Assessment and Mapping Green Areas Ecosystem Services and Socio-Demographic Characteristics in Turin Neighborhoods (Italy)
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodological Framework
2.3. Ecosystem Services Assessment Methods
2.3.1. Preliminary Assessment Method (PAM)
2.3.2. Air Quality Index
- was a tool for ranking common urban plant species on the basis of their ability to improve the air quality, so as to be able to map and attribute a value to the trees of the City of Turin present on the Albera.To system;
- that considered the Ozone (O3), which especially in Turin, but also in other Italian cities, is present in high concentrations [60];
- that considered the climate of the Mediterranean areas, with specific reference to the Italian reality.
2.4. Socio-Demographic Analysis
2.5. Qualitative Evaluation of Socio-Demographic Characteristics and Ecosystems Services
- -
- high represents the sum of assigned values > 0;
- -
- medium represents the sum of assigned values = 0;
- -
- low represents the sum of assigned values < 0.
3. Results
3.1. Provisioning and Regulating Services at the City Scale
3.2. Species Specific Air Quality Index at City Scale
3.3. Provisioning and Regulating Services at Neighborhood Scale
3.4. Socio-Demographic Characteristics of Neighborhoods
3.5. Qualitative Evaluation Map of Turin Neighborhoods
4. Discussions and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Luederitz, C.; Brink, E.; Gralla, F.; Hermelingmeier, V.; Meyer, M.; Niven, L.; Panzer, L.; Partelow, S.; Rau, A.L.; Sasaki, R.; et al. A review of urban ecosystem services: Six key challenges for future research. Ecosyst. Serv. 2015, 14, 98–112. [Google Scholar] [CrossRef]
- United Nations. 2018. Available online: https://population.un.org/wup/Publications/Files/WUP2018-Methodology.pdf (accessed on 14 April 2019).
- Kabisch, N. Ecosystem service implementation and governance challenges in urban green space planning—The case of Berlin, Germany. Land Use Policy 2015, 42, 557–567. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E.; Barton, D.N. Classifying and valuing ecosystem services for urban planning. Ecol. Econ. 2013, 86, 235–245. [Google Scholar] [CrossRef]
- European Commission. 2011. Available online: https://ec.europa.eu/environment/nature/biodiversity/comm2006/pdf/EP_resolution_april2012.pdf (accessed on 12 June 2019).
- Carrus, G.; Scopelliti, M.; Lafortezza, R.; Colangelo, G.; Ferrini, F.; Salbitano, F.; Agrimi, M.; Portoghesi, L.; Semenzato, P.; Sanesi, G. Go greener, feel better? The positive effects of biodiversity on the well-being of individuals visiting urban and peri-urban green areas. Landsc. Urban Plan. 2015, 134, 221–228. [Google Scholar] [CrossRef]
- Aronson, M.F.J.; Lepczyk, C.A.; Evans, K.L.; Goddard, M.A.; Lerman, S.B.; Maclvor, J.S.; Nilon, C.H.; Vargo, T. Biodiversity in the city: Key challenges for urban green space management. Front. Ecol. Environ. 2017, 15, 189–196. [Google Scholar] [CrossRef]
- Mitchell, R.; Popham, F. Effect of exposure to natural environment on health inequalities: An observational population study. Lancet Digit. Health 2008, 372, 1655–1660. [Google Scholar] [CrossRef]
- Haaland, C.; Konijnendijk van den Bosch, C. Challenges and strategies for urban green-space planning in cities undergoing densification: A review. Urban For. Urban Green. 2015, 14, 760–771. [Google Scholar] [CrossRef]
- Kopperoinen, L.; Itkonen, P.; Niemelä, J. Using expert knowledge in combining green infrastructure and ecosystem services in land use planning: An insight into a new place-based methodology. Landsc. Ecol. 2014, 29, 1361–1375. [Google Scholar] [CrossRef]
