An Algorithm for Genetic Analysis of Full-Sib Datasets with Mixed-Model Software Lacking a Numerator Relationship Matrix Function, and a Comparison with Results from a Dedicated Genetic Software Package
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of Analytical Approaches and Description of the Algorithm
- is an n × 1 vector of observations, where n is the number of records;
- is an n × p design matrix for fixed effects, where p is the number of levels of fixed effects;
- is the p × 1 vector of fixed effects;
- is an n × q design matrix for random effects, where q is the number of levels of random effects;
- is the q × 1 vector of random tree effects;
- is an n × 1 vector of random residuals.
2.1.1. Tree Model, ASREML = ASR_ind
2.1.2. Parent Model, ASREML = ASR_parent
2.1.3. Progeny Breeding Value Predictions for Parent Models
- âijk = the BV ith progeny of parent j × parent k;
- âj = the BV of parent j;
- âk = the BV of parent k;
- ŵijk = the within-family Mendelian additive effect of the individual ijk.
2.1.4. Algorithm for Use with General-Purpose Mixed Linear Model Software
- TreeID, female, male, group, test, rep, stvolume
- 1241, 4, 6, B, 1, 1, 128.43
- 21241, 6, 4, B, 1, 1, 128.43
- ASREML, and the model will be denoted ASR_parDouble;
- R lme4, and the model will be denoted R_parDouble;
- SAS Proc Mixed, and the model will be denoted SAS_parDouble.
2.2. Summary of Different Linear Mixed Models
2.2.1. Precision of Variance Component Estimates
2.2.2. Precision of BLUP Estimates
2.2.3. Correlations among BLUPs from Different Models
2.2.4. Description of the Dataset
3. Results
3.1. Variance Component Estimates
3.2. Precision of Variance Component Estimates
3.3. Genetic Parameter Estimates
3.4. BLUPs of Genetic Effects
3.5. Precision of the BLUPs
3.6. Correlations among Genetic Value Predictions from Different Models
4. Discussion
4.1. Genetic Value Predictions
4.2. Variance Component Estimates
4.3. Precision of Variance Component Estimates
4.4. Genetic Parameter Estimates
4.5. Calculation of Individual Tree-Breeding Values with Half-Sib Progeny Test Data
4.6. Limitations: Multiple Generations
4.7. Datasets with Both Full-Sib and Half-Sib Observations
4.8. Heterogeneous Variance Components
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Downward Bias in Estimates of σ2 and se(σ2) When Using a Doubled Sample of a Random Variable
References
- Henderson, C.R. Best Linear Unbiased Estimation and Prediction under a Selection Model. Biometrics 1975, 31, 423–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henderson, C.R. A Simple Method for Computing the Inverse of a Numerator Relationship Matrix Used in Prediction of Breeding Values. Biometrics 1976, 32, 69–83. [Google Scholar] [CrossRef]
- Kennedy, B.W.; Schaeffer, L.R.; Sorensen, D.A. Genetic Properties of Animal Models. J. Dairy Sci. 1988, 71, 17–26. [Google Scholar] [CrossRef]
- Isik, F.; Holland, J.; Maltecca, C. Genetic Data Analysis for Plant and Animal Breeding; Springer International Publishing: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- White, T.L.; Neale, D.; Adams, W.T. Forest Genetics; CABI Publishing: Wallingford, UK, 2007. [Google Scholar]
- Cornelius, J. Heritabilities and Additive Genetic Coefficients of Variation in Forest Trees. Can. J. For. Res. 1994, 24, 372–379. [Google Scholar] [CrossRef]
- Falconer, D.; Mackay, T. Introduction to Quantitative Genetics; Prentice Hall: Harlow, UK, 1996. [Google Scholar]
- Mrode, R.A. Linear Models for the Prediction of Animal Breeding Values; CABI Publishing: Wallingford, UK, 2014. [Google Scholar]
- Piepho, H.P.; Möhring, J.; Melchinger, A.E.; Büchse, A. BLUP for Phenotypic Selection in Plant Breeding and Variety Testing. Euphytica 2008, 161, 209–228. [Google Scholar] [CrossRef]
- Gilmour, A.; Gogel, B.; Cullis, B.; Welham, S.; Thompson, R. ASREML User Guide Release 4.1; VSN International: Hemel Hempstead, UK, 2015. [Google Scholar]
- Gilmour, A.R. Echidna Mixed Model Software. In Proceedings of the World Congress on Genetics Applied to Livestock Production, Volume Methods and Tools-Software, Auckland, New Zealand, 11–16 February 2018; pp. 995–998. Available online: http://www.wcgalp.org/proceedings/2018/echidna-mixed-models-software (accessed on 2 March 2020).
