Comparison of Natural Regeneration in Natural Grassland and Pine Plantations across an Elevational Gradient in the Páramo Ecosystem of Southern Ecuador
Abstract
:1. Introduction
2. Materials and methods
2.1. Description of Natural Grassland and Pine Plantations
2.2. Experimental Design and Data Collection
2.3. Soil Sampling
2.4. Soil Analysis
2.5. Data Analysis
3. Results
3.1. Effects of Elevational Range and Type of Vegetation on Hebaceous and Woody Vegetation
3.2. Vegetation Assemblages along Elevational Ranges and Type of Vegetation Cover
3.3. Relationship between Herbaceous Species Richness and Its Vegetation Cover with Edaphic Properties and Attributes of Plantations
4. Discussion
4.1. Natural Regeneration under the Influence of Pine Plantations in an Elevational Gradient
4.2. Natural Regeneration Influenced by Pine Plantation Attributes and Soil Properties
4.3. Recommendations for Pine Plantation Management
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Family | Specie | S | Lf | NG | Pi | NG | Pi | NG | Pi |
---|---|---|---|---|---|---|---|---|---|
3200–3400 | 3400–3600 | 3600–3800 | |||||||
ADOXACEAE | Viburnum triphyllum Benth. | N | W | X | X | X | |||
ALSTROMERIACEA | Bomarea sp. | N | H | X | X | X | X | X | |
APIACEAE | Azorella biloba (Schltdl.) Wedd. | N | H | X | X | X | X | ||
APIACEAE | Azorella sp. 1 | N | H | X | X | X | X | ||
APIACEAE | Eryngium humile Cav. | N | H | X | X | X | X | ||
APIACEAE | Oreomyrrhis andicola (Kunth) Endl. ex Hook. f. | N | H | X | X | ||||
APOCYNACEAE | Matalea sp. | N | H* | X | X | ||||
ARALIACEAE | Hydrocotyle sp. 1 | N | H | X | X | X | X | X | |
ARALIACEAE | Hydrocotyle sp. 2 | N | H | X | X | ||||
ARALIACEAE | Hydrocotyle sp. 3 | N | H | X | |||||
ARALIACEAE | Hydrocotyle sp. 4 | N | H | X | |||||
ARALIACEAE | Oreopanax andreanus Marchal | E | W | X | |||||
ARALIACEAE | Oreopanax avicenniifolius (Kunth) Decne. & Planch. | E | W | X | X | X | X | ||
ARALIACEAE | Oreopanax sp. 3 | N | W | X | |||||
ARALIACEAE | Oreopanax sp. 4 | N | W | X | |||||
ASPLENIACEAEA | Asplenium sp. 1 | N | H | X | X | ||||
ASPLENIACEAEA | Asplenium sp. 2 | N | H | X | X | ||||
ASPLENIACEAEA | Asplenium cf | N | H | X | |||||
ASTERACEAE | Achyrocline alata (Kunth) DC. | N | H | X | X | ||||
ASTERACEAE | Ageratina sp | N | W | X | X | X | X | ||
ASTERACEAE | Ageratina sp. 2 | N | W | X | |||||
ASTERACEAE | Aphanactis jamesoniana Wedd. | E | H | X | X | X | |||
ASTERACEAE | Aristeguietia cacalioides (Kunth) R.M. King & H. Rob. | N | W | X | X | X | |||
ASTERACEAE | Asteraceae sp. 2 | N | H | X | X | ||||
ASTERACEAE | Asteraceae sp. 3 | N | H | X | |||||
ASTERACEAE | Asteraceae sp. 4 | N | W | X | X | ||||
ASTERACEAE | Baccharis caespitosa (Ruiz & Pav.) Pers. | N | H* | X | X | ||||
ASTERACEAE | Baccharis genistelloides (Lam.) Pers. | N | H* | X | X | X | X | ||
ASTERACEAE | Baccharis sp. 2 | N | W | X | |||||
ASTERACEAE | Baccharis sp. 3 | N | W | X | |||||
ASTERACEAE | Baccharis sp. 4 | N | W | X | |||||
ASTERACEAE | Baccharis tricuneata (L. f.) Pers. | N | W | X | |||||
ASTERACEAE | Barnadesia arborea Kunth | N | W | X | X | ||||
ASTERACEAE | Bidens andicola Kunth | N | H | X | X | X | X | X | |
ASTERACEAE | Chaptalia cordata Hieron. | N | H | X | X | X | X | ||
ASTERACEAE | Chrysactinium acaule (Kunth) Wedd. | N | H | X | X | X | X | ||
ASTERACEAE | Chrysactinium sp. | N | H | X | |||||
ASTERACEAE | Chuquiraga jussieui J.F. Gmel. | N | W | X | X | ||||
ASTERACEAE | Cotula mexicana (DC.) Cabrera | N | H | X | X | ||||
ASTERACEAE | Diplostephium glandulosum Hieron. | N | H | X | X | ||||
ASTERACEAE | Dorobaea pimpinellifolia (Kunth) B. Nord. | N | H | X | X | X | |||
ASTERACEAE | Erato sodiroi (Hieron.) H. Rob. | N | W | X | X | ||||
ASTERACEAE | Galinsoga cf. quadriradiata Ruiz & Pav. | N | H | X | |||||
ASTERACEAE | Gamochaeta americana (Mill.) Wedd. | N | H | X | X | X | X | ||
ASTERACEAE | Gamochaeta purpurea (L.) Cabrera | N | H | X | X | ||||
ASTERACEAE | Gnaphalium sp. | N | H | X | X | X | |||
ASTERACEAE | Guevaria sodiroi (Hieron.) R.M. King & H. Rob. | N | H | X | |||||
ASTERACEAE | Gynoxys miniphylla Cuatrec. | E | W | X | |||||
ASTERACEAE | Gynoxys sp. 1 | N | W | X | X | X | X | ||
ASTERACEAE | Gynoxys sp. 2 | N | W | X | X | ||||
ASTERACEAE | Gynoxys sp. 3 | N | W | X | X | ||||
ASTERACEAE | Gynoxys sp. 4 | N | W | X | X | ||||
ASTERACEAE | Hieracium sp. 1 | N | H | X | X | X | |||
ASTERACEAE | Hieracium sp. 2 | N | H | X | |||||
ASTERACEAE | Hypochaeris sessiliflora Kunth | N | H | X | X | ||||
ASTERACEAE | Jungia sp. | N | W | X | X | ||||
ASTERACEAE | Lasiocephalus lingulatus Schltdl. | E | H | X | X | ||||