- Dunford, R.; Harrison, P.; Smith, A.; Dick, J.; Barton, D.N.; Martin-Lopez, B.; Kelemen, E.; Jacobs, S.; Saarikoski, H.; Turkelboom, F.; et al. Integrating methods for ecosystem service assessment: Experiences from real world situations. Ecosyst. Serv. 2018, 29, 499–514. [Google Scholar] [CrossRef]
- Vihervaara, P.; Viinikka, A.; Brander, L.; Santos-Martín, F.; Poikolainen, L.; Nedkov, S. Methodological interlinkages for mapping ecosystem services—From data to analysis and decision-support. One Ecosyst. 2019, 4, e26368. [Google Scholar] [CrossRef]
- Peña, L.; Onaindia, M.; Fernández de Manuel, B.; Ametzaga-Arregi, I.; Casado-Arzuaga, I. Analysing the synergies and trade-offs between ecosystem services to reorient land use planning in metropolitan Bilbao (Northern Spain). Sustainability 2018, 10, 4376. [Google Scholar] [CrossRef]
- Cortinovis, C.; Zulian, G.; Geneletti, D. Assessing nature-based recreation to support urban green infrastructure planning in Trento (Italy). Land 2018, 7, 112. [Google Scholar] [CrossRef]
- Arnold, J.; Kleemann, J.; Fürst, C. A differentiated spatial assessment of urban ecosystem services based on land use data in Halle, Germany. Land 2018, 7, 101. [Google Scholar] [CrossRef]
- Giedych, R.; Maksymiuk, G. Specific features of parks and their impact on regulation and cultural ecosystem services provision in Warsaw, Poland. Sustainability 2017, 9, 792. [Google Scholar] [CrossRef]
- Odom Green, O.; Garmestani, A.S.; Albro, S.; Ban, N.C.; Berland, A.; Burkman, C.E.; Gardiner, M.M.; Gunderson, L.; Hopton, M.E.; Schoon, M.L.; et al. Adaptive governance to promote ecosystem services in urban green spaces. Urban Ecosyst. 2015, 19, 77–93. [Google Scholar] [CrossRef]
- Conway, T.M.; Almas, A.D.; Coore, D. Ecosystem services, ecological integrity, and native species planting: How to balance these ideas in urban forest management? Urban For. Urban Green. 2019, 41, 1–5. [Google Scholar] [CrossRef]
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Grafius, D.R.; Corstanje, R.; Harris, J.A. Linking ecosystem services, urban form and green space configuration using multivariate landscape metric analysis. Landscape Ecol 2018, 33, 557–573. [Google Scholar] [CrossRef]
- Derkzen, M.L.; van Teeffelen, A.J.A.; Verburg, P.H. Quantifying urban ecosystem services based on high-resolution data of urban green space: An assessment for Rotterdam, the Netherlands. J. Appl. Ecol. 2015, 52, 1020–1032. [Google Scholar] [CrossRef]
- Säumel, I.; Weber, F.; Kowarik, I. Toward livable and healthy urban streets: Roadside vegetation provides ecosystem services where people live and move. Environ. Sci. Policy 2016, 62, 24–33. [Google Scholar] [CrossRef]
- Tyrväinen, L.; Pauleit, S.; Seeland, K.; de Vries, S. Benefits and uses of urban forests and trees. In Urban Forests and Trees; Konijnendijk, C., Nilsson, K., Randrup, T., Schipperijn, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 81–114. [Google Scholar]
- Livesley, S.J.; McPherson, G.M.; Calfapietra, C. The urban forest and ecosystem services: Impacts on urban water, heat, and pollution cycles at the tree, street, and city scale. J. Environ. Qual. 2016, 45, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Salmond, J.A.; Tadaki, M.; Vardoulakis, S.; Arbuthnott, K.; Coutts, A.; Demuzere, M.; Dirks, K.N.; Heaviside, C.; Lim, S.; Macintyre, H.; et al. Health and climate related ecosystem services provided by street trees in the urban environment. Environ. Health 2016, 15, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Davies, H.J.; Doick, K.J.; Hudson, M.D.; Schreckenberg, K. Challenges for tree officers to enhance the provision of regulating ecosystem services from urban forests. Environ. Res. 2017, 156, 97–107. [Google Scholar] [CrossRef]