- Boldman, K.G.; Kriese, L.A.; Van Vleck, L.D.; Van Tassell, C.P.; Kachman, S.D. A Manual for Use of MTDFREML—A Set of Programs to Obtain Estimates of Variances and Covariances; United States Department of Agriculture, Agricultural Research Service, USDA, ASR: Beltsville, MD, USA, 1995.
- Resende, M.D.V. Software Selegen-REML/BLUP: A Useful Tool for Plant Breeding. Crop Breed. Appl. Biotechnol. 2016, 16, 330–339. [Google Scholar] [CrossRef]
- Meyer, K. WOMBAT: A TooL for Mixed Model Analyses in Quantitative Genetics by Restricted Maximum Likelihood (REML). J. Zhejiang Univ. Sci. B 2007, 8, 815–821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SAS Institute Inc. SAS/STAT 14.1 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2015. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. R Version 4.0.2 (2020-06-22)-“Taking Off Again”; The R Foundation for Statistical Computing: Viena, Austria, 2020. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting Linear Mixed-effects Models Using lme4. J. Stat. Softw. 2015, 67. [Google Scholar] [CrossRef]
- Quaas, R.L.; Pollak, E.J. Mixed Model Methodology for Farm and Ranch Beef Cattle Testing Programs. J. Anim. Sci. 1980, 51, 1277–1287. [Google Scholar] [CrossRef] [Green Version]
- Burdon, R.D. Genetic Correlation as a Concept for Studying Genotype-environment Interaction in Forest Tree Breeding. Silvae Genet. 1977, 26, 168–175. [Google Scholar]
- Dickerson, G. Techniques and Procedures in Animal Science Research; American Society of Animal Science: Champaign, IL, USA, 1969. [Google Scholar]
- Lee, E.S.; Forthofer, R.N. Analyzing Complex Survey Data; SAGE Publications: Thousand Oaks, CA, USA, 2006. [Google Scholar]
- Bates, D.M. Assessing the Precision of Estimates of Variance Components. Presentation at Computationale Statistik, Ludwid Maximilian University, Munich, Germany, 16 July 2009. Available online: http://lme4.r-forge.r-project.org/slides/2009-07-21-Seewiesen/4PrecisionD.pdf (accessed on 19 May 2020).
