A Simple and Efficient Method to Fabricate Superhydrophobic Wood with Enhanced Mechanical Durability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Superhydrophobic Surfaces on Wood Substrate
3. Results and Discussion
3.1. The Investigation of Formation Mechanism
3.2. X-ray Powder Diffraction (XRD) Analysis
3.3. Mechanical Durability of the Superhydrophobic Wood Surfaces
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sandberg, D.; Kutnar, A.; Mantanis, G. Forestry Wood modification technologies-a review. iForest-Biogeosci. For. 2017, 10, 895. [Google Scholar] [CrossRef]
- Chang, H.; Tu, K.; Wang, X.; Liu, J. Fabrication of mechanically durable superhydrophobic wood surfaces using polydimethylsiloxane and silica nanoparticles. RSC Adv. 2015, 5, 30647–30653. [Google Scholar] [CrossRef]
- Fu, Y.; Li, G.; Yu, H.; Liu, Y. Hydrophobic modification of wood via surface-initiated ARGET ATRP of MMA. Appl. Surf. Sci. 2012, 258, 2529–2533. [Google Scholar] [CrossRef]
- Latthe, S.S.; Sutar, R.S.; Kodag, V.S.; Bhosale, A.; Kumar, A.M.; Sadasivuni, K.K.; Xing, R.; Liu, S. Self-cleaning superhydrophobic coatings: Potential industrial applications. Prog. Org. Coat. 2019, 128, 52–58. [Google Scholar] [CrossRef]
- Papadopoulos, A.N.; Mantanis, G.I.; Technology, P. Surface treatment technologies applied to wood surfaces. FDM Asia-Solid Wood Panel Technol. 2011, 7, 36–39. [Google Scholar]
- Feng, L.; Li, S.; Li, H.; Zhai, J.; Song, Y.; Jiang, L.; Zhu, D. Super-hydrophobic surface of aligned polyacrylonitrile nanofibers. Angew. Chem. Int. Ed. 2002, 41, 1221–1223. [Google Scholar] [CrossRef]
- Lee, C.; Kim, C.-J. Underwater restoration and retention of gases on superhydrophobic surfaces for drag reduction. Phys. Rev. Lett. 2011, 106, 014502. [Google Scholar] [CrossRef]
- Wang, S.; Liu, C.; Liu, G.; Zhang, M.; Li, J.; Wang, C. Fabrication of superhydrophobic wood surface by a sol-gel process. Appl. Surf. Sci. 2011, 258, 806–810. [Google Scholar] [CrossRef]
- Yang, M.; Liu, W.; Jiang, C.; He, S.; Xie, Y.; Wang, Z. Fabrication of superhydrophobic cotton fabric with fluorinated TiO2 sol by a green and one-step sol-gel process. Carbohydr. Polym. 2018, 197, 75–82. [Google Scholar] [CrossRef]
- Lin, D.; Zeng, X.; Li, H.; Lai, X. Facile fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via layer-by-layer assembly. Cellulose 2018, 25, 3135–3149. [Google Scholar] [CrossRef]
- Wang, S.; Shi, J.; Liu, C.; Xie, C.; Wang, C. Fabrication of a superhydrophobic surface on a wood substrate. Appl. Surf. Sci. 2011, 257, 9362–9365. [Google Scholar] [CrossRef]
- Aljumaily, M.M.; Alsaadi, M.A.; Das, R.; Hamid, S.B.A.; Hashim, N.A.; AlOmar, M.K.; Alayan, H.M.; Novikov, M.; Alsalhy, Q.F.; Hashim, N.A. Optimization of the synthesis of superhydrophobic carbon nanomaterials by chemical vapor deposition. Sci. Rep. 2018, 8, 2778. [Google Scholar] [CrossRef]
- Ren, Y.; Lin, Z.; Mao, X.; Tian, W.; Van Voorhis, T.; Hatton, T.A. Superhydrophobic, Surfactant-doped, Conducting Polymers for Electrochemically Reversible Adsorption of Organic Contaminants. Adv. Funct. Mater. 2018, 28, 1801466. [Google Scholar] [CrossRef]