- Obersteiner, A.; Gilles, S.; Frank, U.; Beck, I.; Häring, F.; Ernst, D.; Rothballer, M.; Hartmann, A.; Traidl-Hoffmann, C.; Schmid, M. Pollen-associated microbiome correlates with pollution parameters and the allergenicity of pollen. PLoS ONE 2016, 11, e0149545. [Google Scholar] [CrossRef]
- Li, Z.; Xu, X.; Thompson, L.A.; Gross, H.E.; Shenkman, E.A.; DeWalt, D.A.; Huang, I.-C. Longitudinal effect of ambient air pollution and pollen exposure on asthma control: The patient-reported outcomes measurement information system (PROMIS) pediatric asthma study. Acad. Pediatrics 2019, 19, 615–623. [Google Scholar] [CrossRef]
- IUCN—Tools for Measuring, Modelling, and Valuing Ecosystem Services. 2018. Available online: https://portals.iucn.org/library/sites/library/files/documents/PAG-028-En.pdf (accessed on 20 November 2019).
- Janhäll, S. Review on urban vegetation and particle air pollution—Deposition and dispersion. Atmos. Environ. 2015, 105, 130–137. [Google Scholar] [CrossRef]
- Grote, R.; Samson, R.; Alonso, R.; Amorim, J.H.; Cariñanos, P.; Churkina, G.; Fares, S.; Thiec, D.L.; Niinemets, Ü.; Mikkelsen, T.N.; et al. Functional traits of urban trees: Air pollution mitigation potential. Front. Ecol. Environ. 2016, 14, 543–550. [Google Scholar] [CrossRef]
- FAO—Guidelines on Urban and Peri-Urban Forestry. 2016. Available online: http://www.fao.org/forestry/urbanforestry/87034/en/ (accessed on 20 November 2019).
- WHO—Health as the Pulse of the New Urban Agenda. 2016. Available online: https://www.who.int/phe/publications/urban-health/en/ (accessed on 20 November 2019).
- Tree Cities of the World—Tree Cities of the World Programme. 2019. Available online: https://treecitiesoftheworld.org/ (accessed on 20 November 2019).
- Gibbons, K.H.; Ryan, C.M. Characterizing comprehensiveness of urban forest management plans in Washington State. Urban For. Urban Green. 2015, 14, 615–624. [Google Scholar] [CrossRef]
- Birke, M.; Rauch, U.; Hofmann, F. Tree bark as a bioindicator of air pollution in the city of Stassfurt, Saxony-Anhalt, Germany. J. Geochem. Explor. 2018, 187, 97–117. [Google Scholar] [CrossRef]
- Achakzai, K.; Khalid, S.; Adrees, M.; Bibi, A.; Ali, S.; Nawaz, R.; Rizwan, M. Air pollution tolerance index of plants around brick kilns in Rawalpindi, Pakistan. J. Environ. Manag. 2017, 190, 252–258. [Google Scholar] [CrossRef]
- Locosselli, G.M.; de Camargo, E.P.; Moreira, T.C.L.; Todesco, E.; de Fátima Andrade, M.; de André, C.D.S.; de André, P.A.; Singer, J.M.; Schwandner Ferreira, L.; Nascimento Saldiva, P.H.; et al. The role of air pollution and climate on the growth of urban trees. Sci. Total Environ. 2019, 666, 652–661. [Google Scholar] [CrossRef] [PubMed]
- Pace, R.; Biber, P.; Pretzsch, H.; Grote, R. Modeling ecosystem services for park trees: Sensitivity of i-tree eco simulations to light exposure and tree species classification. Forests 2018, 9, 89. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green. 2006, 4, 115–123. [Google Scholar] [CrossRef]
- Nayak, D.; Patel, D.P.; Thakare, H.S.; Satashiya, K.; Shrivastava, P.K. Evaluation of air pollution tolerance index of trees. Res. J. Chem. Environ. Sci. 2015, 8, 7–10. [Google Scholar]
- Ministero Dell’ambiente e Della Tutela del Territorio e del Mare. 2018. Available online: https://www.minambiente.it/sites/default/files/archivio/allegati/comitato%20verde%20pubblico/strategia_verde_urbano.pdf (accessed on 6 March 2019).
