Wood and Pulping Properties Variation of Acacia crassicarpa A.Cunn. ex Benth. and Sampling Strategies for Accurate Phenotyping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Trials
2.2. Wood Properties Measurements
2.2.1. Wood Sampling and Basic Density Determination
2.2.2. Wood Carbohydrates and Lignin
2.2.3. Syringyl–Guaiacyl Ratio (S/G)
2.2.4. Alpha Cellulose
2.2.5. Kraft Pulping
2.2.6. NIRS Modeling
2.3. Within-Tree Level Analyses
2.4. Whole-Tree Level Analyses
3. Results
3.1. Within-Tree Level Wood Properties
3.2. Whole-Tree Level Wood Properties
3.2.1. Whole-Tree Properties Prediction
3.2.2. Whole-Tree Properties Prediction with NIRS Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Variable | Position | N | Mean | SD | CV | Mean Longitudinal Variation |
---|---|---|---|---|---|---|
Diameter (cm) | 0% | 40 | 20.9 | 2.8 | 13.5 | |
1.3 m | 40 | 18.2 | 2.2 | 11.8 | ||
25% | 40 | 15.9 | 1.7 | 10.8 | ||
50% | 40 | 13.1 | 1.3 | 10.0 | ||
75% | 40 | 9.9 | 1.1 | 11.4 | ||
100% | 40 | 4.5 | 0.3 | 5.6 | ||
DBD (kg/m3) | 0% | 40 | 527.9 | 31.5 | 6.0 | |
1.3 m | 40 | 499.8 | 39.8 | 8.0 | ||
25% | 40 | 475.0 | 43.8 | 9.2 | ||
50% | 40 | 466.6 | 36.6 | 7.8 | ||
75% | 40 | 462.8 | 32.2 | 7.0 | ||
100% | 40 | 445.1 | 32.8 | 7.4 | ||
CBD (kg/m3) | 0% | 40 | 498.4 | 32.9 | 6.6 | |
1.3 m | 0 | |||||
25% | 40 | 457.4 | 31.6 | 6.9 | ||
50% | 40 | 449.7 | 36.0 | 8.0 | ||
75% | 40 | 451.8 | 36.4 | 8.1 | ||
100% | 0 | |||||
KPY (%) | 0% | 40 | 52.4 | 1.8 | 3.4 | |
1.3 m | 0 | |||||
25% | 40 | 54.3 | 1.8 | 3.4 | ||
50% | 40 | 54.6 | 1.6 | 2.9 | ||
75% | 40 | 54.9 | 1.6 | 2.9 | ||
100% | 0 | |||||
αCEL (%) | 0% | 40 | 44.0 | 3.0 | 6.8 | |
1.3 m | 40 | 44.1 | 3.5 | 8.0 | ||
25% | 40 | 44.9 | 2.2 | 4.8 | ||
50% | 40 | 44.0 | 1.8 | 4.0 | ||
75% | 40 | 44.2 | 1.7 | 3.9 | ||
100% | 0 | |||||
GLU (%) | 0% | 40 | 49.5 | 2.5 | 5.0 | |
1.3 m | 40 | 50.0 | 2.4 | 4.9 | ||
25% | 40 | 50.6 | 1.7 | 3.4 | ||
50% | 40 | 50.7 | 2.0 | 4.0 | ||
75% | 40 | 50.6 | 1.8 | 3.5 | ||
100% | 0 | |||||
ARA (%) | 0% | 40 | 0.29 | 0.04 | 12.8 | |
1.3 m | 40 | 0.26 | 0.05 | 18.0 | ||
25% | 40 | 0.24 | 0.06 | 23.0 | ||
50% | 40 | 0.25 | 0.05 | 19.4 | ||
75% | 40 | 0.27 | 0.06 | 23.7 | ||
100% | 0 | |||||
GAL (%) | 0% | 40 | 0.63 | 0.14 | 22.1 | |
1.3 m | 40 | 0.60 | 0.15 | 24.8 | ||
25% | 40 | 0.61 | 0.12 | 20.1 | ||
50% | 40 | 0.62 | 0.11 | 18.2 | ||
75% | 40 | 0.62 | 0.10 | 16.0 | ||
100% | 0 | |||||
RHA (%) | 0% | 40 | 0.26 | 0.06 | 22.5 | |
1.3 m | 40 | 0.24 | 0.06 | 25.6 | ||
25% | 40 | 0.23 | 0.07 | 28.9 | ||
50% | 40 | 0.22 | 0.05 | 21.6 | ||
75% | 40 | 0.21 | 0.06 | 30.1 | ||
100% | 0 | |||||
XYL (%) | 0% | 40 | 13.8 | 0.9 | 6.4 | |
1.3 m | 40 | 13.5 | 0.8 | 6.0 | ||
25% | 40 | 13.6 | 0.8 | 5.8 | ||
50% | 40 | 14.0 | 0.7 | 5.1 | ||
75% | 40 | 14.5 | 0.6 | 4.5 | ||
100% | 0 | |||||
MAN (%) | 0% | 40 | 1.16 | 0.37 | 32.2 | |
1.3 m | 40 | 1.16 | 0.38 | 32.8 | ||
25% | 40 | 1.31 | 0.32 | 24.1 | ||
50% | 40 | 1.42 | 0.37 | 26.5 | ||
75% | 40 | 1.56 | 0.40 | 25.8 | ||
100% | 0 | |||||
LIG (%) | 0% | 40 | 30.7 | 1.6 | 5.1 | |
1.3 m | 40 | 30.4 | 1.5 | 5.0 | ||
25% | 40 | 29.2 | 1.1 | 3.7 | ||
50% | 40 | 28.5 | 1.2 | 4.1 | ||
75% | 40 | 27.9 | 0.8 | 3.0 | ||
100% | 0 | |||||
INS (%) | 0% | 40 | 28.6 | 1.5 | 5.2 | |
1.3 m | 40 | 28.1 | 1.5 | 5.2 | ||
25% | 40 | 26.8 | 1.2 | 4.5 | ||
50% | 40 | 26.1 | 1.2 | 4.5 | ||
75% | 40 | 25.3 | 0.8 | 3.3 | ||
100% | 0 | |||||
SOL (%) | 0% | 40 | 2.18 | 0.26 | 12.1 | |
1.3 m | 40 | 2.34 | 0.30 | 12.6 | ||
25% | 40 | 2.35 | 0.22 | 9.5 | ||
50% | 40 | 2.38 | 0.25 | 10.4 | ||
75% | 40 | 2.53 | 0.28 | 10.9 | ||
100% | 0 | |||||
S/G | 0% | 40 | 1.61 | 0.09 | 5.5 | |
1.3 m | 40 | 1.65 | 0.09 | 5.4 | ||
25% | 40 | 1.67 | 0.08 | 5.1 | ||
50% | 40 | 1.65 | 0.09 | 5.7 | ||
75% | 40 | 1.64 | 0.07 | 4.5 | ||
100% | 0 |
DBD | CBD | CBDc | KPY | KPYc | αCEL | GLU | ARA | GAL | RHA | XYL | MAN | LIG | INS | SOL | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CBD | 0.92 ** | ||||||||||||||
CBDc | 0.91 ** | 0.96 ** | |||||||||||||
KPY | 0.52 ** | 0.43 ** | 0.36 * | ||||||||||||
KPYc | 0.47 ** | 0.36 * | 0.30 | 0.93 ** | |||||||||||
αCEL | 0.44 ** | 0.35 * | 0.29 | 0.36 * | 0.35 * | ||||||||||
GLU | 0.28 | 0.18 | 0.10 | 0.49 ** | 0.48 ** | 0.70 ** | |||||||||
ARA | 0.47 ** | 0.45 ** | 0.42 ** | 0.08 | 0.07 | 0.30 | 0.09 | ||||||||
GAL | 0.59 ** | 0.49 ** | 0.44 ** | 0.43 ** | 0.37 * | 0.44 ** | 0.37 * | 0.68 ** | |||||||
