Microbial Community Analysis of Native Pinus sylvestris L. and Alien Pinus mugo L. on Dune Sands as determined by Ecoplates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Sites
2.2. Sampling Procedure
2.3. Soil Chemical Analysis, Enzymatic Activity, and Fungi Abudance
2.4. Biolog Assay
2.5. Data Analysis
3. Results
3.1. Dependence of Microorganism Activity and Functional Diversity on Pine Species and Age Class
3.2. Interactions beween Microorganisms that Use Different Carbon-Source Groups and Different Pine Species and Age Classes
3.3. Dependence of Microorganism Activity in Newly Established and Old Stands
4. Discussions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
No. | Species | Place of Sampling | Age Class * | Location Sites of Samplings ** | Latitude *** N | Longitude E | Altitude (m) |
---|---|---|---|---|---|---|---|
1 | Pinus mugo | 1 | 2 | I | 55°35′03.02″ | 21°07′29.49″ | 24 |
2 | P. sylvestris | 1 | 2 | I | 55°35′03.02″ | 21°07′29.49″ | 24 |
3 | P. mugo | 2 | 1 | I | 55°34′21.45″ | 21°06′55.71″ | 12 |
4 | P. sylvestris | 2 | 1 | I | 55°34′21.45″ | 21°06′55.71″ | 12 |
5 | P. mugo | 3 | 1 | I | 55°33′47.79″ | 21°06′23.44″ | 2 |
6 | P. sylvestris | 3 | 1 | I | 55°33′47.79″ | 21°06′23.44″ | 2 |
7 | P. sylvestris | 4 | 3 | I | 55°33′00.90″ | 21°06′38.22″ | 27 |
8 | P. mugo | 4 | 3 | I | 55°33′12.58″ | 21°06′45.52″ | 36 |
9 | P. mugo | 5 | 3 | I | 55°31′10.56″ | 21°06′03.25″ | 12 |
10 | P. sylvestris | 5 | 3 | I | 55°31′10.56″ | 21°06′03.25″ | 12 |
11 | P. mugo | 6 | 2 | I | 55°29′00.19″ | 21°05′02.58″ | 3 |
12 | P. sylvestris | 6 | 2 | I | 55°29′00.19″ | 21°05′02.58″ | 3 |
13 | P. sylvestris | 7 | 3 | II | 55°24′37.82″ | 21°04′52.43″ | 9 |
14 | P. mugo | 7 | 3 | II | 55°24′37.82″ | 21°04′52.43″ | 9 |
15 | P. sylvestris | 8 | 3 | II | 55°22′40.81″ | 21°03′32.80″ | 20 |
16 | P. mugo | 8 | 3 | II | 55°22′40.81″ | 21°03′32.80″ | 20 |
17 | P. sylvestris | 9 | 2 | II | 55°19′34.07″ | 21°01′13.37″ | 10 |
18 | P. mugo | 9 | 2 | II | 55°19′34.07″ | 21°01′13.37″ | 10 |
19 | P. sylvestris | 10 | 1 | II | 55°19′24.14″ | 21°01′00.62″ | 10 |
20 | P. mugo | 10 | 1 | II | 55°19′24.14″ | 21°01′00.62″ | 10 |
21 | P. mugo | 11 | 1 | II | 55°19′15.61″ | 21°00′50.09″ | 11 |
22 | P. sylvestris | 11 | 1 | II | 55°19′15.61″ | 21°00′50.09″ | 11 |
23 | P. mugo | 12 | 2 | II | 55°18′12.73″ | 20°59′33.97″ | 26 |
24 | P. sylvestris | 12 | 2 | II | 55°18′12.73″ | 20°59′33.97″ | 26 |
25 | P. sylvestris | 13 | 3 | III | 55°35′23.10″ | 21°07′37.10″ | 10 |
26 | P. mugo | 13 | 3 | III | 55°35′23.10″ | 21°07′37.10″ | 10 |
27 | P. mugo | 14 | 2 | III | 55°37′48.95″ | 21°06′52.52″ | 5 |
28 | P. sylvestris | 14 | 2 | III | 55°37′48.95″ | 21°06′52.52″ | 5 |
29 | P. sylvestris | 15 | 1 | III | 55°40′46.44″ | 21°07′14.33″ | 16 |
30 | P. mugo | 15 | 1 | III | 55°40′46.44″ | 21°07′14.33″ | 16 |
31 | P. sylvestris | 16 | 1 | III | 55°40′46.12″ | 21°07′42.89″ | 13 |