ASTERACEAE | Loricaria sp. | N | W | X | |||||
ASTERACEAE | Monticalia empetroides (Cuatrec.) C. Jeffrey | N | W | X | |||||
ASTERACEAE | Munnozia senecionidis Benth. | N | W | X | X | X | |||
ASTERACEAE | Oligactis coriacea (Hieron.) H. Rob. & Brettell | N | W | X | X | ||||
ASTERACEAE | Oritrophium crocifolium (Kunth) Cuatrec. | N | H | X | X | ||||
ASTERACEAE | Senecio cf | N | H | X | |||||
ASTERACEAE | Senecio cf chionogeton Wedd. | N | H | X | X | X | X | ||
ASTERACEAE | Senecio sp. 1 | N | H | X | X | ||||
ASTERACEAE | Taraxacum officinale F.H. Wigg. | I | H | X | |||||
ASTERACEAE | Werneria nubigena Kunth | N | H | X | X | ||||
ASTERACEAE | Werneria pygmaea Gillies ex Hook. & Arn. | N | H | X | |||||
ASTERACEAE | Xenophyllum humile (Kunth) V.A. Funk | N | H | X | X | ||||
BERBERIDACEAEA | Berberis cf lutea Ruiz & Pav. | N | W | X | |||||
BERBERIDACEAEA | Berberis sp. 1 | N | W | X | |||||
BERBERIDACEAEA | Berberis sp. 2 | N | W | X | |||||
BERBERIDACEAEA | Berberis sp. 3 | N | W | X | |||||
BERBERIDACEAEA | Berberis sp. 4 | N | W | X | X | ||||
BLECHNACEAE | Blechnum sp. | N | H | X | X | X | |||
BRASSICACEAE | Draba sp. | N | H | X | |||||
BROMELIACEAE | Bromeliaceae 1 | N | H | X | |||||
BROMELIACEAE | Bromeliaceae 2 | N | H | X | |||||
BROMELIACEAE | Guzmania sp | N | H | X | |||||
BROMELIACEAE | Puya sp. 1 | N | H | X | X | X | X | ||
BROMELIACEAE | Puya sp. 2 | N | H | X | X | ||||
BROMELIACEAE | Puya sp. 3 | N | H | X | X | ||||
BROMELIACEAE | Tillandsia sp | N | H | X | |||||
CAMPANULACEAE | Campanulacea cf | N | W | X | |||||
CAMPANULACEAE | Centropogon sp. | N | W | X | |||||
CAMPANULACEAE | Lysipomia sphagnophila Griseb. ex Wedd. | N | H | X | X | ||||
CAMPANULACEAE | Lysipomia vitreola McVaugh | E | H | X | |||||
CAMPANULACEAE | Siphocampylus giganteus (Cav.) G. Don | N | W | X | |||||
CAMPANULACEAE | Lobelia tenera Kunth | N | H | X | |||||
CAPRIFOLIACEAE | Valeriana hirtella Kunth | N | W | X | X | X | |||
CAPRIFOLIACEAE | Valeriana microphylla Kunth | N | H | X | X | X | X | ||
CAPRIFOLIACEAE | Valeriana niphobia Briq. | N | H | X | X | ||||
CAPRIFOLIACEAE | Valeriana pyramidalis Kunth | N | H | X | X | ||||
CAPRIFOLIACEAE | Valeriana rigida Ruiz & Pav. | N | H | X | |||||
CARYOPHYLLACEAE | Arenaria cf. | N | H | X | |||||
CARYOPHYLLACEAE | Cerastium cf | N | H | X | |||||
CARYOPHYLLACEAE | Cerastium danguyi J.F. Macbr. | N | H | X | X | X | X | ||
CARYOPHYLLACEAE | Stellaria recurvata Willd. ex D.F.K. Schltdl. | N | H | X | X | ||||
CELASTRACEAEA | Maytenus cf verticillata (Ruiz & Pav.) DC. | N | W | X | X | ||||
CHLORANTHACEAE | Hedyosmum luteynii Todzia | N | W | X | |||||
CLETHRACEAE | Clethra sp. | N | W | X | |||||
CONVOLVULACEA | Dichondra aff microcalyx (Hallier f.) Fabris | N | H | X | X | ||||
CORNACEAEA | Cornus peruviana J.F. Macbr. | N | W | X | X | ||||
CUNONIACEAE | Weinmannia fagaroides Kunth | N | W | X | X | X | X | ||
CYPERACEAE | Carex crinalis Boott | N | H | X | X | X | X | X | |
CYPERACEAE | Carex ecuadorica Kük. | N | H | X | X | ||||
CYPERACEAE | Carex jamesonii Boott | N | H | X | X | X | X | X | |
CYPERACEAE | Carex pichinchensis Kunth | N | H | X | X | ||||
CYPERACEAE | Carex sp. 3 | N | H | X | X | ||||
CYPERACEAE | Carex sp. 4 | N | H | X | X | X | X | ||
CYPERACEAE | Carex sp. 5 | N | H | X | |||||
CYPERACEAE | Carex tamana Steyerm. | N | H | X | X | X | |||
CYPERACEAE | Carex tristicha Spruce ex Boott | N | H | X | X | X | X | ||
CYPERACEAE | Eleocharis acicularis (L.) Roem. & Schult. | N | H | X | |||||
CYPERACEAE | Oreobolopsis inversa Dhooge & Goetgh. | N | H | X | X | X | |||
CYPERACEAE | Oreobolus ecuadorensis T. Koyama | N | H | X | |||||
CYPERACEAE | Oreobolus goeppingeri Suess. | N | H | X | X | X | |||
CYPERACEAE | Rhynchospora sp. 1 | N | H | X | X | X | X | ||
CYPERACEAE | Rhynchospora sp. 2 | N | H | X | |||||
CYPERACEAE | Rhynchospora vulcani Boeckeler | N | H | X | X | X | X | X | X |
CYPERACEAE | Uncinia tenuis Poepp. ex Kunth Search in The Plant List | N | H | X | X | X | |||
DENNSTAEDTIACEAE | Pteridium arachnoideum (Kaulf.) Maxon | N | H | X | |||||
DIOSCOREACEAE | Dioscorea cf choriandra Uline ex R. Knuth | E | H | X | X | ||||
DRYOPTERIDACEAEA | Elaphoglossum sp. 1 | N | H | X | |||||
DRYOPTERIDACEAEA | Elaphoglossum sp. 2 | N | H | X | |||||
DRYOPTERIDACEAEA | Elaphoglossum sp. 3 | N | H | X | |||||
DRYOPTERIDACEAEA | Elaphoglossum sp. 4 | N | H | X | |||||
DRYOPTERIDACEAEA | Elaphoglossum sp. 5 | N | H | X | |||||
DRYOPTERIDACEAEA | Elaphoglossum sp. 6 | N | H | X | |||||
DRYOPTERIDACEAEA | Polystichum orbiculatum (Desv.) J. Rémy & Fée | N | H | X | X | X | X | ||