RHA | 0.50 ** | 0.47 ** | 0.42 ** | 0.16 | 0.13 | 0.40 * | 0.16 | 0.88 ** | 0.68 ** | ||||||
XYL | −0.10 | −0.17 | −0.12 | −0.21 | −0.17 | 0.02 | 0.06 | −0.30 | −0.37 * | −0.27 | |||||
MAN | −0.37 * | −0.49 ** | −0.40 * | −0.24 | −0.11 | 0.02 | 0.13 | −0.17 | −0.31 * | −0.02 | 0.24 | ||||
LIG | −0.21 | −0.09 | −0.10 | −0.46 ** | −0.49 ** | −0.48 ** | −0.60 ** | −0.02 | −0.43 ** | −0.15 | 0.10 | −0.15 | |||
INS | −0.20 | −0.09 | −0.07 | −0.47 ** | −0.50 ** | −0.41 ** | −0.55 ** | 0.06 | −0.35 * | −0.08 | 0.08 | −0.12 | 0.97 ** | ||
SOL | −0.41 ** | −0.30 | −0.40 * | −0.20 | −0.20 | −0.28 | −0.24 | −0.39 * | −0.58 ** | −0.35 * | 0.05 | −0.03 | 0.31 | 0.13 | |
S/G | 0.16 | 0.17 | 0.09 | 0.18 | 0.06 | −0.05 | −0.09 | 0.03 | 0.11 | −0.01 | 0.13 | −0.44 ** | −0.10 | −0.14 | 0.18 |
References
- Nambiar, E.K.S.; Harwood, C.E. Productivity of acacia and eucalypt plantations in Southeast Asia. 1. Bio-physical determinants of production: Opportunities and challenges. Int. For. Rev. 2014, 16, 225–248. [Google Scholar] [CrossRef]
- Mendham, D.S.; White, D.A. A review of nutrient, water and organic matter dynamics of tropical acacias on mineral soils for improved management in Southeast Asia. Aust. For. 2019, 82, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Nirsatmanto, A.; Sunarti, S. Genetics and Breeding of Tropical Acacias for Forest Products: Acacia mangium, A. auriculiformis and A. crassicarpa. In Advances in Plant Breeding Strategies: Industrial and Food Crops; Al-Khayri, J., Jain, S., Eds.; Springer: Cham, Switzerland, 2019; Volume 6, pp. 3–28. [Google Scholar]
- Harwood, C.E.; Hardiyanto, E.B.; Wong, C.Y. Genetic improvement of tropical acacias: Achievements and challenges. South. For. A J. For. Sci. 2015, 77, 11–18. [Google Scholar] [CrossRef]
- McKinnon, G.E.; Larcombe, M.J.; Griffin, A.R.; Vaillancourt, R.E. Development of microsatellites using next-generation sequencing for Acacia crassicarpa. J. Trop. For. Sci. 2018, 30, 252–258. [Google Scholar]
- Nambiar, E.K.S.; Harwood, C.E.; Mendham, D.S. Paths to sustainable wood supply to the pulp and paper industry in Indonesia after diseases have forced a change of species from acacia to eucalypts. Aust. For. 2018, 81, 148–161. [Google Scholar] [CrossRef]
- Griffin, A.R.; Midgley, S.J.; Bush, D.; Cunningham, P.J.; Rinaudo, A.T. Global uses of Australian acacias–Recent trends and future prospects. Dive. Dist. 2011, 17, 837–847. [Google Scholar] [CrossRef]
- Kumar, H.; Christopher, L.P. Recent trends and developments in dissolving pulp production and application. Cellulose 2017, 24, 2347–2365. [Google Scholar] [CrossRef]
- Lundberg, V.; Bood, J.; Nilsson, L.; Axelsson, E.; Berntsson, T.; Svensson, E. Converting a kraft pulp mill into a multi-product biorefinery: Techno-economic analysis of a case mill. Clean Technol. Environ. 2014, 16, 1411–1422. [Google Scholar] [CrossRef]
- Marinova, M.; Mateos-Espejel, E.; Paris, J. From kraft mills to forest biorefinery: An energy and water perspective II. Case study. Cell Chem. Technol. 2010, 44, 21–26. [Google Scholar]
- Marinova, M.; Mateos-Espejel, E.; Jemaa, N.; Paris, J. Addressing the increased energy demand of a kraft mill biorefinery: The hemicellulose extraction case. Chem. Eng. Res. Des. 2009, 87, 1269–1275. [Google Scholar] [CrossRef]
- Schmidt, E.A. A practical model relating kraft pulping costs to hardwood chemical properties and morphology. Appita J. 2005, 58, 218–224. [Google Scholar]
- White, T.L. A conceptual framework for tree improvement programs. New For. 1987, 1, 325–342. [Google Scholar] [CrossRef]
- Borralho, N.M.G.; Cotterill, P.P.; Kanowski, P.J. Breeding objectives for pulp production of Eucalyptus globulus under different industrial cost structures. Can. J. For. Res. 1993, 23, 648–656. [Google Scholar] [CrossRef]
- Chen, C.; Duan, C.; Li, J.; Liu, Y.; Ma, X.; Zheng, L.; Stavik, J.; Ni, Y. Cellulose (dissolving pulp) manufacturing processes and properties: A mini-review. Bioresources 2016, 11, 5553–5564. [Google Scholar]
- Rezende, G.D.S.P.; Resende, M.D.V.; Assis, T.F. Eucalyptus Breeding for Clonal Forestry. In Fenning Challenges and Opportunities for the World’s Forests in the 21st Century; Fenning, T., Ed.; Springer: Dordrecht, The Netherlands, 2014; Forestry Sciences; Volume 81, pp. 393–424. [Google Scholar]
- Greaves, B.L.; Borralho, N.M.G.; Raymond, C.A. Breeding objective for plantation eucalypts grown for production of kraft pulp. For. Sci. 1997, 43, 465–472. [Google Scholar]
