Climate-Driven Holocene Migration of Forest-Steppe Ecotone in the Tien Mountains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Modern Vegetation Survey
2.3. Surface Pollen
2.4. Fossil Pollen
2.5. Pollen Taxa Diversity Index
- Pi = ni/N, indicating the relative richness of species.
- ni represents the number of individuals of each pollen taxon.
- N represents the total number of individuals of all pollen taxa in the community.
- Pi = ni/N, indicating the relative richness of species.
- ni represents the number of individuals of each pollen taxon.
- N represents the total number of individuals of all pollen taxa in the community.
2.6. Climate Data
3. Results
3.1. Modern Plant Species Richness Changes along the Elevational Gradient
3.2. Surface Pollen Composition
3.3. Pollen Taxa Diversity Change around Sayram Lake during the Holocene
3.4. Pollen Taxa Diversity Change Around Aibi Lake during the Holocene
3.5. Comparison between the Two Lakes
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bailey, R.M. Spatial and temporal signatures of fragility and threshold proximity in modelled semi-arid vegetation. Proc. R. Soc. B 2010, 278, 1064–1071. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.Y.; Park Williams, A.; Allen, C.D.; Guo, D.; Wu, X.; Anenkhonov, O.A.; Badmaeva, N.K.; Liang, E.; Sandanov, D.V.; Yin, Y.; et al. Rapid warming accelerates tree growth decline in semi-arid forests of inner Asia. Glob. Chang. Biol. 2013, 19, 2500–2510. [Google Scholar] [CrossRef]
- Huang, J.; Yu, H.; Guan, X.; Wang, G.; Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Chang. 2016, 6, 166–171. [Google Scholar] [CrossRef]
- Weng, C.; Hooghiemstra, H.; Duivenvoorden, J.F. Response of pollen diversity to the climate-driven altitudinal shift of vegetation in the Colombian Andes. Phil. Trans. R. Soc. B 2007, 362, 253–262. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Liu, H.; Dong, Z.; Duan, K.; Wang, H.; Han, Y. East Asian summer monsoon and topography co-determine the Holocene migration of forest-steppe ecotone in northern China. Glob. Planet. Chang. 2020, 187, 103135. [Google Scholar] [CrossRef]
- Franco, A.M.; Hill, J.K.; Kitschke, C.; Collingham, Y.C.; Roy, D.B.; Fox, R.; Huntley, B.; Thomas, C.D. Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Glob. Chang. Biol. 2006, 12, 1545–1553. [Google Scholar] [CrossRef]
- La Sorte, F.A.; Jetz, W. Projected range contractions of montane plant species diversity under global warming. Proc. R. Soc. B 2010, 277, 3401–3410. [Google Scholar]
- Wu, J.; Zhang, S.; Jiang, Y. Botanical Geography; China Higher Education Press: Beijing, China, 1995. [Google Scholar]
- Erdos, L.; Ambarlı, D.; Anenkhonov, O.A.; Bátori, Z.; Cserhalmi, D.; Kiss, M.; Naqinezhad, A.; Kröel-Dulay, G.; Liu, H.; Magnes, M.; et al. The edge of two worlds: A new review and synthesis on Eurasian forest-steppes. Appl. Veg. Sci. 2018, 21, 345–362. [Google Scholar] [CrossRef]
- Dai, J.; Liu, H.; Xu, C.; Qi, Y.; Zhu, X.; Zhou, M.; Wu, Y.; Liu, B. Divergent hydraulic strategies explain the interspecific associations of co-occurring trees in forest–steppe ecotone. Forests 2020, 11, 942. [Google Scholar]
- Cheng, Y.; Liu, H.; Wang, H.; Piao, S.; Yin, Y.; Ciais, P.; Gao, Y.; Wu, X.; Luo, Y.; Zhang, C.; et al. Contrasting effects of winter and summer climate on alpine timberline evolution in monsoon-dominated East Asia. Quat. Sci. Rev. 2017, 169, 278–287. [Google Scholar] [CrossRef]
- Huang, X.Z.; Peng, W.; Rudaya, N.; Grimm, E.C.; Chen, X.; Cao, X.; Chen, F.; Zhang, J.; Pan, X.; Liu, S.; et al. Holocene vegetation and climate dynamics in the Altai Mountains and surrounding areas. Geophys. Res. Lett. 2018, 45, 6628–6636. [Google Scholar] [CrossRef]