ELAEOCARPACEAE | Vallea stipularis L. f. | N | W | X | X | X | |||
EQUISETACEAE | Equisetum myriochaetum Schltdl. & Cham. | N | H | X | X | X | |||
ERICACEAE | Bejaria resinosa Mutis ex L. f. | N | W | X | |||||
ERICACEAE | Cavendishia bracteata (Ruiz & Pav. ex J. St.-Hil.) Hoerold | N | W | X | X | ||||
ERICACEAE | Disterigma empetrifolium (Kunth) Drude | N | H | X | X | X | |||
ERICACEAE | Gaultheria amoena A.C. Sm. | N | H | X | X | ||||
ERICACEAE | Gaultheria erecta Vent. | N | W | X | |||||
ERICACEAE | Gaultheria glomerata (Cav.) Sleumer | N | W | X | |||||
ERICACEAE | Gaultheria reticulata Kunth | N | W | X | |||||
ERICACEAE | Gaultheria sp | N | W | X | X | X | X | ||
ERICACEAE | Gaultheria tomentosa Kunth | N | W | X | X | X | |||
ERICACEAE | Macleania rupestris (Kunth) A.C. Sm. | N | W | X | X | ||||
ERICACEAE | Pernettya prostrata (Cav.) DC. | N | H* | X | X | X | |||
ERICACEAE | Pernettya sp. | N | W | X | |||||
ERICACEAE | Vaccinium floribundum Kunth | N | H* | X | X | X | X | X | X |
ERIOCAULACEAE | Paepalanthus sp. | N | H | X | X | ||||
ESCALLONIACEAE | Escallonia myrtilloides L. f. | N | W | X | |||||
EUPHORBIACEA | Euphorbia peplus L. | I | H | X | |||||
FABACEAE | Lupinus tauris Benth. | N | H | X | X | X | X | ||
GENTIANACEAE | Gentianella cerastioides (Kunth) Fabris | N | H | X | X | X | |||
GENTIANACEAE | Gentianella rapunculoides (Willd. ex Schult.) J.S. Pringle | N | H | X | X | ||||
GENTIANACEAE | Halenia taruga-gasso Gilg | E | H | X | X | X | X | ||
GERANIACEAE | Geranium diffusum Kunth | N | H | X | X | X | |||
GERANIACEAE | Geranium maniculatum H.E. Moore | N | H | X | X | X | |||
GERANIACEAE | Geranium multipartitum Benth. | N | H | X | X | ||||
GERANIACEAE | Geranium sibbaldioides Benth. | N | H | X | X | X | X | ||
GROSSULARIACEAE | Ribes cf. | N | W | X | X | ||||
GROSSULARIACEAE | Ribes lehmannii Jancz. | E | W | X | X | ||||
HYPERICACEAE | Hypericum aciculare Kunth | N | W | X | |||||
HYPERICACEAE | Hypericum decandrum Turcz. | N | H* | X | X | X | X | ||
HYPERICACEAE | Hypericum laricifolium Juss. | N | W | X | X | ||||
HYPERICACEAE | Hypericum quitense R. Keller | E | W | X | |||||
IRIDACEAE | Orthrosanthus chimboracensis (Kunth) Baker | N | H | X | X | X | X | X | X |
IRIDACEAE | Sisyrinchum sp.1 | N | H | X | X | X | |||
JUNCACEAE | Juncus sp. | N | H | X | |||||
JUNCACEAE | Luzula sp. | N | H | X | X | ||||
LAMIACEAE | Clinopodium nubigenum (Kunth) Kuntze | N | H | X | X | ||||
LAMIACEAE | Lepechinia rufocampii Epling & Mathias | N | H | X | |||||
LAMIACEAE | Salvia corrugata Vahl | N | W | X | |||||
LAMIACEAE | Stachys cf elliptica Kunth | N | H | X | X | X | |||
LAURACEAE | Ocotea heterochroma Mez & Sodiro | N | W | X | X | ||||
LORANTHACEAE | Gaiadendron punctatum (Ruiz & Pav.) G. Don | N | W | X | |||||
LYCOPODIACEAE | Austrolycopodium magellanicum (P. Beauv.) Holub | N | H | X | X | X | X | X | X |
LYCOPODIACEAE | Huperzia crassa (Humb. & Bonpl. ex Willd.) Rothm. | N | H | X | |||||
LYCOPODIACEAE | Huperzia sp. 1 | N | H | X | X | X | |||
LYCOPODIACEAE | Huperzia sp. 2 | N | H | X | X | ||||
LYCOPODIACEAE | Lycopodium clavatum L. | N | H | X | X | X | X | X | |
LYCOPODIACEAE | Lycopodium magellanicum (P. Beauv.) Sw. | N | H | X | X | X | |||
MELASTOMATACEAE | Miconia aspergillaris (Bonpl.) Naudin | N | W | X | |||||
MELASTOMATACEAE | Miconia chionophila Naudin | N | H | X | X | X | X | ||
MELASTOMATACEAE | Miconia crocea (Desr.) Naudin | N | W | X | X | ||||
MELASTOMATACEAE | Miconia pernettifolia Triana | E | H | X | |||||
MELASTOMATACEAE | Miconia salicifolia Naudin | N | W | X | X | ||||
MELASTOMATACEAE | Miconia sp. 1 | N | W | X | X | ||||
MELASTOMATACEAE | Miconia sp. 3 | N | W | X | |||||
MELASTOMATACEAE | Miconia sp. 4 | N | W | X | X | ||||
MELASTOMATACEAE | Miconia sp. 6 | N | W | X | |||||
MELASTOMATACEAE | Miconia theaezans (Bonpl.) Cogn. | N | W | X | X | X | |||
MELASTOMATACEAE | Brachyotum confertum (Bonpl.) Triana | E | W | X | X | X | X | ||
MELASTOMATACEAE | Brachyotum jamesonii Triana | E | W | X | |||||
MONNIMIACEAE | Monnina ligustrifolia Kunth | N | W | X | |||||
MONNIMIACEAE | Monnina sp. | N | W | X | X | X | |||
MONOCOTILEDONEA | Monocotiledonea | N | H | X | |||||
MYRICACEAE | Morella parvifolia (Benth.) Parra-Os. | N | W | X | X | X | X | ||
PRIMULACEAE | Myrsine andina (Mez) Pipoly | N | W | X | X | X | |||
PRIMULACEAE | Myrsine dependens (Ruiz & Pav.) Spreng. | N | W | X | X | X | X | ||
MYRTACEAE | Myrtaceae sp. | N | W | X | |||||
ONAGRACEAE | Fuchsia sp. | N | W | X | |||||
OPHIOGLOSSACEAE | Ophioglossum cf crotalophoroides Walter | N | H | X | |||||
ORCHIDACEAE | Aa sp. | N | H | X | |||||