- Hodge, G.R.; Dvorak, W.S. Growth Potential and Genetic Parameters of Four Mesoamerican PinesPlanted in the Southern Hemisphere. South. For. J. For. Sci. 2012, 74, 27–49. [Google Scholar] [CrossRef]
- Lstibůrek, M.; Hodge, G.R.; Lachout, P. Uncovering Genetic Information from Commercial Forest Plantations—Making Up for Lost Time Using “Breeding without Breeding”. Tree Genet. Genomes 2015, 11. [Google Scholar] [CrossRef]
- White, T.L.; Hodge, G. Predicting Breeding Values with Applications in Forest Tree Improvement; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1989. [Google Scholar]
- Searle, S.R.; Casella, G.; McCulloch, C.E. Variance Components; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2009. [Google Scholar]
- Zobel, B.; Talbert, J. Applied Forest Tree Improvement; John Wiley & Sons Inc.: Hoboken, NJ, USA, 1984. [Google Scholar]
- Lstibůrek, M.; El-Kassaby, Y. Advanced-Generation Seed Orchard Designs. In Seed Orchards, Proceedings from a Conference at Umeå, Sweden, 26–28 September 2007; IUFRO International Union of Forest Research Organizations: Vienna, Austria, 2008; pp. 155–161. [Google Scholar]
- McKeand, S.; Jett, J.; O’Berry, S.; Heine, A. New Challenges for Seed Orchard Management of Loblolly Pine in the Southern US. In Proceedings of the IUFRO Seed Orchard Conference 2017, Bålsta, Sweden, 4–6 September 2017; Swedish University of Agricultural Sciences: Umeå, Sweden, 2017. [Google Scholar]
- Johnson, D.L.; Thompson, R. Restricted Maximum Likelihood Estimation of Variance Components for Univariate Animal Models Using Sparse Matrix Techniques and Average Information. J. Dairy Sci. 1995, 78, 449–456. [Google Scholar] [CrossRef]
- Gilmour, A.R.; Thompson, R.; Cullis, B.R. Average Information REML: An Efficient Algorithm for Variance Parameter Estimation in Linear Mixed Models. Biometrics 1995, 51, 1440–1450. [Google Scholar] [CrossRef]
- Knight, E. Improved Iterative Schemes for REML Estimation of Variance Parameters in Linear Mixed Models. Ph.D. Thesis, The University of Adelaide, Adelaide, Australia, 2008. [Google Scholar]
- Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum Likelihood from Incomplete Data via the EM Algorithm. J. R. Stat. Soc. Ser. B 1977, 39, 1–38. [Google Scholar]
- Rencher, A.; Schaalje, G. Linear Models in Statistics, 2nd ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2008; pp. 117–118. [Google Scholar]
Analysis | Additive Effects | Add. x Environment | Dominance | Dom. x Env. | Residual | |||
---|---|---|---|---|---|---|---|---|
TreeID | Female | Male | fe | me | fm | fme | ||
ASR_ind | x | x | x | x | x | x | ||
ASR_parent | x | x | x | x | x | x | x | |
ASR_parDouble | x | x | x | x | x | x | x | |
SAS_parDouble | x | x | x | x | x | x | x | |
R_parDouble | x | x | x | x | x | x | x |
Analysis | Estimated Variance Components | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
σ2A | se | σ2f | se | σ2fe | se | σ2fm | se | σ2fme | se | σ2resid | se | σ2phen | se | |
