.5 |
Larch | 735 | 44.8 | 13.4 | |
Mono-Culture | Ash | 1535 | 63.5 | 13.1 |
Mixed-Culture | Ash | 685 | 64.7 | 13.5 |
Larch | 740 | 43.3 | 12.8 | |
Mono-Culture | Larch | 1285 | 81.2 | 13.7 |
Forest Type | Species | Soil pH | Total N (g kg−1) | Total P (mg kg−1) | SOC (g kg−1) | C:N Ratio |
---|---|---|---|---|---|---|
Monoculture | Walnut | 5.65 | 7.1 | 1530.0 | 91.4 | 12.9 |
Mixed-Culture | Walnut*Larch | 5.58 | 6.2 | 1487.7 | 100.2 | 16.1 |
Monoculture | Ash | 5.65 | 6.3 | 1479.6 | 91.7 | 14.5 |
Mixed-Culture | Ash*Larch | 5.61 | 6.1 | 1465.9 | 100.7 | 16.5 |
Monoculture | Larch | 5.57 | 6.2 | 1464.5 | 90.7 | 14.6 |
Source of Variance | df | H+ | Al3+ | Fe3+ | EA | BS% | Al:Ca | Mg2+ | Ca2+ |
---|---|---|---|---|---|---|---|---|---|
Species (Spp.) | 4 | 0.546 | <0.001 | <0.001 | <0.001 | 0.004 | 0.228 | 0.973 | 0.183 |
Fertilization (Fert) | 3 | 0.012 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.032 | 0.044 |
Spp.*Fert | 12 | 1.000 | 0.720 | 0.853 | 0.770 | 0.955 | 0.931 | 1.000 | 0.974 |
Source of Variance | df | NO3−-N | SOC | C:N ratio | pH | H2O Pi | NaHCO3 Pi | NaOH Pi | NaOH Po |
Species (Spp.) | 4 | 0.394 | 0.024 | <0.001 | 0.725 | 0.028 | <0.001 | <0.001 | <0.001 |
Fertilization (Fert) | 3 | <0.001 | <0.001 | <0.001 | <0.001 | 0.001 | <0.001 | 0.009 | 0.001 |
Spp.*Fert | 12 | 0.742 | 0.997 | 0.989 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Species/ Fertilizer | Mg2+ (mmol kg−1) | Ca2+ (mmol kg−1) | NO3−-N (mg kg−1) | SOC (g kg−1) | C:N Ratio | Soil pH | |
---|---|---|---|---|---|---|---|
Ash | C | 26.9 ± 1.6 a | 264.8 ± 9.7 a | 35.2 ± 0.9 a | 87.1 ± 5.3 a | 12.1 ± 0.8 a | 5.6 ± 0.2 a |
N | 23.8 ± 1.9 b | 243.3 ± 8.4 b | 66.4 ± 1.4 b | 118.9 ± 4.0 b | 16.2 ± 0.4 b | 5.2 ± 0.1 b | |
P | 26.0 ± 1.0 a | 254.8 ± 10.3 a | 34.1 ± 0.8 a | 89.4 ± 4.3 a | 12.9 ± 1.1 a | 5.4 ± 0.3 a | |
NP | 25.6 ± 1.6 a | 252.2 ± 10.9 a | 38.4 ± 1.6 c | 104.7 ± 3.4 b | 14.6 ± 0.8 b | 5.4 ± 0.1 a | |
Walnut | C | 27.3 ± 1.8 a | 247.1 ± 10.3 a | 35.0 ± 0.9 a | 84.0 ± 7.7 a | 13.4 ± 1.2 a | 5.6 ± 0.5 a |
N | 24.1 ± 1.8 b | 230.9 ± 17.4 b | 66.2 ± 1.4 b | 115.8 ± 4.1 b | 17.1 ± 0.5 b | 5.2 ± 0.1 b | |
P | 26.3 ± 1.5 a | 247.6 ± 16.6 a | 34.1 ± 0.8 a | 85.1 ± 3.8 a | 13.9 ± 0.8 a | 5.7 ± 0.3 a | |
NP | 25.7 ± 1.6 a | 244.7 ± 21.4 a | 41.8 ± 6.2 c | 111.2 ± 7.7 b | 17.7 ± 1.5 b | 5.6 ± 0.1 a | |