ORCHIDACEAE | Epidendrum sp. | N | H | X | X | ||||
ORCHIDACEAE | Maxilaria sp. | N | H | X | X | ||||
ORCHIDACEAE | Orchidaceae | N | H | X | X | X | |||
ORCHIDACEAE | Stellis sp. | N | H | X | |||||
OROBANCHACEAEA | Bartsia laticrenata Benth. | N | H | X | X | ||||
OROBANCHACEAEA | Bartsia sp. 1 | N | H | X | X | X | |||
OROBANCHACEAEA | Bartsia sp. 2 | N | H | X | |||||
OROBANCHACEAEA | Castilleja fissifolia L. f. | N | H | X | X | ||||
OXALIDACEAE | Oxalis sp. 1 | N | H | X | X | X | X | ||
OXALIDACEAE | Oxalis sp. 2 | N | H | X | |||||
OXALIDACEAE | Oxalis sp. 3 | N | H | X | X | ||||
OXALIDACEAE | Oxalis sp. 4 | N | H | X | |||||
OXALIDACEAE | Oxalis sp. 5 | N | H | X | |||||
PASSIFLORACEAE | Passiflora sp. | N | H* | X | |||||
PINGUICULACEAE | Pinguicula calyptrata Kunth | N | H | X | |||||
PIPERACEAE | Peperomia sp. 1 | N | H | X | X | X | X | ||
PIPERACEAE | Peperomia sp. 2 | N | H | X | |||||
PIPERACEAE | Peperomia sp. 3 | N | H | X | X | ||||
PIPERACEAE | Peperomia sp. 4 | N | H | X | X | ||||
PIPERACEAE | Peperomia sp. 5 | N | H | X | |||||
PIPERACEAE | Piper sp. | N | W | X | |||||
PLANTAGINACEAE | Plantago cf tubulosa Decne. | N | H | X | |||||
PLANTAGINACEAE | Plantago australis Lam. | N | H | X | |||||
PLANTAGINACEAE | Plantago linearis Kunth | N | H | X | X | ||||
PLANTAGINACEAE | Plantago rigida Kunth | N | H | X | |||||
PLANTAGINACEAE | Plantago sericea Ruiz & Pav. | N | H | X | |||||
POACEAE | Aciachne acicularis Lægaard | N | H | X | X | ||||
POACEAE | Agrostis breviculmis Hitchc. | N | H | X | |||||
POACEAE | Agrostis perennans (Walter) Tuck. | N | H | X | X | X | X | X | X |
POACEAE | Agrostis sp. 1 | N | H | X | X | X | |||
POACEAE | Agrostis tolucensis Kunth | N | H | X | X | X | |||
POACEAE | Anthoxanthum odoratum L. | I | H | X | X | X | X | X | |
POACEAE | Bromus lanatus Kunth | N | H | X | X | ||||
POACEAE | Bromus pitensis Kunth | N | H | X | |||||
POACEAE | Calamagrostis aff. recta (Kunth) Trin. ex Steud. | N | H | X | X | ||||
POACEAE | Calamagrostis intermedia (J. Presl) Steud. | N | H | X | X | X | X | X | X |
POACEAE | Calamagrostis bogotensis (Pilg.) Pilg. | N | H | X | X | ||||
POACEAE | Calamagrostis sp. | N | H | X | X | X | |||
POACEAE | Cortaderia hapalotricha (Pilg.) Conert | N | H | X | X | X | |||
POACEAE | Cortaderia jubata (Lemoine) Stapf | N | H | X | |||||
POACEAE | Cortaderia nitida (Kunth) Pilg. | N | H | X | |||||
POACEAE | Cortaderia sericantha (Steud.) Hitchc. | N | H | X | X | ||||
POACEAE | Elymus cordilleranus Davidse & R.W. Pohl | N | H | X | X | ||||
POACEAE | Festuca subulifolia Benth. | N | H | X | X | X | X | X | X |
POACEAE | Holcus lanatus L. | I | H | X | X | X | |||
POACEAE | Paspalum bonplandianum Flüggé | N | H | X | X | X | X | X | X |
POACEAE | Poa annua L. | N | H | X | |||||
POACEAE | Poa pauciflora Roem. & Schult. | N | H | X | X | X | |||
POACEAE | Poaceae sp. 1 | N | H | X | |||||
POACEAE | Poaceae sp. 2 | N | H | X | |||||
POACEAE | Triniochloa stipoides (Kunth) Hitchc. | N | H | X | X | X | X | ||
POACEAE | Stipa rosea Hitchc. | N | H | X | X | X | X | X | |
POLYGONACEAE | Muehlenbeckia tamnifolia (Kunth) Meisn. | N | H* | X | X | X | X | ||
POLYGONACEAE | Rumex acetosella L. | I | H | X | X | X | X | ||
POLYGONACEAE | Rumex sp. 2 | N | H | X | |||||
POLYPODIACEAE | Melpomene moniliformis (Lag. ex Sw.) A.R. Sm. & R.C. Moran | N | H | X | X | X | X | ||
POLYPODIACEAE | Niphidium sp. | N | H | X | X | X | |||
POLYPODIACEAE | Pecluma sp. 1 | N | H | X | X | ||||
POLYPODIACEAE | Pecluma sp. 2 | N | H | X | X | ||||
POLYPODIACEAE | Pecluma sp. 3 | N | H | X | |||||
POLYPODIACEAE | Polypodium sp. | N | H | X | X | ||||
PROTEACEAE | Lomatia hirsuta (Lam.) Diels | N | W | X | X | X | X | ||
PROTEACEAE | Oreocallis grandiflora (Lam.) R. Br. | N | W | X | X | X | X | ||
PTERIDACEAE | Eriosorus sp. | N | H | X | X | ||||
PTERIDACEAE | Jamesonia sp. 1 | N | H | X | X | X | X | X | |
PTERIDACEAE | Jamesonia sp. 2 | N | H | X | |||||
PTERIDACEAE | Pteridacea sp. | N | H | X | |||||
PTERIDOPHYTA | Pteridophyta | N | H | X | |||||
RANUNCULACEAE | Ranunculus peruvianus Pers. | N | H | X | |||||
ROSACEAE | Hesperomeles ferruginea (Pers.) Benth. | N | W | X | |||||
ROSACEAE | Hesperomeles obtusifolia (Pers.) Lindl. | N | W | X | X | X | |||
ROSACEAE | Lachemilla hispidula (L.M. Perry) Rothm. | N | H | X | X | X | |||
ROSACEAE | Lachemilla orbiculata (Ruiz & Pav.) Rydb. | N | H | X | X | X | X | X | |
ROSACEAE | Lachemilla sp. 1 | N | H | X | |||||
ROSACEAE | Lachemilla sp. 2 | N | H | X | X | X | X | ||
ROSACEAE | Lachemilla vulcanica (Schltdl. & Cham.) Rydb. | N | H | X | X | ||||