32 | P. mugo | 16 | 1 | III | 55°40′46.12″ | 21°07′42.89″ | 13 |
33 | P. sylvestris | 17 | 3 | III | 55°40′42.68″ | 21°07′59.21″ | 4 |
34 | P. mugo | 17 | 3 | III | 55°40′42.68″ | 21°07′59.21″ | 4 |
35 | P. sylvestris | 18 | 2 | III | 55°41′04.85″ | 21°06′39.80″ | 9 |
36 | P. mugo | 18 | 2 | III | 55°41′04.85″ | 21°06′39.80″ | 9 |
37 | P. mugo | 19 | 1 | IV | 55°41′52.84″ | 21°06′04.28″ | 4 |
38 | P. sylvestris | 19 | 1 | IV | 55°41′52.84″ | 21°06′04.28″ | 4 |
39 | P. mugo | 20 | 1 | IV | 55°42′38.36″ | 21°05′58.94″ | 5 |
40 | P. sylvestris | 20 | 1 | IV | 55°42′38.36″ | 21°05′58.94″ | 5 |
41 | P. mugo | 21 | 1 | IV | 55°42′36.05″ | 21°05′48.84″ | 3 |
42 | P. sylvestris | 21 | 1 | IV | 55°42′36.05″ | 21°05′48.84″ | 3 |
References
- UNESCO (United Nations Educational Scientific and Cultural Organization). Coronian Spit. Available online: https://whc.unesco.org/en/list/994/ (accessed on 15 March 2020).
- Von Wichdorf, H. Geologie der Kurischen Nehrung; Preussische Geologische Landesanstallt: Berlin, Germany, 1919; p. 198. (In German) [Google Scholar]
- Genys, J.B. Management of coastal dunes on the Curonian Spit—Neringa. In Coastal Conservation and Management in the Baltic Region. In Proceedings of the EUCC-WWF Conference Rīga–Klaipėda–Kaliningrad, Klaipėda, Lithuania, 3–7 May 1994; Gudelis, V., Ed.; University Publishers: Klaipėda, Lithuania, 1995; pp. 211–218. [Google Scholar]
- Cleary, M.; Laas, M.; Oskay, F.; Drenkhan, R. First report of Lecanosticta acicola on non-native Pinus mugo in southern Sweden. For. Pathol. 2019, 49, e12507. [Google Scholar] [CrossRef]
- Strakauskaite, N. Klaipeda and the Curonian Spit Guide; R. Paknio Publishing: Klaipeda, Lithuania, 2004; p. 80. ISBN 9986-830-87-7. [Google Scholar]
- Aučina, A.; Rudawska, M.; Leski, T.; Ryliškis, D.; Pietras, M.; Riepšas, E. Ectomycorrhizal fungal communities on seedlings and conspecific trees of Pinus mugo grown on the coastal dunes of the Curonian Spit in Lithuania. Mycorrhiz 2011, 21, 237–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaigalas, A.; Pazdur, A. Chronology of buried soils, forest fires and extreme migration of dunes on the Kuršių nerija spit (Lithuanian coast). Landf. Anal. 2008, 9, 187–191. [Google Scholar]
- Vilà, M.; Espinar, J.L.; Hejda, M.; Hulme, P.E.; Jarošík, V.; Maron, J.L.; Pergl, J.; Schaffner, U.; Sun, Y.; Pyšek, P. Ecological impacts of invasive alien plants: A meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 2011, 14, 702–708. [Google Scholar] [CrossRef] [PubMed]
- Van Kleunen, M.; Weber, E.; Fischer, M. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol. Lett. 2010, 13, 235–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilà, M.; Weiner, J. Are invasive plant species better competitors than native plant species?—Evidence from pair-wise experiments. Oikos 2004, 105, 229–238. [Google Scholar] [CrossRef]