- Zhao, Y.; Tzedakis, P.C.; Li, Q.; Qin, F.; Cui, Q.; Liang, C.; Zhao, H.; Birks, H.J.B.; Liu, Y.; Zhang, Z.; et al. Evolution of vegetation and climate variability on the Tibetan Plateau over the past 1.74 million years. Sci. Adv. 2020, 6, eaay6193. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.K.; Liu, H.Y. Shifting of vertical vegetation zones in Manas River drainage on northern slope of Tianshan Mountains since the Late Glacier. J. Palaeogeo. 2009, 11, 534–541. [Google Scholar]
- Gottfried, M.; Pauli, H.; Futschik, A.; Akhalkatsi, M.; Barančok, P.; Alonso, J.L.B.; Coldea, G.; Dick, J.; Erschbamer, B.; Calzado, M.R.F.; et al. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Chang. 2012, 2, 111–115. [Google Scholar] [CrossRef]
- Chen, F.H.; Yu, Z.; Yang, M.; Ito, E.; Wang, S.; Madsen, D.B.; Huang, X.; Zhao, Y.; Sato, T.; Birks, H.J.B.; et al. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quat. Sci. Rev. 2008, 27, 351–364. [Google Scholar] [CrossRef]
- Long, H.; Shen, J.; Chen, J.; Tsukamoto, S.; Yang, L.; Cheng, H.; Frechen, M. Holocene moisture variations over the arid central Asia revealed by a comprehensive sand-dune record from the central Tian Shan, NW China. Quat. Sci. Rev. 2017, 174, 13–32. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, X.; Li, Y.; Wang, W.; Sun, A.; Yang, Y.; Ran, M.; Feng, Z. Response of vegetation to Holocene evolution of westerlies in the Asian Central Arid Zone. Quat. Sci. Rev. 2020, 229, 106138. [Google Scholar] [CrossRef]
- Huang, X.Z.; Chen, C.Z.; Jia, W.N.; An, C.B.; Zhou, A.F.; Zhang, J.W.; Grimm, E.C.; Jin, M.; Xia, D.; Chen, F. Vegetation and climate history reconstructed from an alpine lake in central Tienshan Mountains since 8.5 ka BP. Palaeogeogr. Palaeoecol. 2015, 432, 36–48. [Google Scholar] [CrossRef]
- Sun, X.; Du Naiqiu, W.C. Paleovegetation and paleoenvironment of Manasi Lake, Xinjiang, NW China during the last 14,000 years. Quat. Sci. 1994, 3, 239–248. [Google Scholar]
- Li, J.; Gou, X.; Cook, E.R.; Chen, F. Tree-ring based drought reconstruction for the central Tien Shan area in northwest China. Geophys. Res. Lett. 2006, 33, L07715. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Q.F.; Ji, J.; Shen, J.; Matsumoto, R.; Tong, G.; Qian, P.; Yan, D.; Ren, X. Holocene vegetational and climatic variation in westerly-dominated areas of Central Asia inferred from the Sayram Lake in northern Xinjiang, China. Sci. China Earth Sci. 2013, 56, 339–353. [Google Scholar] [CrossRef]
- Wang, W.; Feng, Z.; Ran, M.; Zhang, C. Holocene climate and vegetation changes inferred from pollen records of Lake Aibi, northern Xinjiang, China: A potential contribution to understanding of Holocene climate pattern in East-central Asia. Quat. Int. 2013, 311, 54–62. [Google Scholar] [CrossRef]
- Chen, X.; Luo, G.; Xia, J.; Zhou, K.; Lou, S.; Ye, M. Ecological response to the climate change on the northern slope of the Tianshan Mountains in Xinjiang. Sci. China Earth Sci. 2005, 48, 765–777. [Google Scholar] [CrossRef]
- Moore, P.D.; Webb, J.A.; Collison, M.E. Pollen Analysis; Blackwell Scientific Publications: Oxford, UK, 1991. [Google Scholar]
- Cheng, Y.; Liu, H.; Wang, H.; Hao, Q. Differentiated climate-driven Holocene biome migration in western and eastern China as mediated by topography. Earth Sci. Rev. 2018, 182, 174–185. [Google Scholar] [CrossRef]
- Gophen, M. Temperature Impact on the Shannon-Wiener Plant species diversity index (BDI) of Zooplankton in Lake Kinneret (Israel). Open J. Mod. Hydrol. 2018, 8, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Morris, E.K.; Caruso, T.; Buscot, F.; Fischer, M.; Hancock, C.; Maier, T.S.; Meiners, T.; Müller, C.; Obermaier, E.; Socher, S.A.; et al. Choosing and using diversity indices: Insights for ecological applications from the German biodiversity exploratories. Ecol. Evol. 2014, 18, 3514–3524. [Google Scholar] [CrossRef] [Green Version]