- Conference of the Parties (COP 21), United Nations. 2015. Available online: https://unfccc.int/process-and-meetings/conferences/past-conferences/paris-climate-change-conference-november-2015/cop-21 (accessed on 13 June 2019).
- Wang, H.F.; Qureshi, S.; Qureshi, B.A.; Qiu, J.X.; Friedman, C.R.; Breuste, J.; Wang, X.K. A multivariate analysis integrating ecological, socioeconomic and physical characteristics to investigate urban forest cover and plant diversity in Beijing, China. Ecol. Indic. 2016, 60, 921–929. [Google Scholar] [CrossRef]
- ISTAT (2018). Available online: http://demo.istat.it/bilmens2018gen/index.html (accessed on 31 May 2019).
- European Environmental Agency—Copernicus Land Monitoring Service. 2018. Available online: https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-urban-atlas (accessed on 14 April 2019).
- Regione Piemonte. 2019. Available online: http://relazione.ambiente.piemonte.it/2019/it/aria/stato/pm10 (accessed on 14 April 2019).
- Migliaretti, G.; Dalmasso, P.; Gregori, D. Air pollution effects on the respiratory health of the resident adult population in Turin, Italy. Int. J. Environ. Health Res. 2007, 17, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Romanazzi, V.; Casazza, M.; Malandrino, M.; Maurino, V.; Piano, A.; Schilirò, T.; Gilli, G. PM10 size distribution of metals and environmental-sanitary risk analysis in the city of Torino. Chemosphere 2014, 112, 210–216. [Google Scholar] [CrossRef]
- Bono, R.; Romanazzi, V.; Bellisario, V.; Tassinari, R.; Trucco, G.; Urbino, A.; Cassardo, C.; Siniscalco, C.; Marchetti, P.; Marcon, A. Air pollution, aeroallergens and admissions to pediatric emergency room for respiratory reasons in Turin, northwestern Italy. BMC Public Health 2016, 16, 722. [Google Scholar] [CrossRef]
- Albera.TO. Available online: http://www.comune.torino.it/verdepubblico/2016/alberi16/nasce-alberato-applicativo-gestione-patrimonio-arboreo.shtml (accessed on 04 March 2019).
- Comune di Torino—Verde Storico. Available online: http://www.comune.torino.it/verdepubblico/patrimonioverde/verdeto/storia.shtml (accessed on 04 March 2019).
- Giorgio Rota Report. 2015. Available online: www.rapporto-rota.it (accessed on 6 June 2019).
- Burkhard, B.; Kroll, F.; Müller, F.; Windhorst, W. Landscapes’ capacities to provide ecosystem services—A concept for land-cover based assessments. Landsc. Online 2009, 15, 1–22. [Google Scholar] [CrossRef]
- Burkhard, B.; Kandziora, M.; Hou, Y.; Müller, F. Ecosystem service potentials, flows and demands-concepts for spatial localisation, indication and quantification. Landsc. Online 2014, 34, 1–32. [Google Scholar] [CrossRef]
- Zepp, H.; Mizgajski, A.; Mess, C.; Zwierzchowska, I. A preliminary assessment of urban ecosystem services in central European urban areas. A methodological outline with examples from Bochum (Germany) and Poznań (Poland). Ber. Geogr. Landeskd. 2016, 90, 67–84. [Google Scholar]
- Urban Atlas. Available online: https://land.copernicus.eu/local/urban-atlas (accessed on 14 April 2019).