- Maron, J.L.; Marler, M. Field-based competitive impacts between invaders and natives at varying resource supply. J. Ecol. 2008, 96, 1187–1197. [Google Scholar] [CrossRef]
- Niu, H.B.; Liu, W.X.; Wan, F.H.; Liu, B. An invasive aster (Ageratina adenophora) invades and dominates forest understories in China: Altered soil microbial communities facilitate the invader and inhibit natives. Plant Soil 2007, 294, 73–85. [Google Scholar] [CrossRef]
- Wu, H.; Lin, J.M.; Zhang, J.B. Allelopathic effects of Eucalyptus salubris F. Muell and E. Brockwayii CA gardner on germination and seedlings growth of prairie ground cherry (Physalis hederifolia A. Gray). Allelopath. J. 2019, 46, 109–119. [Google Scholar] [CrossRef]
- Hawkes, C.V.; Wren, I.F.; Herman, D.J.; Firestone, M.K. Plant invasion alters nitrogen cycling by modifying the soil nitrifying community. Ecol. Lett. 2005, 8, 976–985. [Google Scholar] [CrossRef]
- Batten, K.M.; Scow, K.M.; Davies, K.F.; Harrison, S.P. Two invasive plants alter soil microbial community composition in serpentine grasslands. Biol. Invasions 2006, 8, 217–230. [Google Scholar] [CrossRef]
- Broz, A.K.; Manter, D.K.; Vivanco, J.M. Soil fungal abundance and diversity: Another victim of the invasive plant Centaurea maculosa. ISME J. 2007, 1, 763–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kourtev, P.S.; Ehrenfeld, J.G.; Häggblom, M. Exotic plant species alter the microbial community structure and function in the soil. Ecology 2002, 83, 3152–3166. [Google Scholar] [CrossRef]
- Liao, J.D.; Boutton, T.W. Soil microbial biomass response to woody plant invasion of grassland. Soil Biol. Biochem. 2008, 40, 1207–1216. [Google Scholar] [CrossRef] [Green Version]
- Majewska, M.L.; Błaszkowski, J.; Nobis, M.; Rola, K.; Nobis, A.; Łakomiec, D.; Czachura, P.; Zubek, S. Root-inhabiting fungi in alien plant species in relation to invasion status and soil chemical properties. Symbiosis 2015, 65, 101–115. [Google Scholar] [CrossRef] [Green Version]
- Thoms, C.; Gleixner, G. Seasonal differences in tree species’ influence on soil microbial communities. Soil Biol. Biochem. 2013, 66, 239–248. [Google Scholar] [CrossRef]
- Thorpe, A.S.; Callaway, R.M. Interactions between invasive plants and soil ecosystem: Positive feedbacks and their potential to persist. In Conceptual Ecology and Invasion Biology: Reciprocal Approaches to Nature; Springer: Dordrecht, The Netherlands, 2006; pp. 323–341. [Google Scholar] [CrossRef]
- Boudsocq, S.; Niboyet, A.; Lata, J.C.; Raynaud, X.; Loeuille, N.; Mathieu, J.; Blouin, M.; Abbadie, L.; Barot, S. Plant preference for ammonium versus nitrate: A neglected determinant of ecosystem functioning? Am. Nat. 2012, 180, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Callaway, R.M.; Cipollini, D.; Barto, K.; Thelen, G.C.; Hallett, S.G.; Prati, D.; Stinson, K.; Klironomos, J. Novel weapons: Invasive plant suppresses fungal mutualists in America but not in its native Europe. Ecology 2008, 89, 1043–1055. [Google Scholar] [CrossRef] [Green Version]