- Clark, N.B.; Balodis, V.; Fang, G.; Wang, J. Pulping properties of tropical acacias. In Advances in Tropical Acacia Research, Proceedings of An International Workshop, Bangkok, Thailand, 11–15 February 1991; Turnbull, J.W., Ed.; Proceedings no. 35.; ACIAR (Australian Centre for International Agriculture Research): Canberra, Australia, 1991; pp. 138–144. [Google Scholar]
- Clark, N.B.; Balodis, V.; Fang, G.; Wang, J. Pulping potential of acacias. In Australian Tree Species Research in China, Proceedings of an International Workshop, Zhangzhou, China, 2–5 November 1992; Brown, A.G., Ed.; Proceedings no. 48.; ACIAR (Australian Centre for International Agriculture Research): Canberra, Australia, 1994; pp. 196–202. [Google Scholar]
- Laurila, R. Wood properties and utilization potential of eight fast-growing tropical plantation tree species. J. Trop. For. Prod. 1995, 1, 209–221. [Google Scholar]
- Shukor, N.A.A.; Nang, A.N.; Awang, K. Selected wood properties of Acacia auriculiformis and A. crassicarpa provenances in Malaysia. In Recent Developments in Acacia Planting, Proceedings of an International Workshop, Hanoi, Vietnam, 27–30 October 1997; Turnbull, J.W., Crompton, H.R., Eds.; Proceedings no. 82.; ACIAR (Australian Centre for International Agriculture Research): Canberra, Australia, 1998; pp. 155–160. [Google Scholar]
- Yao, S.; Wu, G.; Xing, M.; Zhou, S.; Pu, J. Determination of lignin content in Acacia spp. using near-infrared reflectance spectroscopy. Bioresources 2010, 5, 556–562. [Google Scholar]
- Griffin, A.R.; Twayi, H.; Braunstein, R.; Downes, G.M.; Son, D.H.; Harwood, C.E. A comparison of fibre and pulp properties of diploid and tetraploid Acacia mangium grown in Vietnam. Appita J. 2014, 67, 43–49. [Google Scholar]
- Chowdhury, M.Q.; Shams, M.I.; Alam, M. Effects of age and height variation on physical properties of mangium (Acacia mangium Willd.) wood. Aust. For. 2005, 68, 17–19. [Google Scholar] [CrossRef]
- Nugroho, W.D.; Marsoem, S.N.; Yasue, K.; Fujiwara, T.; Nakajima, T.; Hayakawa, M.; Nakaba, S.; Yamagishi, Y.; Jin, H.O.; Kubo, T.; et al. Radial variations in the anatomical characteristics and density of the wood of Acacia mangium of five different provenances in Indonesia. J. Wood Sci. 2012, 58, 185–194. [Google Scholar] [CrossRef]
- Karlinasari, L.; Sabed, M.; Wistara, I.N.J.; Purwanto, Y.A. Near infrared (NIR) spectroscopy for estimating the chemical composition of (Acacia mangium Willd.) wood. J. Indi. Acad. Wood Sci. 2014, 11, 162–167. [Google Scholar] [CrossRef]
- Moya, R.; Muñoz, F. Physical and mechanical properties of eight fast-growing plantation species in Costa Rica. J. Trop. For. Sci. 2010, 22, 317–328. [Google Scholar]
- Chowdhury, M.Q.; Ishiguri, F.; Iizuka, K.; Hiraiwa, T.; Matsumoto, K.; Takashima, Y.; Yokota, S.; Yoshizawa, N. Wood property variation in Acacia auriculiformis growing in Bangladesh. Wood Fiber Sci. 2009, 41, 359–365. [Google Scholar]
- Tonouéwa, J.M.F.M.; Langbour, P.; Biaou, S.S.H.; Assèdé, E.S.P.; Guibal, D.; Kouchade, C.A.; Kounouhéwa, B.B. Anatomical and physico-mechanical properties of Acacia auriculiformis wood in relation to age and soil in Benin, West Africa. Euro. J. Wood Wood Prod. 2020, 78, 745–756. [Google Scholar] [CrossRef]
- Dinh Kha, L.; Harwood, C.E.; Kien, N.D.; Baltunis, B.S.; Dinh Hai, N.; Thinh, H.H. Growth and wood basic density of acacia hybrid clones at three locations in Vietnam. New For. 2012, 43, 13–29. [Google Scholar] [CrossRef]
- Rokeya, U.K.; Hossain, M.A.; Ali, R.A.; Paul, S.P. Physical and mechanical properties of (Acacia auriculiformis × A. mangium) hybrid acacia. J. Bangladesh Acad. Sci. 2010, 34, 181–187. [Google Scholar] [CrossRef] [Green Version]
- Rafeadah, R.; Rahim, S. Chemical and physical properties of juvenile acacia hybrid and Azadiracta Excelsa. J. Inst. Wood Sci. 2007, 17, 290–294. [Google Scholar] [CrossRef]
- Jusoh, I.; Zaharin, F.A.; Adam, N.S. Wood quality of Acacia hybrid and second-generation Acacia mangium. Bioresources 2014, 9, 150–160. [Google Scholar] [CrossRef] [Green Version]
- Barry, K.M.; Mihara, R.; Davies, N.W.; Mitsunaga, T.; Mohammed, C.L. Polyphenols in Acacia mangium and Acacia auriculiformis heartwood with reference to heart rot susceptibility. J. Wood Sci. 2005, 51, 615–621. [Google Scholar] [CrossRef] [Green Version]