ASR_ind | 557.5 | 167.2 | 139.4 | 41.8 | 47.3 | 13.8 | 36.5 | 18.3 | 25.0 | 19.2 | 1820.9 | 92.4 | 2534.5 | 92.4 |
ASR_parent | 557.5 | 167.2 | 139.4 | 41.9 | 47.3 | 13.8 | 36.5 | 18.3 | 25.0 | 19.2 | 2099.5 | 39.5 | 2534.4 | 92.4 |
ASR_parDouble | 555.8 | 163.7 | 139.0 | 40.9 | 45.9 | 13.5 | 35.9 | 12.8 | 25.9 | 13.5 | 2081.9 | 27.5 | 2513.4 | 87.4 |
SAS_parDouble | 555.5 | 163.7 | 138.9 | 40.9 | 45.9 | 13.7 | 35.9 | 12.9 | 25.9 | 13.7 | 2081.9 | 27.5 | 2513.2 | 65.3 |
R_parDouble | 557.4 | −149.2, +176.4 | 139.4 | −37.3, +44.1 | 44.7 | −13.0, +13.8 | 35.6 | −11.9, +14.2 | 27.1 | −12.7, +15.1 | 2064.7 | −27.1, +27.3 | 2495.5 | −12.7, +15.1 |
Analysis | Genetic Parameter Estimates | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
h2 | se | d2 | se | rBg | se | rBd | se | h2w | se | |
ASR_ind | 0.220 | 0.059 | 0.058 | 0.029 | 0.747 | 0.082 | 0.594 | 0.254 | 0.133 | 0.040 |
ASR_parent | 0.220 | 0.059 | 0.058 | 0.029 | 0.747 | 0.082 | 0.594 | 0.254 | 0.133 | 0.040 |
ASR_parDouble | 0.221 | 0.058 | 0.057 | 0.020 | 0.752 | 0.081 | 0.581 | 0.177 | 0.134 | 0.039 |
SAS_parDouble | 0.221 | 0.065 | 0.057 | 0.020 | 0.752 | 0.082 | 0.581 | 0.179 | 0.133 | 0.039 |
R_parDouble | 0.223 | −0.060, +0.071 | 0.057 | −0.019, +0.023 | 0.757 | 0.568 | 0.135 | −0.036, +0.043 |
ParentID | ASR_ind | ASR_parent | ASR_parDouble | SAS_parDouble | R_parDouble | z |
---|---|---|---|---|---|---|
20 | 47.50 | 47.50 | 47.64 | 47.64 | 47.78 | 2.30 |
7 | 44.53 | 44.54 | 44.62 | 44.60 | 44.76 | 2.16 |
22 | 32.55 | 32.54 | 32.68 | 32.66 | 32.82 | 1.58 |
27 | 19.33 | 19.33 | 19.38 | 19.38 | 19.38 | 0.94 |
14 | 13.81 | 13.82 | 13.84 | 13.84 | 13.88 | 0.67 |
10 | −0.22 | −0.22 | −0.19 | −0.19 | −0.12 | −0.01 |
16 | −10.55 | −10.55 | −10.58 | −10.58 | −10.58 | −0.51 |
34 | −20.69 | −20.70 | −20.78 | −20.78 | −20.83 | −1.00 |
36 | −47.41 | −47.42 | −47.56 | −47.54 | −47.67 | −2.30 |
mean | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
SD(â) | 20.65 | 20.65 | 20.71 | 20.70 | 20.76 | |
SE(a−â) | 11.87 | 11.87 | 11.71 | 11.71 | 11.71 |
Female_Male | ASR_ind | ASR_parent | ASR_parDouble | SAS_parDouble | R_parDouble | z |
---|---|---|---|---|---|---|
29_28 | 9.26 | 9.26 | 9.19 | 9.19 | 9.13 | 2.90 |
10_7 | 7.26 | 7.26 | 7.19 | 7.19 | 7.15 | 2.28 |
12_9 | 4.52 | 4.52 | 4.48 | 4.48 | 4.45 | 1.42 |
32_29 | 3.26 | 3.26 | 3.23 | 3.23 | 3.23 | 1.02 |
16_15 | 1.61 | 1.61 | 1.60 | 1.60 | 1.59 | 0.50 |
4_3 | 0.06 | 0.06 | 0.07 | 0.06 | 0.10 | 0.02 |
31_30 | −1.46 | −1.46 | −1.46 | −1.46 | −1.47 | −0.46 |
37_36 | −3.15 | −3.15 | −3.12 | −3.12 | −3.12 | −0.99 |
12_5 | −5.25 | −5.25 | −5.20 | −5.20 | −5.14 | −1.65 |
28_21 | −6.92 | −6.91 | −6.86 | −6.87 | −6.83 | −2.17 |
24_23 | −7.34 | −7.34 | −7.26 | −7.26 | −7.21 | −2.30 |
mean | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
SD() | 3.19 | 3.19 | 3.16 | 3.16 | 3.14 | |
SE(s−) | 5.15 | 5.15 | 5.10 | 5.10 | 5.11 |
treeID | ASR_ind | ASR_parent | ASR_parDouble | SAS_parDouble | R_parDouble | Z |
---|---|---|---|---|---|---|