- Wolfe, B.E.; Klironomos, J.N. Breaking new ground: Soil communities and exotic plant invasion. Bioscience 2005, 55, 477–487. [Google Scholar] [CrossRef]
- Rodgers, V.L.; Wolfe, B.E.; Werden, L.K.; Finzi, A.C. The invasive species Alliaria petiolata (garlic mustard) increases soil nutrient availability in northern hardwood-conifer forests. Oecologia 2008, 157, 459–471. [Google Scholar] [CrossRef]
- Weidenhamer, J.D.; Callaway, R.M. Direct and indirect effects of invasive plants on soil chemistry and ecosystem function. J. Chem. Ecol. 2010, 36, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Wang, S.; Wei, M.; Zhou, J.; Jiang, K.; Du, D.; Wang, C. The invasive tree staghorn sumac affects soil N2-fixing bacterial communities in north China. Plant Biol. 2019, 21, 951–960. [Google Scholar] [CrossRef] [PubMed]
- Leege, L.M.; Murphy, P.G. Ecological effects of the non-native Pinus nigra on sand dune communities. Can. J. Bot. 2001, 79, 429–437. [Google Scholar] [CrossRef]
- Janušauskaitė, D.; Baliuckas, V.; Dabkevičius, Z. Needle litter decomposition of native Pinus sylvestris L. and alien Pinus mugo at different ages affecting enzyme activities and soil properties on dune sands. Balt. For. 2013, 19, 50–60. Available online: https://www.balticforestry.mi.lt/bf/PDF_Articles/2013-19[1]/Janusauskaite%20Dalia.pdf (accessed on 4 March 2020).
- Garland, J.L.; Mills, A.L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl. Environ. Microbiol. 1991, 57, 2351–2359. Available online: https://aem.asm.org/content/57/8/2351.short (accessed on 6 March 2020). [CrossRef] [Green Version]
- Garland, J.L. Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbiol. Ecol. 1997, 24, 289–300. [Google Scholar] [CrossRef]
- Insam, H. A new set of substrates proposed for community characterization in environmental samples. In Microbial Communities: Functional Versus Structural Approaches; Insam, H., Rangger, A., Eds.; Springer: Insbruck, Austria, 1997; pp. 259–260. [Google Scholar]
- Konopka, A.; Oliver, L.; Turco, R.F., Jr. The use of carbon substrate utilization patterns in environmental and ecological microbiology. Microb. Ecol. 1998, 35, 103–115. [Google Scholar] [CrossRef]
- Preston-Mafham, J.; Boddy, L.; Randerson, P.F. Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles–a critique. FEMS Microbiol. Ecol. 2002, 42, 1–14. [Google Scholar] [CrossRef]
- Stefanowicz, A. The Biolog Plates Technique as a Tool in Ecological Studies of Microbial Communities. Pol. J. Environ. Stud. 2006, 15, 669–676. Available online: https://pdfs.semanticscholar.org/8d94/dc356ca20c5e5521fbebb252343d428032c0.pdf (accessed on 10 March 2020).
