Effect of Organic Matter Released from Deadwood at Different Decomposition Stages on Physical Properties of Forest Soil
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Sites and Experimental Design
2.2. Laboratory Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Błońska, E.; Kacprzyk, M.; Spólnik, A. Effect of deadwood of different tree species in various stages of decomposition on biochemical soil properties and carbon storage. Ecol. Res. 2017, 32, 193–203. [Google Scholar] [CrossRef]
- Piaszczyk, W.; Błońska, E.; Lasota, J.; Lukac, M. A comparison of C:N:P stoichiometry in soil and deadwood at an advanced decomposition stage. Catena 2019, 179, 1–5. [Google Scholar] [CrossRef]
- Jonsson, B.G.; Ekström, M.; Esseen, P.A.; Grafström, A.; Ståhl, G.; Westerlund, B. Dead wood availability in managed Swedish forests—Policy outcomes and implications for biodiversity. For. Ecol. Manag. 2016, 376, 174–182. [Google Scholar] [CrossRef]
- Johnston, S.R.; Boddy, L.; Weightman, A.J. Bacteria in decomposing wood and their interactions with wood-decay fungi. FEMS Microbiol. Ecol. 2016, 92, 179. [Google Scholar] [CrossRef] [PubMed]
- Błońska, E.; Klamerus-Iwan, A.; Łagan, S.; Lasota, J. Changes to the water repellency and storage of different species of deadwood based on decomposition rate in a temperate climate. Ecohydrology 2018, 11, 2023. [Google Scholar] [CrossRef]
- Gutowski, J.M.; Bobiec, A.; Pawlaczyk, P.; Zub, K. Drugie Życie Drzewa; WWF Polska: Warszawa—Hajnówka, Poland, 2004. [Google Scholar]
- Russell, M.B.; Fraver, S.; Aakala, T.; Gove, J.H.; Woodall, C.W.; D’Amato, A.W.; Ducey, M.J. Quantifying carbon stores and decomposition in dead wood: A review. For. Ecol. Manag. 2015, 350, 107–128. [Google Scholar] [CrossRef]
- Magnússon, R.J.; Tietema, A.; Cornalissen, J.H.C.; Hefting, M.M.; Kalbitz, K. Tamm Review: Sequestration of carbon from coarse woody debris in forest soils. Ecol. Manag. 2016, 377, 1–15. [Google Scholar] [CrossRef]
- Lasota, J.; Błońska, E.; Piaszczyk, W.; Wiecheć, M. How the deadwood of different tree species in various stages of decomposition affected nutrient dynamics? J. Soil. Sendiments 2017, 18, 2759–2769. [Google Scholar] [CrossRef]
- Piaszczyk, W.; Błońska, E.; Lasota, J. Soil biochemical properties and stabilisation of soil organic matter in relation to deadwood of different species. FEMS Microbiol. Ecol. 2019, 95, 1–11. [Google Scholar] [CrossRef]
- Walsh, E.; McDonnell, K.P. The influence of added organic matter on soil physical, chemical, and biological properties: A small-scale and short-time experiment using straw. Arch. Agron. Soil Sci. 2012, 58, 201–205. [Google Scholar] [CrossRef]