ROSACEAE | Potentilla dombeyi Nestl. | N | H | X | |||||
ROSACEAE | Rubus coriaceus Poir. | N | H | X | X | X | X | X | |
ROSACEAE | Rubus sp. 1 | N | W | X | X | ||||
ROSACEAE | Rubus sp. 2 | N | W | X | |||||
ROSACEAE | Rubus sp. 3 | N | W | X | X | ||||
ROSACEAE | Rubus sp. 4 | N | W | X | |||||
RUBIACEAE | Arcytophyllum filiforme (Ruiz & Pav.) Standl. | N | H* | X | X | X | X | X | |
RUBIACEAE | Arcytophyllum sp. 2 | N | H* | X | X | X | |||
RUBIACEAE | Galium hypocarpium (L.) Endl. ex Griseb. | N | H | X | X | X | X | X | |
RUBIACEAE | Nertera granadensis (Mutis ex L. f.) Druce | N | H | X | |||||
RUBIACEAE | Palicourea sp. 1 | N | W | X | |||||
RUBIACEAE | Palicourea weberbaueri K. Krause | N | W | X | X | ||||
SCROPHULARIACEAE | Sibthorpia repens (L.) Kuntze | N | H | X | X | X | X | ||
SOLANACEAEA | Iochroma cyaneum (Lindl.) M.L. Green ex G.H.M. Lawr. & J.M. Tucker | N | W | X | |||||
SOLANACEAEA | Solanum sp. 1 | N | W | X | X | ||||
SOLANACEAEA | Solanum sp. 2 | N | W | X | |||||
SYMPLOCACEAE | Symplocos sp. 1 | N | W | X | X | ||||
URTICACEAE | Pilea sp.1 | N | H | X | |||||
VERBENACEAE | Citharexylum ilicifolium Kunth | N | W | X | |||||
VIOLACEAE | Viola arguta Willd. ex Roem. & Schult. | N | H | X | |||||
VIOLACEAE | Viola dombeyana DC. | N | H | X | X | ||||
XYRIDACEAE | Xyris subulata Ruiz & Pav. | N | H | X |
Appendix B
Elevational Range (m a.s.l.) | 3200–3400 | 3400–3600 | 3600–3800 | |||
---|---|---|---|---|---|---|
Plantations (Pi) | Nero | La Paz | Tutupali Chico | Tutupali Grande | Quimsacocha | Soldados |
HR (%) | 11 (9–12) | 7 (7–7) | 16 (16–20) | 16 (16–18) | 33 (32–33) | 33 (27–36) |
HC (%) | 17.84 (17.68–17.84) | 11.84 (5.68–15.17) | 39.67 (17.35–41.84) | 29.17 (19.85–35.18) | 110.00 (101.36–130.18) | 105.86 (73.84–136.03) |
WR (%) | 15(14–16) | 7(6–8) | 9(8–10) | 7(6–8) | ||
WC (%) | 40.84 (34.67–68.84) | 8.17 (4.50–10.01) | 12.17 (11.68–19.34) | 8.84 (5.67–16.67) | ||
Ksat (cm/h) | 3.61 (3.48–3.84) | 3.77 (3.46–3.84) | 6.55 (6.45–7.47) | 4.71 (3.64–5.16) | 2.11 (2.01–2.17) | 2.20 (2.13–2.45) |
BD (g/cm3) | 0.46 (0.45–0.47) | 0.87 (0.86–0.90) | 0.52 (0.52–0.65) | 0.65 (0.48–0.76) | 0.33 (0.33–0.36) | 0.66 (0.57–0.66) |
StC (cm3/cm3) | 0.75 (0.74–0.76) | 0.63 (0.62–0.64) | 0.76 (0.70–0.77) | 0.74 (0.67–0.78) | 0.85 (0.84–0.85) | 0.71 (0.69–0.72) |
FC (cm3/cm3) | 0.54 (0.51–0.55) | 0.41 (0.39–0.41) | 0.54 (0.51–0.55) | 0.61 (0.55–0.64) | 0.62 (0.6–0.63) | 0.52 (0.50–0.55) |
WP (cm3/cm3) | 0.39 (0.38–0.41) | 0.32 (0.32–0.33) | 0.38 (0.35–0.38) | 0.41 (0.41–0.42) | 0.39 (0.38–0.40) | 0.42 (0.41–0.45) |
GW (cm3/cm3) | 0.21 (0.19–0.21) | 0.24 (0.23–0.26) | 0.21 (0.19–0.21) | 0.13 (0.12–0.14) | 0.23 (0.21–0.25) | 0.17 (0.16–0.20) |
AW (cm3/cm3) | 0.14 (0.10–0.15) | 0.06 (0.06–0.08) | 0.16 (0.16–0.18) | 0.18 (0.18–0.22) | 0.23 (0.21–0.24) | 0.10 (0.10–0.10) |
N (%) | 0.87 (0.78–0.99) | 0.34 (0.29–0.43) | 1.12 (0.91–1.16) | 0.66 (0.62–0.73) | 1.25 (1.12–1.28) | 0.89 (0.76–0.91) |
SOC (%) | 14.72 (13.87–17.23) | 6.33 (4.82–7.45) | 15.99 (14.84–16.86) | 9.64 (9.26–12.77) | 20.12 (18.17–20.39) | 12.41 (11.79–16.14) |
pH | 4.52 (4.52–4.88) | 4.14 (4.11–4.14) | 4.40 (4.30–4.45) | 4.10 (4.06–4.16) | 4.15 (4.09–4.17) | 4.77 (4.63–4.81) |
CN | 17.47 (14.29–17.88) | 17.70 (16.48–18.15) | 14.52 (14.23–16.06) | 15.02 (14.71–15.6) | 16.07 (15.9–16.29) | 16.55 (16.33–17.47) |
References
- Buytaert, W.; Iñiguez, V.; De Bièvre, B. The effects of afforestation and cultivation on water yield in the Andean páramo. For. Ecol. Manag. 2007, 251, 22–30. [Google Scholar] [CrossRef]
- Hofstede, R.; Calles, J.; López, V.; Polanco, R.; Torres, F.; Ulloa, J.; Vásquez, A.; Cerra, M. Los Páramos Andinos ¿Qué sabemos? Estado de Conocimiento Sobre el Impacto del Cambio Climático en el Ecosistema Páramo; UICN: Quito, Ecuador, 2014; ISBN 978-9978-9932-9-3. [Google Scholar]
- Smith, J.M.B.; Cleef, A.M. Composition and Origins of the World’s Tropicalpine Floras. J. Biogeogr. 1988, 15, 631. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Madriñán, S.; Cortés, A.J.; Richardson, J.E. Páramo is the world’s fastest evolving and coolest biodiversity hotspot. Front. Genet. 2013, 4, 192. [Google Scholar] [CrossRef] [PubMed]
- Rangel, O. Colombia diversidad biótica. La región paramuna. In Colombia diversidad biotica; Universidad Nacional de Colombia: Bogotá, Colombia, 2000. [Google Scholar]
- Alonso-Amelot, M. High altitude plants, chemistry of acclimation and adaptation. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2008; Volume 34, pp. 883–982. ISBN 9780444531803. [Google Scholar]