- Kumar, U.; Shahid, M.; Tripathi, R.; Mohanty, S.; Kumar, A.; Bhattacharyya, P.; Lala, B.; Gautama, P.; Rajaa, R.; Pandaa, B.B.; et al. Variation of functional diversity of soil microbial community in sub-humid tropical rice-rice cropping system under long-term organic and inorganic fertilization. Ecol. Indic. 2017, 73, 536–543. [Google Scholar] [CrossRef]
- Kaneda, S.; Krištůfek, V.; Baldrian, P.; Malý, S.; Frouz, J. Changes in functional response of soil microbial community along chronosequence of spontaneous succession on post mining forest sites evaluated by Biolog and SIR methods. Forests 2019, 10, 1005. [Google Scholar] [CrossRef] [Green Version]
- Garau, G.; Morillas, L.; Roales, J.; Castaldi, P.; Mangia, N.P.; Spano, D.; Mereu, S. Effect of monospecific and mixed Mediterranean tree plantations on soil microbial community and biochemical functioning. Appl. Soil Ecol. 2019, 140, 78–88. [Google Scholar] [CrossRef]
- Song, B.; Chen, M.; Ye, S.; Xu, P.; Zeng, G.; Gong, J.; Li, J.; Zhang, P.; Cao, W. Effects of multi-walled carbon nanotubes on metabolic function of the microbial community in riverine sediment contaminated with phenanthrene. Carbon 2019, 144, 1–7. [Google Scholar] [CrossRef]
- Zhao, M.; Yin, C.; Tao, Y.; Li, C.; Fang, S. Diversity of soil microbial community identified by Biolog method and the associated soil characteristics on reclaimed Scirpus mariqueter wetlands. SN Appl. Sci. 2019, 1, 1408. [Google Scholar] [CrossRef] [Green Version]
- Chavan, S.; Nadanathangam, V. Shifts in metabolic patterns of soil bacterial communities on exposure to metal engineered nanomaterials. Ecotoxicol. Environ. Saf. 2020, 189, 110012. [Google Scholar] [CrossRef] [PubMed]
- Motiekaityte, V. Changes of sand dune plan communities of the Lithuanian coastal zone in the 20th century. Ekologija 2000, 1, 7–15. [Google Scholar]
- WRB; IUSS Working Group; FAO ISRIC. World Reference Base for Soil Resources 2006; FAO: Rome, Italy, 2006; Volume 103, p. 145. [Google Scholar]
- Insam, H.; Goberna, M. Use of Biolog® for the community level physiological 451 profiling (CLPP) of environmental samples. Mol. Microb. Ecol. Man. 2008, 452, 853–860. [Google Scholar]
- Okpiliya, F.I. Ecological diversity indices: Any hope for one again. J. Environ. Earth Sci. 2012, 2, 45–52. [Google Scholar]
- Mandaville, S.M. Benthic Macroinvertebrates in Freshwater—Taxa Tolerance Values, Metrics, and Protocols, Project H-1. (Nova Scotia: Soil & Water Conservation Society of Metro Halifax). 2002. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.516.2776&rep=rep1&type=pdf (accessed on 17 March 2020).
- Türkmen, G.; Kazancı, N. Applications of various diversity indices to benthic macroinvertebrate assemblages in streams of an atural park in Turkey. Rev. Hidrobiol. 2010, 32, 111125. Available online: https://d1wqtxts1xzle7.cloudfront.net/3935006/ffp-1765.pdf (accessed on 17 March 2020).
- Weber, K.P.; Gehder, M.; Legge, R.L. Assessment of changes in the microbial community of constructed wetland mesocosms in response to acid mine drainage exposure. Water Res. 2008, 42, 180–188. [Google Scholar] [CrossRef]
- Pielou, E.C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 1966, 13, 131–144. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, B.; Zhang, W.; Hu, C.; An, S. Effects of plant and influent C: N: P ratio on microbial diversity in pilot-scale constructed wetlands. Ecol. Eng. 2010, 36, 441–449. [Google Scholar] [CrossRef]
- McIntosh, R.P. An index of diversity and the relation of certain concepts to diversity. Ecology 1967, 48, 392–404. Available online: http://www.jstor.org/stable/1932674?origin=JSTOR-pdf (accessed on 17 March 2020).