- Celik, I. Land-use effects on organic matter and physical properties of soil in a southern Mediterranean highland of Turkey. Soil Tillage Res. 2005, 83, 270–277. [Google Scholar] [CrossRef]
- Ilek, A.; Kucza, J.; Szostek, M. The effect of the bulk density and the decomposition index of organic matter on the water storage capacity of the surface layers of forest soils. Geoderma 2017, 285, 27–34. [Google Scholar] [CrossRef]
- Täumer, K.; Stoffregen, H.; Wessolek, G. Determination of repellency distribution using soil organic matter and water content. Geoderma 2005, 125, 107–115. [Google Scholar] [CrossRef]
- Dekker, L.W.; Ritsema, C.J.; Oostindie, K.; Boersma, O.H. Effect of drying temperature on the severity of soil water repellency. Soil Sci. 1998, 163, 780–796. [Google Scholar] [CrossRef]
- Burgeut, M.; Taguas, E.V.; Cerdà, A.; Gómez, J.A. Soil water repellency assessment in olive groves in Southern and Eastern Spain. Catena 2016, 147, 187–195. [Google Scholar] [CrossRef]
- Maser, C.; Anderson, R.G.; Cromack, J.; Kermit; Williams, J.T.; Martin, R.E. Dead and Down Woody Material. In Wildlife Habitats in Managed Forests: The Blue Mountains of Oregon and Washington; Jack, W.T., Ed.; US Department of Agriculture Forest Service: Washington, DC, USA, 1979; pp. 78–95. [Google Scholar]
- Rodrigues, J.; Faix, O.; Pereira, H. Improvement of acetylbromide method for lignin determination within large scale screening programmers. Holz als Roh- und Werkst. 1999, 57, 341–345. [Google Scholar] [CrossRef]
- Antczak, A.; Michauszko, A.; Kosiska, T.; Drożdżek, M. Determination of the structural substances content in the field maple wood (Acer campestre L.)—comparison of the classical methods with instrumental. Ann. WULS—SGGW For. Wood Technol. 2013, 82, 11–17. [Google Scholar]
- Wessel, A.T. On using the effective contact angle and the water drop penetration time for classification of water repellency in dune soils. Earth Surf. Process. Landf. 1988, 13, 555–561. [Google Scholar] [CrossRef]
- Wambsganss, J.; Stutz, K.P.; Lang, F. European beech deadwood can increase soil organic carbon sequestration in forest topsoils. For. Ecol. Manag. 2017, 405, 200–209. [Google Scholar] [CrossRef]
- Stutz, K.; Kaiser, K.; Wambsganss, J.; Santos, F.; Berhe, A.A.; Lang, F. Lignin from white-rotted European beech deadwood and soil functions. Biogeochemistry 2019, 145, 81–105. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, Y.; Sun, W. Using organic matter and pH to estimate the bulk density of afforested/reforested soils in Northwest and Northeast China. Pedosphere 2017, 27, 890–900. [Google Scholar] [CrossRef]
- Prévost, M. Predicting soil properties from organicmatter content following mechanical site preparation of forest soils. Soil Sci. Soc. Am. J. 2004, 68, 943–949. [Google Scholar] [CrossRef]