- Cuatrecasas, J. Paramo vegetation and its life forms. In Geo-Ecology of the Mountainous Regions of the Tropical Americas; Troll, C., Ed.; Dümmler in Kommission: Bonn, Germany, 1968; pp. 163–186. [Google Scholar]
- Luteyn Luteyn, J.L.; Churchill, S.P.; Griffin, D., III; Gradstein, S.R.; Sipman, H.J.M.; Gavilanes, A. Páramos. A Checklist of Plant Diversity, Geographical Distribution, and Botanical Literature; New York Botanical Garden: The Bronx, NY, USA, 1999; ISBN 0893274275. [Google Scholar]
- Ramsay, P.M. The Paramo Vegetation of Ecuador: The Community Ecology, Dynamics and Productivity of Tropical Grasslands in the Andes. Ph.D. Thesis, Prifysgol Bangor University, Bangor, Wales, 1992. [Google Scholar]
- Llambí, L.D. Estructura, Diversidad Y Dinámica De La Vegetación En El Ecotono Bosque-Páramo: Revisión De La Evidencia En La Cordillera De Mérida. Acta Biol. Colomb. 2015, 20, 5–19. [Google Scholar] [CrossRef]
- Luteyn, J.L.; Balslev, H. Paramos: Why Study Them? In Paramo: An Andean Ecosystem under Human Influence; Balslev, H., Luteyn, J.L., Eds.; Academic Press: London, UK, 1992; pp. 1–14. [Google Scholar]
- López, S.; Wright, C.; Costanza, P. Environmental change in the equatorial Andes: Linking climate, land use, and land cover transformations. Remote Sens. Appl. Soc. Environ. 2017, 8, 291–303. [Google Scholar] [CrossRef]
- Verweij, P.A. Spatial and Temporal Modelling of Vegetation Patterns—Burning and Grazing in the Paramo of Los Nevados National Park. Ph.D. Thesis, University of Amsterdam, Amsterdam, The Netherlands, 1995. [Google Scholar]
- Suarez, G.; Medina, E. Vegetation Structure and Soil Properties in Ecuadorian Páramo Grasslands with Different Histories of Burning and Grazing. Arct. Antarct. Alp. Res. 2001, 33, 158–164. [Google Scholar] [CrossRef]
- Hofstede, R. The Effects of Grazing and Burning on Soil and Plant Nutrient Concentrations in Colombian Paramo Grasslands. Plant Soil 1995, 173, 111–132. [Google Scholar] [CrossRef]
- Laegaard, S. Influence of fire in the grass páramo vegetation of Ecuador. In Páramo: An Andean Ecosystem under Human Influence; Academic Press: London, UK, 1992; pp. 151–170. [Google Scholar]
- Hofstede, R.G.M.; Groenendijk, J.P.; Coppus, R.; Fehse, J.C.; Sevink, J. Impact of Pine Plantations on Soils and Vegetation in the Ecuadorian High Andes. Mt. Res. Dev. 2002, 22, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Farley, K.A.; Kelly, E.F.; Hofstede, R.G.M. Soil Organic Carbon and Water Retention after Conversion of Grasslands to Pine Plantations in the Ecuadorian Andes. Ecosystems 2004, 7, 729–739. [Google Scholar] [CrossRef]
- Chacón, G.; Gagnon, D.; Paré, D. Comparison of soil properties of native forests, Pinus patula plantations and adjacent pastures in the Andean highlands of southern Ecuador: Land use history or recent vegetation effects? Soil Use Manag. 2009, 25, 427–433. [Google Scholar] [CrossRef]
- Holmes, G.; Sandbrook, C.; Fisher, J.A. Understanding conservationists’ perspectives on the new-conservation debate. Conserv. Biol. 2017, 31, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Quiroz Dahik, C.; Crespo, P.; Stimm, B.; Murtinho, F.; Weber, M.; Hildebrandt, P. Contrasting Stakeholders’ Perceptions of Pine Plantations in the Páramo Ecosystem of Ecuador. Sustainability 2018, 10, 1707. [Google Scholar] [CrossRef]
- Bosch, J.M.; Hewlett, J.D.D.; Bosch, J.M.; Hewlett, J.D.; Bosch, J.M.; Hewlett, J.D.D. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J. Hydrol. 1982, 55, 3–23. [Google Scholar] [CrossRef]
- Farley, K.A.; Jobbagy, E.G.; Jackson, R.B.; Jobbágy, E.G.; Jackson, R.B. Effects of afforestation on water yield: A global synthesis with implications for policy. Glob. Chang. Biol. 2005, 11, 1565–1576. [Google Scholar] [CrossRef]
- Buytaert, W.; Célleri, R.; De Bièvre, B.; Cisneros, F.; Wyseure, G.; Deckers, J.; Hofstede, R. Human impact on the hydrology of the Andean páramos. Earth-Sci. Rev. 2006, 79, 53–72. [Google Scholar] [CrossRef]
- Farley, K.A.; Bremer, L.L.; Harden, C.P.; Hartsig, J. Changes in carbon storage under alternative land uses in biodiverse Andean grasslands: Implications for payment for ecosystem services. Conserv. Lett. 2013, 6, 21–27. [Google Scholar] [CrossRef]
- Bremer, L.L.; Farley, K.A.; Chadwick, O.A.; Harden, C.P. Changes in carbon storage with land management promoted by payment for ecosystem services. Environ. Conserv. 2016, 43, 397–406. [Google Scholar] [CrossRef] [Green Version]
- Ohep, N.; Herrera, L. Impacto de Las Plantaciones de Coníferas Sobre la Vegetación Originaria del Páramo de Mucubají; Universidad de Los Andes, Facultad de Ciencias Forestales: Mérida, Mexico, 1985. [Google Scholar]