- Common International Classification of Ecosystem Services (CICES) v.5.1. Available online: https://cices.eu/ (accessed on 15 April 2019).
- Yang, J.; McBride, J.; Zhou, J.; Sun, Z. The urban forest in Beijing and its role in air pollution reduction. Urban For. Urban Green. 2005, 3, 65–78. [Google Scholar] [CrossRef]
- Manes, F.; Marando, F.; Capotorti, G.; Blasi, C.; Salvatori, E.; Fusaro, L.; Ciancarella, L.; Mircea, M.; Marchetti, M.; Chirici, G.; et al. Regulating ecosystem services of forests in ten Italian metropolitan cities: Air quality improvement by PM 10 and O 3 removal. Ecol. Indic. 2016, 67, 425–440. [Google Scholar] [CrossRef]
- Borbet, T.C.; Gladson, L.A.; Cromar, K.R. Assessing air quality index awareness and use in Mexico City. BMC Public Health 2018, 18, 538. [Google Scholar] [CrossRef]
- Chen, H.; Li, Q.; Kaufman, J.S.; Wang, J.; Copes, R.; Su, Y.; Benmarhnia, T. Effect of air quality alerts on human health: A regression discontinuity analysis in Toronto, Canada. Lancet Planet. Health 2018, 2, e19–e26. [Google Scholar] [CrossRef]
- Kyrkilis, G.; Chaloulakou, A.; Kassomenos, P.A. Development of an aggregate air quality index for an urban Mediterranean agglomeration: Relation to potential health effects. Environ. Int. 2007, 33, 670–676. [Google Scholar] [CrossRef]
- Cheng, W.-L.; Chen, Y.-S.; Zhang, J.; Lyons, T.J.; Pai, J.-L.; Chang, S.-H. Comparison of the revised air quality index with the PSI and AQI indices. Sci. Total Environ. 2007, 382, 191–198. [Google Scholar] [CrossRef]
- Murena, F. Measuring air quality over large urban areas: Development and application of an air pollution index at the urban area of Naples. Atmos. Environ. 2004, 38, 6195–6202. [Google Scholar] [CrossRef]
- Zhan, D.; Kwan, M.-P.; Zhang, W.; Yu, X.; Meng, B.; Liu, Q. The driving factors of air quality index in China. J. Clean. Prod. 2018, 197, 1342–1351. [Google Scholar] [CrossRef]
- Güçlü, Y.S.; Dabanlı, I.; Şişman, E.; Şen, Z. Air quality (AQ) identification by innovative trend diagram and AQ index combinations in Istanbul megacity. Atmos. Pollut. Res. 2019, 10, 88–96. [Google Scholar] [CrossRef]
- Sicard, P.; Agathokleous, E.; Araminiene, V.; Carrari, E.; Hoshika, Y.; De Marco, A.; Paoletti, E. Should we see urban trees as effective solutions to reduce increasing ozone levels in cities? Environ. Pollut. 2018, 243, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Governo Italiano—Presidenza del Consiglio dei Ministri—Urban Index. Available online: https://www.urbanindex.it/indicatori/indice-di-vecchiaia/ (accessed on 15 April 2019).
- ISPRA—Stato Dell’ambiente. 2017. Available online: http://www.isprambiente.gov.it/files2017/pubblicazioni/stato-ambiente/rau-2017/1_Fattori%20sociali%20ed%20economici.pdf (accessed on 15 April 2019).
- Regione Piemonte—40 Anni di Salute a Torino. 2017. Available online: http://www.epiprev.it/materiali/2017/Torino_40_anni/40anni_singole.pdf (accessed on 15 April 2019).