- Marcott, S.A.; Shakun, J.D.; Clark, P.U.; Mix, A.C. A reconstruction of regional and global temperature for the past 11,300 years. Science 2013, 339, 1198–1201. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Wu, D.; Chen, J.; Zhou, A.; Yu, J.; Shen, J.; Wang, S.; Huang, X. Holocene moisture and East Asian summer monsoon evolution in the northeastern Tibetan Plateau recorded by Lake Qinghai and its environs: A review of conflicting proxies. Quat. Sci. Rev. 2016, 154, 111–129. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, Z. Vegetation response to Holocene climate change in East Asian monsoon-margin region. Earth Sci. Rev. 2012, 113, 1–10. [Google Scholar] [CrossRef]
- Hao, Q.; Liu, H.; Liu, X. Pollen-detected altitudinal migration of forests during the Holocene in the mountainous forest–steppe ecotone in northern China. Palaeogeogr. Palaeoecol. 2016, 446, 70–77. [Google Scholar] [CrossRef]
- Liu, H.Y.; Yin, Y.; Zhu, J.; Zhao, F.; Wang, H. How did the forest respond to Holocene climate drying at the forest-steppe ecotone in northern China? Quatern. Int. 2010, 227, 46–52. [Google Scholar] [CrossRef]
- Bush, M.B.; Silman, M.R.; Urrego, D.H. 48,000 years of climate and forest change in a plant species diversity hot spot. Science 2004, 303, 827–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugita, S. Theory of quantitative reconstruction of vegetation II: All you need is LOVE. Holocene 2007, 17, 243–257. [Google Scholar] [CrossRef]
- Sugita, S. Theory of quantitative reconstruction of vegetation I: Pollen from large sites REVEALS regional vegetation composition. Holocene 2007, 17, 229–241. [Google Scholar] [CrossRef]
- Han, Y.; Liu, H.; Hao, Q.; Liu, X.; Guo, W.; Shangguan, H. More reliable pollen productivity estimates and relative source area of pollen in a forest-steppe ecotone with improved vegetation survey. Holocene 2017, 27, 1567–1577. [Google Scholar] [CrossRef]
- Liu, H.Y. Quaternary Ecology and Global Change; China Science Press: Beijing, China, 2002. [Google Scholar]
Alpine and Sub-Alpine Meadows 3500–2700 m a.s.l. | Conifer Forest 2700–1700 m a.s.l. | Typical Steppe 1700–700 m a.s.l. | Desert Vegetation Below 700 m a.s.l. |
---|---|---|---|
Salix Ephedra Caryophyllaceae Asteraceae Thalictrum Ranunculaceae Rosaceae | Picea Poaceae Ranunculaceae | Betula Artemisia Salix Tamarix Ephedra Thalictrum Rosaceae | Ulmus Amaranthaceae Nitraria Tamarix |
Vegetation Belt | Altitude (m a.s.l.) | Pollen Taxa Diversity Indicated by the Shannon-Wiener Index | Pollen Taxa Diversity Indicated by the Simpson Index |
---|---|---|---|
Alpine and sub-alpine meadows | 3500–2700 | 1.84 | 0.78 |
Transition zone (forest upper boundary) | 2800–2600 | 1.49 | 0.63 |
Conifer forest | 2700–1700 | 1.16 | 0.49 |
The center of the forest belt | 2400–2100 | 1.21 | 0.50 |
Transition zone (forest lower boundary) | 1800–1600 | 1.65 | 0.70 |
Typical steppe | 1700–700 | 1.68 | 0.72 |
Desert vegetation | Below 700 | 1.52 | 0.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; Liu, H.; Wang, H.; Hao, Q.; Han, Y.; Duan, K.; Dong, Z. Climate-Driven Holocene Migration of Forest-Steppe Ecotone in the Tien Mountains. Forests 2020, 11, 1139. https://doi.org/10.3390/f11111139
Cheng Y, Liu H, Wang H, Hao Q, Han Y, Duan K, Dong Z. Climate-Driven Holocene Migration of Forest-Steppe Ecotone in the Tien Mountains. Forests. 2020; 11(11):1139. https://doi.org/10.3390/f11111139
Chicago/Turabian StyleCheng, Ying, Hongyan Liu, Hongya Wang, Qian Hao, Yue Han, Keqin Duan, and Zhibao Dong. 2020. "Climate-Driven Holocene Migration of Forest-Steppe Ecotone in the Tien Mountains" Forests 11, no. 11: 1139. https://doi.org/10.3390/f11111139
APA StyleCheng, Y., Liu, H., Wang, H., Hao, Q., Han, Y., Duan, K., & Dong, Z. (2020). Climate-Driven Holocene Migration of Forest-Steppe Ecotone in the Tien Mountains. Forests, 11(11), 1139. https://doi.org/10.3390/f11111139