- Perie, C.; Ouimet, R. Organic carbon, organic matter and bulk den sity relationships in boreal forest soils. Can. J. Soil Sci. 2008, 88, 315–325. [Google Scholar] [CrossRef]
- Błońska, E.; Lasota, J.; Gruba, P. Enzymatic activity and stabilization of organic matter in soil with different detritus inputs. J. Soil Sci. Plant Nutr. 2017, 63, 242–247. [Google Scholar]
- Kay, B.D.; Van den Bygaart, A.J. Conservation tillage and depth stratification of porosity and soil organic matter. Soil Till. Res. 2002, 66, 107–118. [Google Scholar] [CrossRef]
- Urbanek, E.; Horn, R. Changes in soil organic matter, bulk density and tensile strength of aggregates after percolation in soils after conservation and conventional tillage. Int. Agrophysics 2006, 20, 245–254. [Google Scholar]
- Kirchamnn, H.; Gerzabek, M.H. Relationship between soil organic matter and micropores in a long-termexperiment at Ultuna, Sweden. J. Plant Nutr. Soil Sci. 1999, 162, 493–498. [Google Scholar] [CrossRef]
- Kahl, T.; Mund, M.; Bauhus, J.; Detlef, S.E. Dissolved organic carbon from European beech logs: Patterns of input to and retention by surface soil. Ecoscience 2012, 19, 1–10. [Google Scholar] [CrossRef]
- Wuddivira, M.N.; Camps-Roach, G. Effects of organic matter and calcium on soilstructural stability. Eur. J. Soil Sci. 2007, 58, 722–727. [Google Scholar] [CrossRef]
- Ganjeguente, G.K.; Condron, L.M.; Clinton, P.W.; Davis, M.R.; Mahien, N. Decomposition and nutrient release from radiata pine (Pinus radiata) coarse woody debris. For. Ecol. Manag. 2004, 187, 197–211. [Google Scholar] [CrossRef]
- Petrillo, M.; Cherubini, P.; Sartori, G.; Abiven, S.; Ascher, J.; Bertoldi, D.; Camin, F.; Barbero, A.; Larcher, R.; Egli, M. Decomposition of Norway spruce and European larch coarse woody debris (CWD) in relation to different elevation and exposure in an Alpine setting. iForest 2015, 9, 154–164. [Google Scholar] [CrossRef]
- Zhou, L.; Dai, L.M.; Gu, H.Y.; Zhong, L. Review on the decomposition and influence factors of coarse woody debris in forest ecosystem. J. For. Res. 2007, 18, 48–54. [Google Scholar] [CrossRef]
- Semenov, V.M.; Pautova, N.B.; Lebedeva, T.N.; Kromychkina, D.P.; Semenova, N.A.; Lopes de Gerenyu, V.O. Plant Residues Decomposition and Formation of Active Organic Matter in the Soil of the Incubation Experiments. Eurasian Soil Sci. 2019, 52, 1183–1194. [Google Scholar] [CrossRef]
- Błońska, E.; Lasota, J.; Piaszczyk, W. Dissolved organic carbon and total nitrogen release from deadwood of different tree species in various stages of decomposition. J. Sci. Plant Nutr. 2018, 65, 100–107. [Google Scholar] [CrossRef]