- Groenewegen, P.P.; van den Berg, A.E.; de Vries, S.; Verheij, R.A. Vitamin G: Effects of green space on health, well-being, and social safety. BMC Public Health 2006, 6, 149. [Google Scholar] [CrossRef] [PubMed]
- Bertram, C.; Rehdanz, K. The role of urban green space for human well-being. Ecol. Econ. 2015, 120, 139–152. [Google Scholar] [CrossRef]
- Russo, A.; Escobedo, F.J.; Zerbe, S. Quantifying the local-scale ecosystem services provided by urban treed streetscapes in Bolzano, Italy. AIMS Environ. Sci. 2016, 3, 58–76. [Google Scholar] [CrossRef]
- Richards, D.R.; Edwards, P.J. Quantifying street tree regulating ecosystem services using Google Street View. Ecol. Indic. 2017, 77, 31–40. [Google Scholar] [CrossRef]
- Suchocka, M.; Kosiacka-Beck, E.; Niewiarowska, A. Horticultural therapy as a tool of healing persons with disability on an example of support centre in Kownaty. Ecol. Quest. 2019, 30, 7–18. [Google Scholar] [CrossRef]
- Lis, A.; Pardela, Ł.; Iwankowski, P. Impact of vegetation on perceived safety and preference in city parks. Sustainability 2019, 11, 6324. [Google Scholar] [CrossRef]
- Hunter, M.L.; Redford, K.H.; Lindenmayer, D.B. The complementary niches of anthropocentric and biocentric conservationists. Conserv. Biol. 2014, 28, 641–645. [Google Scholar] [CrossRef]
- Braveman, P.A.; Cubbin, C.; Egerter, S.; Chideya, S.; Marchi, K.S.; Metzler, M.; Posner, S. Socioeconomic status in health research: One size does not fit all. JAMA 2005, 294, 2879–2889. [Google Scholar] [CrossRef]
- Maas, J. Green space, urbanity, and health: How strong is the relation? J. Epidemiol. Community Health 2006, 60, 587–592. [Google Scholar] [CrossRef]
- Artmann, M. The role of urban green spaces in care facilities for elderly people across European cities. Urban For. Urban Green. 2017, 27, 203–213. [Google Scholar] [CrossRef]
- Dadvand, P.; Wright, J.; Martinez, D.; Basagaña, X.; McEachan, R.R.C.; Cirach, M.; Gidlow, C.J.; de Hoogh, K.; Gra, R. Inequality, green spaces, and pregnant women: Roles of ethnicity and individual and neighbourhood socioeconomic status. Environ. Int. 2014, 71, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Suchocka, M.; Jankowski, P.; Błaszczyk, M. Perception of urban trees by polish tree professionals vs. nonprofessionals. Sustainability 2019, 11, 211. [Google Scholar] [CrossRef]
- Battisti, L.; Corsini, F.; Gusmerotti, N.M.; Larcher, F. Management and perception of metropolitan natura 2000 sites: A case study of La Mandria Park (Turin, Italy). Sustainability 2019, 11, 6169. [Google Scholar] [CrossRef]
- Morgenroth, J. Urban tree diversity—Taking stock and looking ahead. Urban For. Urban Green. 2016, 15, 1–5. [Google Scholar] [CrossRef]
- Sjöman, H. Diversity and distribution of the urban tree population in ten major Nordic cities. Urban For. Urban Green. 2012, 11, 31–39. [Google Scholar] [CrossRef]
- Battisti, L.; Pille, L.; Wachtel, T.; Larcher, F.; Säumel, I. Residential greenery: State of the art and health-related ecosystem services and disservices in the city of Berlin. Sustainability 2019, 11, 1815. [Google Scholar] [CrossRef]