- Yahya, R.; Sugiyama, J.; Silsia, D.; Gril, J. Some anatomical features of an Acacia hybrid, A. mangium and A. auriculiformis grown in Indonesia with regard to pulp yield and paper strength. J. Trop. For. Sci. 2010, 22, 343–351. [Google Scholar]
- Bakri, M.K.B.; Jayamani, E.; Hamdan, S.; Rahman, R.; Kakar, A. Potential of Borneo acacia wood in fully biodegradable bio-composites’ commercial production and application. Polym. Bull. 2018, 75, 5333–5354. [Google Scholar] [CrossRef]
- Bouvet, J.; Ekomono, C.G.M.; Brendel, O.; Laclau, J.; Bouillet, J.; Epron, D. Selecting for water use efficiency, wood chemical traits and biomass with genomic selection in a Eucalyptus breeding program. For. Ecol. Manag. 2020, 465, 1–10. [Google Scholar] [CrossRef]
- Nickolas, H.; Williams, D.; Downes, G.; Tilyard, P.; Harrison, P.A.; Vaillancourt, R.E.; Potts, B. Genetic correlations among pulpwood and solid-wood selection traits in Eucalyptus globulus. New For. 2020, 51, 137–158. [Google Scholar] [CrossRef]
- Stackpole, D.J.; Vaillancourt, R.E.; Alves, A.; Rodrigues, J.; Potts, B.M. Genetic variation in the chemical components of Eucalyptus globulus wood. G3 Genes Genomes Genet. 2011, 1, 151–159. [Google Scholar]
- Del-Río, J.C.; Gutiérrez, A.; Hernando, M.; Landín, P.; Romero, J.; Martínez, A.T. Determining the influence of eucalypt lignin composition in paper pulp yield using Py-GC/MS. J. Anal. Appl. Pyrol. 2005, 74, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Ohra-aho, T.; Gomes, F.J.B.; Colodette, J.L.; Tamminen, T. S/G ratio and lignin structure among Eucalyptus hybrids determined by Py-GC/MS and nitrobenzene oxidation. J. Anal. Appl. Pyro. 2013, 101, 166–171. [Google Scholar] [CrossRef]
- De Lima, B.M.; Cappa, E.P.; Silva-Junior, O.B.; Garcia, C.; Mansfield, S.D.; Grattapaglia, D. Quantitative genetic parameters for growth and wood properties in Eucalyptus “urograndis” hybrid using near-infrared phenotyping and genome-wide SNP-based relationships. PLoS ONE 2019, 14, e0218747. [Google Scholar] [CrossRef] [Green Version]
- Raymond, C.A. Genetics of Eucalyptus wood properties. Ann. For. Sci. 2002, 59, 525–531. [Google Scholar] [CrossRef] [Green Version]
- Atwood, R.A.; White, T.L.; Huber, D.A. Genetic parameters and gains for growth and wood properties in Florida source loblolly pine in the southeastern United States. Can. J. For. Res. 2002, 32, 1025–1038. [Google Scholar] [CrossRef]
- Sykes, R.W.; Isik, F.; Li, B.; Kadla, J.; Chang, H.-M. Genetic variation of juvenile wood properties in a loblolly pine progeny test. TAPPI J. 2003, 2, 3–8. [Google Scholar]
- Neale, D.B.; Mitchell, M.S.; Brown, G.R. Molecular dissection of the quantitative inheritance of wood property traits in loblolly pine. Ann. For. Sci. 2002, 59, 595–605. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Ding, X.; Jiang, J.; Luan, Q. Inheritance and correlation analysis of pulpwood properties, wood density, and growth traits of slash pine. Forests 2020, 11, 493. [Google Scholar] [CrossRef]
- Fundová, I. Quantitative Genetics of Wood Quality Traits in Scots Pine. Ph.D. Thesis, Swedish University of Agricultural Sciences, Umeå, Sweden, 2020. [Google Scholar]
- Schimleck, L.R.; Payne, P.; Wearne, R.H. Determination of important pulp properties of hybrid poplar by near infrared spectroscopy. Wood Fiber Sci. 2005, 37, 462–471. [Google Scholar]
- Jin, J.; Zhao, X.; Liu, H.; Wang, S.; Song, Z.; Ma, X.; Li, K. Preliminary study on genetic variation of growth traits and wood properties and superior clones selection of Populus ussuriensis Kom. iForest-Biog. For. 2019, 12, 459–466. [Google Scholar] [CrossRef]
- Niemczyk, M.; Przybysz, P.; Przybysz, K.; Kaliszewski, A.; Wojda, T.; Liesebach, M. Productivity, growth patterns, and cellulosic pulp properties of hybrid aspen clones. Forests 2019, 10, 450. [Google Scholar] [CrossRef] [Green Version]
- Cornelius, J. Heritabilities and additive genetic coefficients of variation in forest trees. Can. J. For. Res. 1994, 24, 372–379. [Google Scholar] [CrossRef]
- Zobel, B.J.; Talbert, J. Applied Forest Tree Improvement; John Wiley & Sons: New York, NY, USA, 1984; pp. 375–413. [Google Scholar]
- Zobel, B.J.; van Buijtenen, J.P. Wood Variation: Its Causes and Control; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1989. [Google Scholar]
- Barnett, J.R.; Jeronimidis, G. Wood Quality and Its Biological Basis, 1st ed.; Blackwell Publishing Ltd.: Oxford, UK, 2003. [Google Scholar]