- Edmond, R.L.; Vogt, D.J.; Sandberg, D.H.; Driver, C.H. Decomposition of Douglas-fir and red alder wood in clear-cuttings. Can. J. For. Res. 2011, 16, 822–831. [Google Scholar] [CrossRef]
- Mao, J.; Nierop, K.G.; Dekker, S.C.; Dekker, L.W.; Chen, B. Understanding the mechanisms of soil water repellency from nanoscale to ecosystem scale: A review. J. Soil. Sedim. 2018, 19, 171–185. [Google Scholar] [CrossRef]
- Moral Garcia, F.J.; Dekker, L.W.; Oostindie, K.; Ritsema, C.J. Soil Water Repellency in the Natural Park of Donana, Southern Spain. In Soil Water Repellency Occurrence, Consequences and Amelioration; Ritsema, C.J., Dekker, L.W., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 121–127. [Google Scholar]
Degree | Criteria for Evaluation |
---|---|
I | Texture intact, circular, natural color of wood, bark intact, branches <3 cm, log leaning on branches |
II | Texture intact, circular, natural color of wood, bark slightly damaged, no branches <3 cm, log begins to sink |
III | Texture - larger hard fragments, circular, faded color of wood, fragmented bark, no branches <3 cm, almost entire log on the ground |
IV | Texture - small pieces, oval shape, faded color of wood, no bark, no branches <3 cm, entire log on the ground |
V | Texture soft and loose, oval shape, faded color of wood, no bark, no branches <3 cm, entire on the ground |
Species | DC | pHH2O | pHKCl | N | Ct | Lignin |
---|---|---|---|---|---|---|
Aspen | III | 4.70 ± 0.62 a | 4.18 ± 0.59 a | 0.16 ± 0.07 b | 45.35 ± 0.24 a | 26.99 ± 4.53 b |
IV | 4.44 ± 0.37 a | 3.82 ± 0.40 a | 0.66 ± 0.17 a | 45.99 ± 1.79 a | 37.24 ± 7.74 a,b | |
V | 5.00 ± 0.46 a | 4.35 ± 0.58 a | 0.88 ± 0.14 a | 46.42 ± 0.86 a | 37.60 ± 4.75 a | |
Alder | III | 4.56 ± 0.99 a | 3.86 ± 0.75 a | 0.36 ± 0.16 b | 47.00 ± 0.43 a | 30.48 ± 5.39 b |
IV | 4.20 ± 0.35 a | 3.72 ± 0.28 a | 0.49 ± 0.18 a,b | 46.32 ± 0.14 a | 32.89 ± 1.53 b | |
V | 4.71 ± 0.65 a | 4.12 ± 0.60 a | 1.10 ± 0.35 a | 46.12 ± 0.50 a | 40.92 ± 5.53 a |
Classes | Class 0 | Class 1 | Class 2 | Class 3 | Class 4 | Class 5 | Class 6 |
---|---|---|---|---|---|---|---|
WDPT | <5 s | 5–60 s | 1–10 min | 10–60 min | 1–3 h | 3–6 h | >6 h |
wettable | slightly water repellent | strongly water repellent | severely water repellent | extremely water repellent | extremely water repellent | extremely water repellent |
Properties | Decay Classes | ||||||
---|---|---|---|---|---|---|---|
C | III | IV | V | III | IV | V | |
Common Aspen | Common Alder | ||||||
pH H2O | 4.66 ± 0.76 a | 4.49 ± 0.35 a | 4.15 ± 0.27 a | 4.27 ± 0.32 a | 4.89 ± 0.23 a,c | 5.43 ± 0.26 b | 5.26 ± 0.19 b,c |
pH KCl | 3.94 ± 0.75 a | 3.77 ± 0.36 a | 3.59 ± 0.24 a | 3.29 ± 0.30 a | 4.02 ± 0.11 a | 4.81 ± 0.16 b | 4.62 ± 0.25 b |