1693 | 60.02 | 60.03 | 60.21 | 60.20 | 60.53 | 3.86 |
1692 | 46.70 | 46.70 | 46.82 | 46.80 | 46.97 | 3.00 |
1663 | 38.96 | 38.96 | 39.04 | 39.04 | 39.15 | 2.50 |
6992 | 31.18 | 31.18 | 31.25 | 31.25 | 31.28 | 2.00 |
7198 | 23.50 | 23.50 | 23.56 | 23.56 | 23.59 | 1.50 |
15715 | 15.76 | 15.76 | 15.86 | 15.85 | 15.95 | 1.00 |
9695 | 8.03 | 8.03 | 8.04 | 8.03 | 8.01 | 0.50 |
2752 | 0.31 | 0.31 | 0.33 | 0.33 | 0.38 | 0.00 |
3596 | −7.42 | −7.42 | −7.44 | −7.44 | −7.44 | −0.50 |
2663 | −15.17 | −15.17 | −15.23 | −15.22 | −15.34 | −1.00 |
3204 | −22.88 | −22.87 | −22.93 | −22.93 | −22.99 | −1.50 |
2557 | −30.65 | −30.64 | −30.72 | −30.71 | −30.79 | −2.00 |
3156 | −38.33 | −38.34 | −38.45 | −38.44 | −38.68 | −2.50 |
13308 | −42.99 | −42.99 | −43.15 | −43.13 | −43.40 | −2.80 |
mean | 0.30 | 0.30 | 0.31 | 0.30 | 0.31 | |
SD(â) | 15.45 | 15.45 | 15.50 | 15.50 | 15.56 | |
SE(a-â) | 17.37 |
BV Progeny | ||||
Model | R | Slope | Intercept | se(âm − âASR_ind) |
ASR_parent | 1 | 1.000012 | −0.000169 | 0.0037 |
ASR_parDouble | 1 | 1.003019 | 0.001407 | 0.0524 |
SAS_parDouble | 1 | 1.002756 | 0.000972 | 0.0478 |
R_parDouble | 0.99999 | 1.006739 | 0.003667 | 0.1284 |
BV Parent | ||||
Model | R | slope | intercept | se(âm − âASR_ind) |
ASR_parent | 1 | 1.000042 | 0.000248 | 0.0048 |
ASR_parDouble | 1 | 1.002849 | 0.000637 | 0.0649 |
SAS_parDouble | 1 | 1.002607 | 0.000419 | 0.0599 |
R_parDouble | 1 | 1.005545 | 0.000420 | 0.1286 |
SCA Family | ||||
Model | R | slope | intercept | se(ŝm − ŝASR_ind) |
ASR_parent | 1 | 0.999766 | 0.000047 | 0.0009 |
ASR_parDouble | 0.99999 | 0.990685 | 0.000047 | 0.0317 |
SAS_parDouble | 0.99999 | 0.990869 | 0.000019 | 0.0310 |
R_parDouble | 0.99997 | 0.984316 | 0.000016 | 0.0557 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hodge, G.R.; Acosta, J.J. An Algorithm for Genetic Analysis of Full-Sib Datasets with Mixed-Model Software Lacking a Numerator Relationship Matrix Function, and a Comparison with Results from a Dedicated Genetic Software Package. Forests 2020, 11, 1169. https://doi.org/10.3390/f11111169
Hodge GR, Acosta JJ. An Algorithm for Genetic Analysis of Full-Sib Datasets with Mixed-Model Software Lacking a Numerator Relationship Matrix Function, and a Comparison with Results from a Dedicated Genetic Software Package. Forests. 2020; 11(11):1169. https://doi.org/10.3390/f11111169
Chicago/Turabian StyleHodge, Gary R., and Juan Jose Acosta. 2020. "An Algorithm for Genetic Analysis of Full-Sib Datasets with Mixed-Model Software Lacking a Numerator Relationship Matrix Function, and a Comparison with Results from a Dedicated Genetic Software Package" Forests 11, no. 11: 1169. https://doi.org/10.3390/f11111169
APA StyleHodge, G. R., & Acosta, J. J. (2020). An Algorithm for Genetic Analysis of Full-Sib Datasets with Mixed-Model Software Lacking a Numerator Relationship Matrix Function, and a Comparison with Results from a Dedicated Genetic Software Package. Forests, 11(11), 1169. https://doi.org/10.3390/f11111169