- Plomion, C.; Leprovost, G.; Stokes, A. Wood formation in trees. Plant Physiol. 2001, 127, 1513–1523. [Google Scholar] [CrossRef]
- Von Arx, G.; Crivellaro, A.; Prendin, A.L.; Čufar, K.; Carrer, M. Quantitative Wood Anatomy—Practical Guidelines. Front. Plant. Sci. 2016, 7, 781. [Google Scholar] [CrossRef] [Green Version]
- Katz, J.L.; Spencer, P.; Wang, W.; Misra, A.; Marangos, O.; Friis, L. On the anisotropic elastic properties of woods. J. Mater. Sci. 2008, 43, 139–145. [Google Scholar] [CrossRef]
- Jones, P.D.; Schimleck, L.R.; Daniels, R.F.; Clark, A., III; Purnell, R.C. Comparison of Pinus taeda L. whole-tree wood property calibrations using diffuse reflectance near infrared spectra obtained using a variety of sampling options. Wood Sci. Technol. 2008, 42, 385–400. [Google Scholar] [CrossRef]
- Schimleck, L.R.; Rezende, G.D.S.P.; Demuner, B.J.; Downes, G.M. Estimation of whole-tree wood quality traits using near infrared spectra from increment cores. Appita J. 2006, 59, 231. [Google Scholar]
- Ohshima, J.; Yokota, S.; Yoshizawa, N.; Ona, T. Examination of within-tree variations and the heights representing whole-tree values of derived wood properties for quasi-non-destructive breeding of Eucalyptus camaldulensis and Eucalyptus globulus as quality pulpwood. J. Wood Sci. 2005, 51, 102–111. [Google Scholar] [CrossRef]
- Igartúa, D.V.; Monteoliva, S.E.; Monterubbianesi, M.G.; Villegas, M.S. Basic density and fibre length at breast height of Eucalyptus globulus ssp. globulus for parameter prediction of the whole tree. IAWA J. 2003, 24, 173–184. [Google Scholar] [CrossRef]
- Ona, T.; Sonoda, T.; Ito, K.; Shibata, M.; Tamai, Y.; Kojima, Y.; Ohshima, J.; Yokota, S.; Yoshizawa, N. Investigation of relationships between cell and pulp properties in Eucalyptus by examination of within-tree property variations. Wood Sci. Technol. 2001, 35, 229–243. [Google Scholar] [CrossRef]
- Raymond, C.A.; Muneri, A. Non-destructive sampling of Eucalyptus globulus and E. nitens for wood properties. I. Basic Density. Wood Sci. Technol. 2001, 35, 27–39. [Google Scholar] [CrossRef]
- Raymond, C.A.; Schimleck, L.R.; Muneri, A.; Michell, A.J. Non-destructive sampling of Eucalyptus globulus and E. nitens for wood properties. III. Predicted pulp yield using near infrared reflectance analysis. Wood Sci. Technol. 2001, 35, 203–215. [Google Scholar] [CrossRef]
- Kube, P.; Raymond, C.A. Prediction of whole-tree basic density and pulp yield using wood core samples in Eucalyptus nitens. Appita J. 2002, 55, 43–48. [Google Scholar]
- Gao, S.; Wang, X.; Wiemann, M.C.; Brashaw, B.K.; Ross, R.J.; Wang, L. A critical analysis of methods for rapid and non-destructive determination of wood density in standing trees. Ann. For. Sci. 2017, 74, 27. [Google Scholar] [CrossRef] [Green Version]
- Schimleck, L.; Dahlen, J.; Apiolaza, L.A.; Downes, G.; Emms, G.; Evans, R.; Moore, J.; Pâques, L.; Van den Bulcke, J.; Wang, X. Non-destructive evaluation techniques and what they tell us about wood property variation. Forests 2019, 10, 728. [Google Scholar] [CrossRef] [Green Version]
- Hodge, G.R.; Acosta, J.J.; Unda, F.; Woodbridge, W.C.; Mansfield, S.D. Global near infrared spectroscopy models to predict wood chemical properties of Eucalyptus. J. Near Inf. Spectrosc. 2018, 26, 117–132. [Google Scholar] [CrossRef]
- Meder, R.; Trung, T.; Schimleck, L.R. Seeing the wood in the trees: Unleashing the secrets of wood via near infrared spectroscopy. J. Near Inf. Spectrosc. 2010, 18, v–vii. [Google Scholar] [CrossRef]
- Schimleck, L.R.; Kube, P.D.; Raymond, C.A.; Michell, A.J.; French, J. Estimation of whole-tree kraft pulp yield of Eucalyptus nitens using near-infrared spectra collected from increment cores. Can. J. For. Res. 2005, 35, 2797–2805. [Google Scholar] [CrossRef]
- Schimleck, L.R.; Kube, P.D.; Raymond, C.A. Genetic improvement of kraft pulp yield in Eucalyptus nitens using cellulose content determined by near infrared spectroscopy. Can. J. For. Res. 2004, 34, 2363–2370. [Google Scholar] [CrossRef]
- Schimleck, L.R. Near infrared spectroscopy: A rapid, non-destructive method for measuring wood properties, and its application to tree breeding. N. Zeal. J. For. Sci. 2008, 38, 14–35. [Google Scholar]
- Downes, G.M.; Hudson, I.L.; Raymond, C.A.; Dean, G.H.; Michell, A.J.; Schimleck, L.R.; Evans, R.; Muneri, A. Sampling Plantation Eucalypts for Wood and Fibre Properties; CSIRO: Canberra, Australia, 1997; p. 114.