- Augustaitis, A.; Kliučius, A. Kuršių Nerijos nacionalinio parko pušynų būklės dinamika [An analysis of pine stands health in Curonian Spit Kuršių Nerija National Park]. Miškinikystė For. Sci. 1996, 1, 5–12, (In Lithuanian with English summary). [Google Scholar]
- Bauhus, J.; Pare, D. Effects of tree species, stand age and soil type on soil microbial biomass and its activity in a southern boreal forest. Soil Biol. Biochem. 1998, 30, 1077–1089. [Google Scholar] [CrossRef]
- Dirnböck, T.; Dullinger, S.; Köck, R. Organic matter accumulation following Pinus mugo Turra establishment in subalpine pastures. Plant. Ecol. Divers. 2008, 1, 59–66. [Google Scholar] [CrossRef]
- Schipper, L.A.; Degens, B.P.; Sparling, G.P.; Duncan, L.C. Changes in microbial heterotrophic diversity along five plant successional sequences. Soil Biol. Biochem. 2001, 33, 2093–2103. [Google Scholar] [CrossRef]
- Verhoeven, R. Response of soil microfauna to organic fertilisation in sandy virgin soils of coastal dunes. Biol. Fertil. Soils 2001, 34, 390–396. [Google Scholar] [CrossRef]
Level of Age Class | AWCD | Substrate Richness (S) | Shannon’s Diversity Index (H′) | Pielou Evenness (E) | Simpson’s Reciprocal Diversity Index (1/D) | McIntosh Diversity Index (Mc) |
---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
Pinus mugo | ||||||
1 | 0.35 ± 0.18 | 16.00 ± 4.36 | 2.70 ± 0.30 | 0.98 ± 0.01 | 35.33 ± 12.46 | 0.92 ± 0.02 |
2 | 0.42 ± 0.16 | 19.00 ± 2.65 | 2.90 ± 0.13 | 0.99 ± 0.01 | 43.45 ± 5.25 | 0.93 ± 0.01 |
3 | 0.39 ± 0.03 | 21.00 ± 1.00 | 2.99 ± 0.05 | 0.98 ± 0.00 | 46.45 ± 3.62 | 0.94 ± 0.01 |
Pinus sylvestris | ||||||
1 | 0.33 ± 0.04 | 18.67 ± 1.53 | 2.87 ± 0.08 | 0.98 ± 0.00 | 45.20 ± 3.08 | 0.94 ± 0.00 |
2 | 0.44 ± 0.09 | 21.33 ± 2.08 | 3.01 ± 0.09 | 0.98 ± 0.00 | 46.85 ± 5.05 | 0.93 ± 0.01 |
3 | 0.63 ± 0.25 | 23.67 ± 3.21 | 3.12 ± 0.16 | 0.99 ± 0.01 | 52.44 ± 1.88 | 0.94 ± 0.00 |
F value/p value | ||||||
Species | 1.29/0.278 | 4.01/0.068 | 3.25/0.096 | 0.00/4.75 | 4.75/0.049 | 0.85/0.374 |
Age class | 1.83/0.202 | 5.14/0.024 | 4.38/0.037 | 0.49/3.24 | 3.24/0.075 | 1.13/0.356 |
Species × Age class | 1.27/0.317 | 0.01/0.993 | 0.05/0.954 | 1.16/0.345 | 0.41/0.675 | 1.04/0.384 |
F1 Axis | F2 Axis | |
---|---|---|
Eigenvalue | 0.031 | 0.001 |
Constrained inertia (%) | 97.730 | 2.270 |
Cumulative % | 97.730 | 100.000 |
Total inertia | 11.101 | 0.258 |
Cumulative % (%) | 11.101 | 11.359 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jurkšienė, G.; Janušauskaitė, D.; Baliuckas, V. Microbial Community Analysis of Native Pinus sylvestris L. and Alien Pinus mugo L. on Dune Sands as determined by Ecoplates. Forests 2020, 11, 1202. https://doi.org/10.3390/f11111202
Jurkšienė G, Janušauskaitė D, Baliuckas V. Microbial Community Analysis of Native Pinus sylvestris L. and Alien Pinus mugo L. on Dune Sands as determined by Ecoplates. Forests. 2020; 11(11):1202. https://doi.org/10.3390/f11111202
Chicago/Turabian StyleJurkšienė, Girmantė, Dalia Janušauskaitė, and Virgilijus Baliuckas. 2020. "Microbial Community Analysis of Native Pinus sylvestris L. and Alien Pinus mugo L. on Dune Sands as determined by Ecoplates" Forests 11, no. 11: 1202. https://doi.org/10.3390/f11111202
APA StyleJurkšienė, G., Janušauskaitė, D., & Baliuckas, V. (2020). Microbial Community Analysis of Native Pinus sylvestris L. and Alien Pinus mugo L. on Dune Sands as determined by Ecoplates. Forests, 11(11), 1202. https://doi.org/10.3390/f11111202