N | 0.56 ± 0.23 a | 0.61 ± 0.13 a | 0.66 ± 0.13 a,b | 0.82 ± 0.16 b | 0.64 ± 0.23 a | 1.12 ± 0.26 b | 1.33 ± 0.27 b |
Ct | 8.34 ± 3.52 a | 9.99 ± 2.15 a | 12.50 ± 2.35 a | 16.13 ± 3.15 b | 9.18 ± 3.39 a | 17.78 ± 4.04 b | 20.81 ± 4.27 b |
sand | 69.9 ± 9.0 a | 67.0 ± 8.4 a | 68.0 ± 7.0 a | 65.0 ± 10.4 a | 68.0 ± 7.0 a | 68.0 ± 8.4 a | 67.0 ± 9.6 a |
silt | 27.1 ± 6.0 a | 28.5 ± 7.9 a | 30.1 ± 5.5 a | 28.9 ± 6.0 a | 25.8 ± 5.8 a | 26.8 ± 7.2 a | 27.4 ± 8.2 a |
clay | 2.5 ± 1.8 a | 3.3 ± 1.9 a | 2.0 ± 1.4 a | 3.9 ± 2.2 a | 3.7 ± 2.3 a | 3.2 ± 2.0 a | 3.5 ± 1.5 a |
Properties | Decay Classes | ||||||
---|---|---|---|---|---|---|---|
C | III | IV | V | III | IV | V | |
Common Aspen | Common Alder | ||||||
Dw | 2.53 ± 0.05 a,b | 2.51 ± 0.21 a | 2.47 ± 0.09 a,b | 2.32 ± 0.14 b | 2.42 ± 0.14 a | 2.36 ± 0.14 a | 1.95 ± 0.16 b |
BDa | 1.15 ± 0.10 a | 1.07 ± 0.11 a,b | 0.92 ± 0.12 b | 0.76 ± 0.11 c | 0.92 ± 0.24 a,b | 0.84 ± 0.20 b | 0.50 ± 0.10 c |
BDd | 0.97 ± 0.09 a | 0.85 ± 0.11 a,b | 0.78 ± 0.12 b | 0.63 ± 0.10 c | 0.75 ± 0.23 a,b | 0.63 ± 0.18 b | 0.31 ± 0.09 c |
Mw % | 18.8 ± 1.7 a | 26.6 ± 4.7 b | 19.2 ± 2.9 a | 20.7 ± 4.9 a | 24.9 ± 7.8 a,b | 35.5 ± 8.3 b | 66.2 ± 16.4 c |
Mv % | 18.2 ± 1.5 a | 22.1 ± 2.3 b | 14.6 ± 0.8 c | 12.8 ± 2.9 c | 17.1 ± 2.6 a | 21.1 ± 2.4 b | 19.3 ± 1.9 a,b |
Por % | 61.7 ± 3.4 a | 66.3 ± 3.3 a,b | 68.6 ± 4.0 b,c | 72.9 ± 4.2 c | 69.5 ± 8.1 a,b | 73.7 ± 6.4 b | 84.4 ± 3.1 c |
Pa % | 9.1 ± 3.8 a | 11.8 ± 4.8 a | 20.0 ± 6.8 b | 18.6 ± 4.4 b | 13.3 ± 9.4 a | 13.1 ± 8.5 a | 7.8 ± 7.7 a |
CWCw % | 54.7 ± 5.1 a | 65.5 ± 10 a | 63.6 ± 9.9 a | 89.2 ± 22.1 b | 82.6 ± 27.4 a | 103.4 ± 28.2 a | 267.9 ± 86.3 b |
CWCv % | 52.6 ± 0.8 a,b | 54.4 ± 2.9 a | 48.6 ± 4.6 b | 54.3 ± 5.2 a | 56.2 ± 5.2 a | 60.6 ± 3.1 a | 76.7 ± 7.6 b |
A.1–2 mm [pc.] * | 1193.3 ± 304.2 a,b | 1112.1 ± 257.1 a | 1448.2 ± 364.9 a,b | 1677.7 ± 568.9 b | 1618.7 ± 491.9 a | 1354.6 ± 324.7 a | 2821.0 ± 862.3 b |
A.2–5 mm [pc.] * | 350.9 ± 124.4 a | 230.2 ± 58.0 a | 255.4 ± 75.7 a | 237.3 ± 73.8 a | 300.6 ± 73.3 a | 346.3 ± 114.6 a | 337.9 ± 104.4 a |
A.5–10 mm [pc.] * | 11.4 ± 6.5 a | 11.9 ± 3.1 a | 11.4 ± 6.4 a | 14.8 ± 6.7 a | 5.7 ± 3.3 a,b | 9.4 ± 3.6 a | 2.02 ± 4.0 b |
A.> 10 mm [pc.] * | 4.0 ± 4.3 a | 10.1 ± 3.6 b | 6.6 ± 2.8 a,b | 4.5 ± 3.4 a | 2.5 ± 1.2 a,b | 5.6 ± 3.2 a | 1.2 ± 1.9 b |
WDPTd min | 3.33 ± 4. a | 10.4 ± 15.1 a | 36.3 ± 26.2 b | 39.4 ± 16.3 b | 18.4 ± 28.3 a | 2.9 ± 2.2 a | 72.5 ± 38.2 b |
WDPTf min | 0.3 ± 0.3 a | 0.6 ± 1.3 a | 1.4 ± 1.3 a | 23.0 ± 42.2 a | 1.4 ± 1.5 a | 4.2 ± 10.1 a,b | 13.1 ± 8.2 b |
pHH2O | pH KCl | N | Ct | |
---|---|---|---|---|
Dw | −0.272 * | −0.283 * | −0.767 * | −0.744 * |
BDa | −0.155 | −0.178 | −0.795 * | −0.819 * |
BDd | −0.227 | −0.257 * | −0.829 * | −0.832 * |