- Zhu, Q.; Teng, F.; Wang, Z.; Wang, Y.; Lu, N. Superhydrophobic Glass Substrates Coated with Fluorosilane-Coated Silica Nanoparticles and Silver Nanoparticles for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. ACS Appl. Nano Mater. 2019, 2, 3813–3818. [Google Scholar] [CrossRef]
- Novák, I.; Valentin, M.; Špitalský, Z.; Popelka, A.; Sestak, J.; Krupa, I. Engineering Superhydrophobic polyester/cotton fabrics modified by barrier discharge plasma and organosilanes. Polym. Plast. Technol. Eng. 2018, 57, 440–448. [Google Scholar] [CrossRef]
- Kim, S.; Thirion, D.; Nguyen, T.S.; Kim, B.; Dogan, N.A.; Yavuz, C.T. Sustainable synthesis of superhydrophobic perfluorinated nanoporous networks for small molecule separation. Chem. Mater. 2019, 31, 5206–5213. [Google Scholar] [CrossRef]
- Santhosh, K.K.S.; Sukamanchi, R.; Mathew, D.; Nair, C.P.R. Long-living, Stress and pH Tolerant Superhydrophobic Silica Particles via Fast and Efficient Urethane Chemistry; Facile Preparation of Self-Recoverable SH Coatings. J. Mater. Chem. A 2014, 3, 1465–1475. [Google Scholar]
- Barata, M.A.B.; Neves, M.C.; Neto, C.P.; Trindade, T. Growth of BiVO4 particles in cellulosic fibres by in situ reaction. Dye. Pigment. 2005, 65, 125–127. [Google Scholar] [CrossRef]
- Hübert, T.; Unger, B.; Bücker, M. Sol & ndash; gel derived TiO2 wood composites. J. Sol-Gel Sci. Technol. 2010, 53, 384–389. [Google Scholar]
- Han, X.; Yin, Y.; Zhang, Q.; Li, R.; Pu, J. Improved wood properties via two-step grafting with itaconic acid (IA) and nano-SiO2. Holzforschung 2018, 72, 499–506. [Google Scholar] [CrossRef]
- Fan, Y.; Li, C.; Chen, Z.; Hong, C. Study on fabrication of the superhydrophobic sol-gel films based on copper wafer and its anti-corrosive properties. Appl. Surf. Sci. 2012, 258, 6531–6536. [Google Scholar] [CrossRef]
- Mahadik, S.A.; Pedraza, F.; Vhatkar, R.S. Silica based superhydrophobic coating for long-term industrial and domestic applications. J. Alloys Compd. 2016, 663, 487–493. [Google Scholar] [CrossRef]
- Chen, H.; Lang, Q.; Bi, Z.; Miao, X.; Li, Y.; Pu, J. Impregnation of poplar wood (Populus euramericana) with methylolurea and sodium silicate sol and induction of in-situ gel polymerization by heating. Holzforschung 2014, 68, 45–52. [Google Scholar] [CrossRef]
- Islam, M.S.; Hamdan, S.; Jusoh, I.; Rahman, M.R.; Ahmed, A.S. The effect of alkali pretreatment on mechanical and morphological properties of tropical wood polymer composites. Mater. Des. 2012, 33, 419–424. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, X.; Wang, Z.; Zhang, Q.; Pu, J. A Simple and Efficient Method to Fabricate Superhydrophobic Wood with Enhanced Mechanical Durability. Forests 2019, 10, 750. https://doi.org/10.3390/f10090750
Han X, Wang Z, Zhang Q, Pu J. A Simple and Efficient Method to Fabricate Superhydrophobic Wood with Enhanced Mechanical Durability. Forests. 2019; 10(9):750. https://doi.org/10.3390/f10090750
Chicago/Turabian StyleHan, Xiaoshuai, Zhenxing Wang, Qinqin Zhang, and Junwen Pu. 2019. "A Simple and Efficient Method to Fabricate Superhydrophobic Wood with Enhanced Mechanical Durability" Forests 10, no. 9: 750. https://doi.org/10.3390/f10090750
APA StyleHan, X., Wang, Z., Zhang, Q., & Pu, J. (2019). A Simple and Efficient Method to Fabricate Superhydrophobic Wood with Enhanced Mechanical Durability. Forests, 10(9), 750. https://doi.org/10.3390/f10090750