- TAPPI-Technical Association of the Pulp and Paper Industry. TAPPI Test Methods T 257 cm-02: Sampling and Preparing Wood for Analysis; Tappi Technology Park: Atlanta, GA, USA, 2002. [Google Scholar]
- TAPPI-Technical Association of the Pulp and Paper Industry. TAPPI Test Methods T 258 om-16: Basic Density and Moisture Content of Pulpwood; Tappi Technology Park: Atlanta, GA, USA, 2016. [Google Scholar]
- Scandinavian Pulp and Paper Board Testing Committee. Woodchips for Pulp Production, Size Distribution, SCAN-CM 40:01; Scandinavian Pulp, Paper and Board Testing Committee: Stockholm, Sweden, 2001. [Google Scholar]
- Hart, J.F.; de Araujo, F.; Thomas, B.R.; Mansfield, S.D. Wood quality and growth characterization across intra- and inter-Specific hybrid aspen clones. Forests 2013, 4, 786–807. [Google Scholar] [CrossRef] [Green Version]
- Robinson, A.R.; Mansfield, S.D. Rapid analysis of poplar lignin monomer composition by a streamlined thioacidolysis procedure and near-infrared reflectance-based prediction modeling. Plant J. 2009, 58, 706–714. [Google Scholar] [CrossRef]
- Porth, I.; Klápště, J.; Skyba, O.; Lai, B.S.K.; Geraldes, A.; Muchero, W.; Tuskan, G.A.; Douglas, C.J.; El-Kassaby, Y.A.; Mansfield, S.D. Populus trichocarpa cell wall chemistry and ultrastructure trait variation, genetic control, and genetic correlations. New Phytol. 2013, 197, 777–790. [Google Scholar] [CrossRef]
- TAPPI-Technical Association of the Pulp and Paper Industry. TAPPI Test Methods T 550 om-08: Determination of Equilibrium Moisture in Pulp, Paper and Paperboard for Chemical Analysis; Tappi Technology Park: Atlanta, GA, USA, 2008. [Google Scholar]
- TAPPI-Technical Association of the Pulp and Paper Industry. TAPPI Test Methods T 236 om-99: Kappa Number of Pulp; Tappi Technology Park: Atlanta, GA, USA, 1999. [Google Scholar]
- Acosta, J.J.; Castillo, M.S.; Hodge, G.R. Comparison of benchtop and handheld near infrared spectroscopy devices to determine forage nutritive value. Crop. Sci. 2020. [Google Scholar] [CrossRef]
- Breunig, M.; Hans-Peter, K.; Raymond, T.; Sander, J. LOF: Identifying density-based local outliers. ACM Sigmod Rec. 2000, 29, 93–104. [Google Scholar] [CrossRef]
- Mevik, B.H.; Wehrens, R.; Liland, K.H. PLS: Partial Least Squares and Principal Component Regression; R Package Version 2.4–3; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 24 June 2020).