- Van Wesenbeeck, B.K.; van Mourik, T.; Duivenvoorden, J.F.; Cleef, A.M. Strong effects of a plantation with Pinus patula on Andean subpáramo vegetation: A case study from Colombia. Biol. Conserv. 2003, 114, 207–218. [Google Scholar] [CrossRef]
- Cavelier, J.; Santos, C. Efectos de plantaciones abandonadas de especies exóticas y nativas sobre la regeneración natural de un bosque montano en Colombia. Rev. Biol. Trop. 1999, 47, 775–784. [Google Scholar]
- Bremer, L.L. Land-Use Change, Ecosystem Services, and Local Livelihoods: Ecological and Socioeconomic Outcomes of Payment for Ecosystem Services in Ecuadorian Páramo Grasslands. Ph.D. Thesis, University of California, Santa Barbara and San Diego State University, Santa Barbara, CA, USA, 2012. [Google Scholar]
- Parrotta, J.A.; Turnbull, J.W.; Jones, N. Catalyzing native forest regeneration on degraded tropical lands. For. Ecol. Manag. 1997, 99, 1–7. [Google Scholar] [CrossRef]
- Feyera, S.; Beck, E.; Lüttge, U. Exotic trees as nurse-trees for the regeneration of natural tropical forests. Trees 2002, 16, 245–249. [Google Scholar] [CrossRef]
- Ren, H.; Yang, L.; Liu, N. Nurse plant theory and its application in ecological restoration in lower subtropics of China. Prog. Natl. Sci. USA 2008, 18, 137–142. [Google Scholar] [CrossRef]
- Barlow, J.; Gardner, T.A.; Araujo, I.S.; Avila-Pires, T.C.; Bonaldo, A.B.; Costa, J.E.; Esposito, M.C.; Ferreira, L.V.; Hawes, J.; Hernandez, M.I.M.; et al. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc. Natl. Acad. Sci. USA 2007, 104, 18555–18560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, R.B.; Jobbágy, E.; Avissar, R.; Baidya Roy, S.; Barrett, D.; Cook, C.; Farley, K.; Le Maitre, D.; McCarl, B.; Murray, B. Trading Water for Carbon with Biological Carbon Sequestration. Science 2005, 310, 1944–1947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Homeier, J.; Werner, F.A.; Gradstein, S.R.; Breckle, S.W.; Richter, M. Flora and Fungi: Composition and Function. In Gradients in a Tropical Mountain Ecosystem of Ecuador. Ecological Studies; Springer: Berlin/Heidelberg, Germany, 2008; pp. 87–100. ISBN 978-3-540-73526-7. [Google Scholar]
- Berthrong, S.T.; Jobbágy, E.G.; Jackson, R.B. A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecol. Appl. 2009, 19, 2228–2241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harden, C.P.; Hartsig, J.; Farley, K.A.; Lee, J.; Bremer, L.L. Effects of Land-Use Change on Water in Andean Páramo Grassland Soils. Ann. Assoc. Am. Geogr. 2013, 103, 375–384. [Google Scholar] [CrossRef]
- Zehetner, F.; Miller, W.P. Soil variations along a climatic gradient in an Andean agro-ecosystem. Geoderma 2006, 137, 126–134. [Google Scholar] [CrossRef]
- Soethe, N.; Wilcke, W.; Homeier, J.; Lehmann, J.; Engels, C. Plant Growth along the Altitudinal Gradient —Role of Plant Nutritional Status, Fine Root Activity, and Soil Properties. In Gradients in a Tropical Mountain Ecosystem of Ecuador; Springer: Berlin/Heidelberg, Germany, 2008; pp. 259–266. [Google Scholar]
- Celleri, R.; Willems, P.; Buytaert, W.; Feyen, J. Space–time rainfall variability in the Paute basin, Ecuadorian Andes. Hydrol. Process. 2007, 21, 3316–3327. [Google Scholar] [CrossRef]
- Uytaert, W.; Celleri, R.; Willems, P.; De Bievre, B.; Wyseure, G. Spatial and temporal rainfall variability in mountainous areas: A case study from the south Ecuadorian Andes. J. Hydrol. 2006, 329, 413–421. [Google Scholar] [CrossRef]
- Córdova, M.; Célleri, R.; Shellito, C.J.; Orellana-Alvear, J.; Abril, A.; Carrillo-Rojas, G. Near-Surface Air Temperature Lapse Rate Over Complex Terrain in the Southern Ecuadorian Andes: Implications for Temperature Mapping. Arct. Antarct. Alp. Res. 2016, 48, 673–684. [Google Scholar] [CrossRef] [Green Version]
- Quiroz Dahik, C.; Crespo, P.; Stimm, B.; Mosandl, R.; Cueva, J.; Weber, M.; Patrick, H. Carbon Stocks in Pine Plantations on páramo Sites. Unpublished manuscript. 2019. [Google Scholar]
- Buytaert, W.; Deckers, J.; Wyseure, G. Description and classification of nonallophanic Andosols in south Ecuadorian alpine grasslands (páramo). Geomorphology 2006, 73, 207–221. [Google Scholar] [CrossRef]
- Buytaert, W.; Wyseure, G.; De Bièvre, B.; Deckers, J. The effect of land-use changes on the hydrological behaviour of Histic Andosols in south Ecuador. Hydrol. Process. 2005, 19, 3985–3997. [Google Scholar] [CrossRef]
- Farley, K.A. Grasslands to tree plantations: Forest transition in the Andes of Ecuador. Ann. Assoc. Am. Geogr. 2007, 97, 755–771. [Google Scholar] [CrossRef]
- Sklenar, P.; Ramsay, P.M. Diversity of zonal paramo plant communities in Ecuador. Divers. Distrib. 2001, 7, 113–124. [Google Scholar] [CrossRef]