Larch | C | 26.5 ± 1.6 a | 292.5 ± 14.3 a | 35.2 ± 0.9 a | 87.9 ± 4.8 a | 11.1 ± 0.7 a | 5.5 ± 0.2 a |
N | 23.4 ± 1.6 b | 242.0 ± 16.3 b | 75.6 ± 1.1 b | 119.4 ± 5.7 b | 14.5 ± 1.1 b | 5.1 ± 0.1 b | |
P | 25.9 ± 1.0 a | 275.1 ± 15.4 a | 34.2 ± 0.8 a | 87.1 ± 5.1 a | 11.3 ± 0.7 a | 5.5 ± 0.2 a | |
NP | 25.3 ± 1.0 a | 263.9 ± 18.3 a | 48.8 ± 7.1 c | 101.8 ± 3.0 b | 13.6 ± 0.3 b | 5.5 ± 0.2 a | |
Ash + Larch | C | 26.7 ± 1.4 a | 266.6 ± 11.0 a | 45.6 ± 9.3 a | 95.9 ± 4.9 a | 13.5 ± 0.9 a | 5.6 ± 0.2 a |
N | 23.4 ± 2.1 b | 230.5 ± 10.8 b | 64.9 ± 1.4 b | 125.9 ± 7.2 b | 17.3 ± 1.5 b | 5.1 ± 0.1 b | |
P | 25.8 ± 1.4 a | 258.1 ± 11.2 a | 34.0 ± 0.9 a | 97.3 ± 4.9 a | 13.6 ± 0.2 a | 5.6 ± 0.3 a | |
NP | 25.1 ± 1.7 a | 247.9 ± 9.8 a | 47.0 ± 5.7 c | 112.6 ± 9.8 b | 16.0 ± 1.6 b | 5.5 ± 0.2 a | |
Walnut + Larch | C | 26.7 ± 0.9 a | 254.4 ± 10.1 a | 35.1 ± 1.0 a | 97.9 ± 4.8 a | 13.9 ± 0.9 a | 5.5 ± 0.4 a |
N | 24.9 ± 2.4 b | 253.1 ± 18.9 b | 66.1 ± 1.3 b | 126.6 ± 7.9 b | 17.5 ± 0.8 b | 5.2 ± 0.1 b | |
P | 25.9 ± 0.8 a | 271.7 ± 16.4 a | 34.1 ± 1.0 a | 98.1 ± 4.4 a | 14.9 ± 0.9 a | 5.6 ± 0.3 a | |
NP | 25.3 ± 0.9 a | 247.9 ± 9.8 a | 45.1 ± 4.7 c | 113.0 ± 4.7 b | 16.0 ± 0.8 b | 5.6 ± 0.3 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarif, N.; Khan, A.; Wang, Q. Linking Soil Acidity to P Fractions and Exchangeable Base Cations under Increased N and P Fertilization of Mono and Mixed Plantations in Northeast China. Forests 2020, 11, 1274. https://doi.org/10.3390/f11121274
Zarif N, Khan A, Wang Q. Linking Soil Acidity to P Fractions and Exchangeable Base Cations under Increased N and P Fertilization of Mono and Mixed Plantations in Northeast China. Forests. 2020; 11(12):1274. https://doi.org/10.3390/f11121274
Chicago/Turabian StyleZarif, Nowsherwan, Attaullah Khan, and Qingcheng Wang. 2020. "Linking Soil Acidity to P Fractions and Exchangeable Base Cations under Increased N and P Fertilization of Mono and Mixed Plantations in Northeast China" Forests 11, no. 12: 1274. https://doi.org/10.3390/f11121274
APA StyleZarif, N., Khan, A., & Wang, Q. (2020). Linking Soil Acidity to P Fractions and Exchangeable Base Cations under Increased N and P Fertilization of Mono and Mixed Plantations in Northeast China. Forests, 11(12), 1274. https://doi.org/10.3390/f11121274