Position | Section | Diameter (cm) | Length (m) | Volume (m3) | % Total Volume | Cumulative Volume | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
0%–1.3 m | 1 | 20.9 | 18.2 | 1.30 | 0.0396 | 15.5% | 15.5% |
1.3 m–25% | 2 | 18.2 | 15.9 | 3.17 | 0.0738 | 28.9% | 44.4% |
25%–50% | 3 | 15.9 | 13.1 | 4.47 | 0.0749 | 29.4% | 73.8% |
50%–75% | 4 | 13.1 | 9.9 | 4.47 | 0.0474 | 18.6% | 92.4% |
75%–100% | 5 | 9.9 | 4.5 | 4.47 | 0.0194 | 7.6% | 100% |
Variable | N | Mean | Min | Max | Range | SD | Skew | Kurtosis | SWp 1 |
---|---|---|---|---|---|---|---|---|---|
DIA (cm) | 40 | −14.9 * | −20.1 * | −9.7 * | 10.5 | 2.5 | −0.18 | −0.85 | 0.69 |
DBD (Kg/m3) | 40 | −68.2 * | −133.7 * | −10.0 ns | 123.8 | 31.5 | −0.03 | −0.98 | 0.68 |
CBD (Kg/m3) | 40 | −59.1 * | −149.4 * | 15.7 * | 165.1 | 37.1 | −0.55 | −0.04 | 0.30 |
KPY (%) | 40 | 3.25 * | −0.22 ns | 8.06 * | 8.28 | 2.00 | 0.49 | −0.70 | 0.13 |
αCEL (%) | 40 | 0.03 ns | −10.83 * | 9.47 * | 20.30 | 3.89 | −0.32 | 0.48 | 0.47 |
GLU (%) | 40 | 1.34 * | −8.29 * | 9.33 * | 17.62 | 3.47 | −0.37 | 0.20 | 0.77 |
ARA (%) | 40 | −0.02 ns | −0.20 * | 0.17 * | 0.37 | 0.07 | −0.23 | 0.29 | 0.53 |
GAL (%) | 40 | 0.01 ns | −0.47 * | 0.30 * | 0.77 | 0.17 | −0.73 | 0.26 | 0.09 |
RHA (%) | 40 | −0.05 * | −0.21 * | 0.19 * | 0.40 | 0.08 | 0.40 | 0.31 | 0.75 |
XYL (%) | 40 | 1.08 * | −1.40 * | 4.19 * | 5.58 | 1.40 | 0.31 | −0.37 | 0.42 |
MAN (%) | 40 | 0.55 * | −0.64 * | 1.63 * | 2.27 | 0.53 | 0.19 | −0.45 | 0.39 |
LIG (%) | 40 | −3.82 * | −7.26 * | 0.70 * | 7.96 | 1.83 | 0.08 | −0.52 | 0.91 |
INS (%) | 40 | −4.20 * | −8.00 * | −0.52 ns | 7.48 | 1.84 | −0.13 | −0.88 | 0.44 |
SOL (%) | 40 | 0.36 * | −0.29 * | 1.25 * | 1.55 | 0.37 | 0.44 | −0.15 | 0.41 |
S/G (ratio) | 40 | 0.02 ns | −0.27 * | 0.18 * | 0.45 | 0.10 | −0.63 | 0.26 | 0.19 |
Variable | N | Mean | SD | CV | Median | Min | Max | Range | SE |
---|---|---|---|---|---|---|---|---|---|
HT (m) | 40 | 21.3 | 0.9 | 4.2% | 21.2 | 17.4 | 22.9 | 5.5 | 0.14 |
DBH (cm) | 40 | 18.2 | 2.2 | 11.8% | 18.0 | 13.5 | 22.5 | 9.0 | 0.34 |
VOL (m3) | 40 | 0.257 | 0.055 | 21.6% | 0.250 | 0.141 | 0.390 | 0.249 | 0.01 |
DBD (kg/m3) | 40 | 481.7 | 34.4 | 7.1% | 485.6 | 400.9 | 558.4 | 157.5 | 5.44 |
CBD (kg/m3) | 40 | 467.3 | 31.3 | 6.7% | 470.5 | 392.7 | 534.3 | 141.6 | 4.95 |
CBDc (kg/m3) | 37 | 474.8 | 31.6 | 6.7% | 479.4 | 398.6 | 528.6 | 130.0 | 5.19 |
KPY (%) | 40 | 53.8 | 1.6 | 3.0% | 54.0 | 49.7 | 56.8 | 7.1 | 0.25 |
KPYc (%) | 39 | 53.8 | 1.5 | 2.9% | 53.8 | 49.4 | 56.4 | 7.0 | 0.25 |
αCEL (%) | 40 | 44.4 | 1.7 | 3.9% | 44.3 | 40.1 | 48.5 | 8.4 | 0.27 |
GLU (%) | 40 | 50.4 | 1.6 | 3.1% | 50.5 | 47.5 | 53.1 | 5.6 | 0.25 |
ARA (%) | 40 | 0.26 | 0.06 | 23.1% | 0.30 | 0.10 | 0.30 | 0.20 | 0.01 |
GAL (%) | 40 | 0.62 | 0.11 | 17.6% | 0.60 | 0.40 | 0.90 | 0.50 | 0.02 |
RHA (%) | 40 | 0.23 | 0.05 | 24.1% | 0.20 | 0.10 | 0.30 | 0.20 | 0.01 |
XYL (%) | 40 | 13.8 | 0.5 | 3.5% | 13.8 | 12.6 | 15.0 | 2.4 | 0.08 |
MAN (%) | 40 | 1.31 | 0.29 | 22.0% | 1.30 | 0.80 | 2.20 | 1.40 | 0.05 |
LIG (%) | 40 | 29.4 | 1.0 | 3.5% | 29.4 | 27.4 | 31.8 | 4.4 | 0.16 |
INS (%) | 40 | 27.0 | 1.0 | 3.7% | 27.1 | 25.3 | 29.4 | 4.1 | 0.16 |
SOL (%) | 40 | 2.35 | 0.18 | 7.8% | 2.40 | 1.90 | 2.80 | 0.90 | 0.03 |
S/G (ratio) | 40 | 1.67 | 0.08 | 4.6% | 1.70 | 1.50 | 1.80 | 0.30 | 0.01 |
Pos. | Linear Model | KPY | DBD | GLU | XYL | INS | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
All | y ~ 0 + 1.3 + 25 + 50 + 75 + 100 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Alone | y ~ 0 | 0.79 | 0.88 | 0.67 | 0.82 | 0.29 | 0.56 | 0.38 | 0.56 | 0.56 | 0.75 |