- Donovan, G.H.; Butry, D.T.; Michael, Y.L.; Prestemon, J.P.; Liebhold, A.M.; Gatziolis, D.; Mao, M.Y. The relationship between trees and human health: Evidence from the spread of the emerald ash borer. Am. J. Prev. Med. 2013, 44, 139–145. [Google Scholar] [CrossRef]
- Blanusa, T. Urban hedges: A review of plant species and cultivars for ecosystem service delivery in north-west Europe. Urban For. Urban Green. 2019, 44, 126391. [Google Scholar] [CrossRef]
Index | Formula | Unit of Measurement | Classes | |||
---|---|---|---|---|---|---|
Low | Medium-Low | Medium-High | High | |||
Ageing index [69] 1 | - | ≤150 | 151–200 | 201–250 | >250 | |
Housing density [70] 1 | Inhabitants/km2 | ≤3000 | 3001–9000 | 9001–15,000 | >15,000 | |
Economically assisted citizens2 | % | ≤0.5 | 0.51–1 | 1.10–1.50 | >1.50 |
A | B | C | D | E | |
---|---|---|---|---|---|
Low | 2 | 2 | 2 | −2 | −2 |
Medium-low | 1 | 1 | 1 | −1 | −1 |
Medium-high | −1 | −1 | −1 | 1 | 1 |
High | −2 | −2 | −2 | 2 | 2 |
Neighborhoods | Area 1 (km2) | N° of Trees/km2 | Tree Species Richness |
---|---|---|---|
1. Centro | 3.77 | 1051 | 75 |
2. San Salvario | 2.34 | 1222 | 81 |
3. Crocetta | 2.77 | 1417 | 42 |
4. San Paolo | 2.22 | 917 | 52 |
5. Cenisia | 2.33 | 1019 | 71 |
6. San Donato | 3.02 | 818 | 56 |
7. Aurora | 2.67 | 980 | 53 |
8. Vanchiglia | 3.38 | 965 | 59 |
9. Nizza Millefonti | 3.51 | 370 | 52 |
10. Mercati Generali | 3.46 | 883 | 70 |
11. Santa Rita | 3.57 | 1190 | 78 |
12. Mirafiori Nord | 3.79 | 1240 | 74 |
13. Pozzo Strada | 4.22 | 1112 | 73 |
14. Parella | 4.91 | 815 | 98 |
15. Le Vallette | 7.54 | 487 | 68 |
16. Madonna di Campagna | 7.40 | 282 | 81 |
17. Borgata Vittoria | 3.86 | 355 | 55 |
18. Barriera di Milano | 2.83 | 507 | 52 |
19. Falchera | 12.62 | 180 | 66 |
20. Regio Parco | 6.92 | 318 | 69 |
21. Madonna del Pilone | 15.5 | - | - |
22. Borgo Po e Cavoretto | 13.61 | - | - |
23. Mirafiori Sud | 11.44 | 451 | 77 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Battisti, L.; Pomatto, E.; Larcher, F. Assessment and Mapping Green Areas Ecosystem Services and Socio-Demographic Characteristics in Turin Neighborhoods (Italy). Forests 2020, 11, 25. https://doi.org/10.3390/f11010025
Battisti L, Pomatto E, Larcher F. Assessment and Mapping Green Areas Ecosystem Services and Socio-Demographic Characteristics in Turin Neighborhoods (Italy). Forests. 2020; 11(1):25. https://doi.org/10.3390/f11010025
Chicago/Turabian StyleBattisti, Luca, Enrico Pomatto, and Federica Larcher. 2020. "Assessment and Mapping Green Areas Ecosystem Services and Socio-Demographic Characteristics in Turin Neighborhoods (Italy)" Forests 11, no. 1: 25. https://doi.org/10.3390/f11010025
APA StyleBattisti, L., Pomatto, E., & Larcher, F. (2020). Assessment and Mapping Green Areas Ecosystem Services and Socio-Demographic Characteristics in Turin Neighborhoods (Italy). Forests, 11(1), 25. https://doi.org/10.3390/f11010025