Ww | 0.414 * | 0.471 * | 0.816 * | 0.725 * |
Wv | 0.436 * | 0.485 * | 0.077 | −0.067 |
Por | 0.22 | 0.258 * | 0.829 * | 0.829 * |
Pa | −0.401 * | −0.381 * | 0.083 | 0.197 |
CWCw | 0.328 * | 0.364 * | 0.807 * | 0.748 * |
CWCv | 0.516 * | 0.532 * | 0.657 * | 0.565 * |
A.1-2 mm | 0.249 * | 0.248 * | 0.488 * | 0.458 * |
A.2-5 mm | 0.311 * | 0.305 * | 0.096 | 0.007 |
WDPTf | −0.027 | −0.023 | 0.409 * | 0.463 * |
WDPTd | −0.083 | -0.029 | 0.196 | 0.248 * |
BDd | |||
---|---|---|---|
F | p Value | ||
DC | 14.9516 | 0.00000 | |
Species | 0.8857 | 0.35091 | |
Ct | 68.4818 | 0.00000 | |
DC *species | 9.0507 | 0.00006 | |
DC *Ct | 22.8415 | 0.00000 | |
Species *Ct | 0.0038 | 0.95120 |
Dw | BDa | BDd | Mw | Mv | Por | Pa | CWCw | CWCv | A.1–2 mm | A.2–5 mm | WDPTf | WDPTd | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dw | |||||||||||||
BDa | 0.851 * | ||||||||||||
BDd | 0.871 * | 0.989 * | |||||||||||
Mw | −0.841 * | −0.737 * | −0.806 * | ||||||||||
Mv | 0.024 | 0.260 * | 0.114 | 0.314 * | |||||||||
Por | −0.806 * | −0.978 * | −0.989 * | 0.802 * | −0.115 | ||||||||
Pa | 0.014 | −0.340 * | −0.270 * | −0.151 | −0.523 * | 0.293 * | |||||||
CWCw | −0.876 * | −0.796 * | −0.829 * | 0.949 * | 0.069 | 0.825 * | −0.165 | ||||||
CWCv | −0.714 * | −0.580 * | −0.646 * | 0.822 * | 0.322 * | 0.637 * | −0.551 * | 0.853 * | |||||
A.1–2 mm | −0.671 * | −0.583 * | −0.603 * | 0.669 * | 0.016 | 0.573 * | −0.075 | 0.671 * | 0.561 * | ||||
A.2–5 mm | −0.016 | 0.006 | −0.029 | 0.144 | 0.231 | 0.041 | −0.217 | 0.09 | 0.21 | 0.14 | |||
WDPTf | −0.565 * | −0.586 * | −0.578 * | 0.480 * | −0.165 | 0.561 * | 0.062 | 0.545 * | 0.440 * | 0.656 * | 0.017 | ||
WDPTd | −0.226 | −0.262 * | −0.250 * | 0.17 | −0.126 | 0.246 * | 0.334 * | 0.158 | −0.054 | 0.116 | −0.037 | 0.314 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piaszczyk, W.; Lasota, J.; Błońska, E. Effect of Organic Matter Released from Deadwood at Different Decomposition Stages on Physical Properties of Forest Soil. Forests 2020, 11, 24. https://doi.org/10.3390/f11010024
Piaszczyk W, Lasota J, Błońska E. Effect of Organic Matter Released from Deadwood at Different Decomposition Stages on Physical Properties of Forest Soil. Forests. 2020; 11(1):24. https://doi.org/10.3390/f11010024
Chicago/Turabian StylePiaszczyk, Wojciech, Jarosław Lasota, and Ewa Błońska. 2020. "Effect of Organic Matter Released from Deadwood at Different Decomposition Stages on Physical Properties of Forest Soil" Forests 11, no. 1: 24. https://doi.org/10.3390/f11010024
APA StylePiaszczyk, W., Lasota, J., & Błońska, E. (2020). Effect of Organic Matter Released from Deadwood at Different Decomposition Stages on Physical Properties of Forest Soil. Forests, 11(1), 24. https://doi.org/10.3390/f11010024