y ~ 1.3 | - | - | 0.84 | 0.91 | 0.69 | 0.86 | 0.30 | 0.55 | 0.62 | 0.71 | |
y ~ 25 | 0.94 | 0.97 | 0.85 | 0.91 | 0.65 | 0.80 | 0.67 | 0.82 | 0.76 | 0.84 | |
y ~ 50 | 0.80 | 0.88 | 0.79 | 0.85 | 0.59 | 0.75 | 0.36 | 0.62 | 0.54 | 0.73 | |
y ~ 75 | 0.61 | 0.77 | 0.76 | 0.86 | 0.33 | 0.53 | 0.15 | 0.32 | 0.40 | 0.66 | |
y ~ 100 | - | - | 0.30 | 0.39 | - | - | - | - | - | - | |
Pairwise | y ~ mean(0; 1.3) | - | - | 0.85 | 0.92 | 0.60 | 0.85 | 0.48 | 0.67 | 0.71 | 0.81 |
y ~ mean(0; 25) | 0.96 | 0.97 | 0.92 | 0.95 | 0.68 | 0.82 | 0.71 | 0.81 | 0.81 | 0.88 | |
y ~ mean(0; 50) | 0.96 | 0.98 | 0.85 | 0.89 | 0.65 | 0.81 | 0.63 | 0.74 | 0.80 | 0.89 | |
y ~ mean(1.3; 25) | - | - | 0.95 | 0.97 | 0.87 | 0.93 | 0.77 | 0.86 | 0.89 | 0.93 | |
y ~ mean(1.3; 50) | - | - | 0.94 | 0.96 | 0.90 | 0.94 | 0.69 | 0.84 | 0.86 | 0.91 | |
y ~ mean(25; 50) | 0.94 | 0.96 | 0.94 | 0.96 | 0.83 | 0.88 | 0.75 | 0.84 | 0.83 | 0.88 | |
Three-way | y ~ mean(0; 1.3; 25) | - | - | 0.95 | 0.97 | 0.80 | 0.93 | 0.77 | 0.87 | 0.87 | 0.92 |
y ~ mean(0; 1.3; 50) | - | 0.93 | 0.96 | 0.81 | 0.92 | 0.74 | 0.85 | 0.88 | 0.92 | ||
y ~ mean(0; 25; 50) | 1.00 | 1.00 | 0.96 | 0.98 | 0.87 | 0.93 | 0.84 | 0.87 | 0.91 | 0.94 | |
y ~ mean(1.3; 25; 50) | - | - | 0.99 | 0.99 | 0.98 | 0.99 | 0.96 | 0.98 | 0.98 | 0.98 |
Positions | Linear Model | DBD | DBDnir | RANKINGS | ||||
---|---|---|---|---|---|---|---|---|
DBDWT | DBD1.3 | NIR1.3 | ||||||
All | y ~ 0 + 1.3 + 25 + 50 + 75 + 100 | 1 | 1 | 0.94 | 0.95 | | ||
Alone | y ~ 0 | 0.67 | 0.82 | 0.52 | 0.69 | |||
y ~ 1.3 | 0.84 | 0.91 | 0.72 | 0.80 | ||||
y ~ 25 | 0.85 | 0.91 | 0.66 | 0.82 | ||||
y ~ 50 | 0.79 | 0.85 | 0.76 | 0.86 | ||||
y ~ 75 | 0.76 | 0.86 | 0.65 | 0.77 | ||||
y ~ 100 | 0.30 | 0.39 | 0.20 | 0.26 | ||||
Pairwise | y ~ mean(0; 1.3) | 0.85 | 0.92 | 0.71 | 0.79 | |||
y ~ mean(0; 25) | 0.92 | 0.95 | 0.73 | 0.84 | ||||
y ~ mean(0; 50) | 0.85 | 0.89 | 0.75 | 0.83 | ||||
y ~ mean(1.3; 25) | 0.95 | 0.97 | 0.83 | 0.88 | ||||
y ~ mean(1.3; 50) | 0.94 | 0.96 | 0.89 | 0.92 | ||||
y ~ mean(25; 50) | 0.94 | 0.96 | 0.84 | 0.90 | ||||
Three-way | y ~ mean(0; 1.3; 25) | 0.95 | 0.97 | 0.81 | 0.86 | |||
y ~ mean(0; 1.3; 50) | 0.93 | 0.96 | 0.82 | 0.87 | ||||
y ~ mean(0; 25; 50) | 0.96 | 0.98 | 0.83 | 0.89 | ||||
y ~ mean(1.3; 25; 50) | 0.99 | 0.99 | 0.91 | 0.94 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, G.S.; Yuliarto, M.; Antes, R.; Sabki; Prasetyo, A.; Unda, F.; Mansfield, S.D.; Hodge, G.R.; Acosta, J.J. Wood and Pulping Properties Variation of Acacia crassicarpa A.Cunn. ex Benth. and Sampling Strategies for Accurate Phenotyping. Forests 2020, 11, 1043. https://doi.org/10.3390/f11101043
Martins GS, Yuliarto M, Antes R, Sabki, Prasetyo A, Unda F, Mansfield SD, Hodge GR, Acosta JJ. Wood and Pulping Properties Variation of Acacia crassicarpa A.Cunn. ex Benth. and Sampling Strategies for Accurate Phenotyping. Forests. 2020; 11(10):1043. https://doi.org/10.3390/f11101043
Chicago/Turabian StyleMartins, Gustavo Salgado, Muhammad Yuliarto, Rudine Antes, Sabki, Agung Prasetyo, Faride Unda, Shawn D. Mansfield, Gary R. Hodge, and Juan Jose Acosta. 2020. "Wood and Pulping Properties Variation of Acacia crassicarpa A.Cunn. ex Benth. and Sampling Strategies for Accurate Phenotyping" Forests 11, no. 10: 1043. https://doi.org/10.3390/f11101043
APA StyleMartins, G. S., Yuliarto, M., Antes, R., Sabki, Prasetyo, A., Unda, F., Mansfield, S. D., Hodge, G. R., & Acosta, J. J. (2020). Wood and Pulping Properties Variation of Acacia crassicarpa A.Cunn. ex Benth. and Sampling Strategies for Accurate Phenotyping. Forests, 11(10), 1043. https://doi.org/10.3390/f11101043