- Braun-Blanquet, J. Fitosociología, Bases Para el Estudio de Las Comunidades Vegetales; Edición en; Blume: Madrid, Spain, 1979. [Google Scholar]
- Lemmon, P.E. A Spherical Densiometer for Estimating Forest Overstory Density. For. Sci. 1956, 2, 314–320. [Google Scholar] [CrossRef]
- Oosterbaan, R.; Nijland, H. Determining the Saturated Hydraulic Conductivity. In Drainagem Principles and Applications; Alterra-ILRI: Wageninge, The Netherlands, 1994; p. 37. ISBN 90-70754-3-39. [Google Scholar]
- Van Reeuwijk, L.P. Procedures for Soil Analysis, 6th ed.; International Soil Reference and Information Center (ISRIC): Wageningen, The Netherlands, 2002. [Google Scholar]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D. NLME: Linear and Nolinear Mixed Effects Models; R Package Version 3.1-141; R Core Team: Vienna, Austria, 2019. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O´Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package, R package version 2.5-5; R Core Team: Vienna, Austria, 2019. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2019. [Google Scholar]
- IUCN. The IUCN Red List of Threatened Species. Version 2019-2. 2019. Available online: http://WWW.iucnredlist.org (accessed on 22 August 2019).
- Moreno, P.; Pitman, N. The IUCN Red List of Threatened Species 2003: e.T43552A10811358. Available online: http://dx.doi.org/10.2305/IUCN.UK.2003.RLTS.T43552A10811358 (accessed on 27 August 2019).
- Cotton, E.; Pitman, N. Brachyotum jamesonii. The IUCN Red List of Threatened Species 2004: e.T45691A11007884. Available online: http://dx.doi.org/10.2305/IUCN.UK.2004.RLTS.T45691A11007884 (accessed on 27 August 2019).
- Montúfar, R.; Pitman, N. The IUCN Red List of Threatened Species 2003: e.T43435A10804316. Available online: http://dx.doi.org/10.2305/IUCN.UK.2003.RLTS.T43435A10804316 (accessed on 27 August 2019).
- Cotton, E.; Pitman, N. The IUCN Red List of Threatened Species 2004: e.T46046A11031781. Available online: http://dx.doi.org/10.2305/IUCN.UK.2004.RLTS.T46046A11031781 (accessed on 27 August 2019).
- Montúfar, R.; Pitman, N. Oreopanax andreanus. The IUCN Red List of Threatened Species 2003: e.T43024A10770931. Available online: http://dx.doi.org/10.2305/IUCN.UK.2003.RLTS.T43024A10770931.en (accessed on 27 August 2019).
- Montúfar, R.; Pitman, N. Oreopanax avicenniifolius. The IUCN Red List of Threatened Species 2003: e.T43025A10771054. Available online: http://dx.doi.org/10.2305/IUCN.UK.2003.RLTS.T43025A10771054.en (accessed on 27 August 2019).
- Montúfar, R.; Pitman, N. Aphanactis jamesoniana. The IUCN Red List of Threatened Species 2003: e.T43122A10778814. Available online: http://dx.doi.org/10.2305/IUCN.UK.2003.RLTS.T43122A10778814.en (accessed on 27 August 2019).
- Montúfar, R.; Pitman, N. Halenia taruga-gasso. The IUCN Red List of Threatened Species 2004: e.T45284A10986246. Available online: http://dx.doi.org/10.2305/IUCN.UK.2004.RLTS.T45284A10986246.en (accessed on 27 August 2019).
- Freire-Fierro, A.; Pitman, N. Ribes lehmannii. The IUCN Red List of Threatened Species 2004: e.T45376A10990002. Available online: http://dx.doi.org/10.2305/IUCN.UK.2004.RLTS.T45376A10990002.en (accessed on 27 August 2019).
- Nicolalde, F.; Pitman, N. Hypericum quitense. The IUCN Red List of Threatened Species 2004: e.T45116A10981458. Available online: http://dx.doi.org/10.2305/IUCN.UK.2004.RLTS.T45116A10981458.en (accessed on 27 August 2019).
- Cotton, E.; Pitman, N. Brachyotum confertum. The IUCN Red List of Threatened Species 2004: e.T45684A11007210. Available online: http://dx.doi.org/10.2305/IUCN.UK.2004.RLTS.T45684A11007210.en (accessed on 27 August 2019).
- Bremer, L.L.; Farley, K.A. Does plantation forestry restore biodiversity or create green deserts? A synthesis of the effects of land-use transitions on plant species richness. Biodivers. Conserv. 2010, 19, 3893–3915. [Google Scholar] [CrossRef] [Green Version]
- Carnus, J.M.; Parrotta, J.; Brockerhoff, E.; Arbez, M.; Jactel, H.; Kremer, A.; Lamb, D.; O’Hara, K.; Walters, B. Planted forests and biodiversity. J. For. 2006, 104, 65–77. [Google Scholar]
- Bader, M.Y. Tropical Alpine Treelines: How Ecological Processes Control Vegetation Patterning and Dynamics; Wageningen University: Wageningen, The Netherlands, 2007; ISBN 9085045959. [Google Scholar]
- Bader, M.Y.; van Geloof, I.; Rietkerk, M. High solar radiation hinders tree regeneration above the alpine treeline in northern Ecuador. Plant Ecol. 2007, 191, 33–45. [Google Scholar] [CrossRef]
- Rada, F.; García-Núñez, C.; Rangel, S. Low temperature resistance in saplings and ramets of Polylepis sericea in the Venezuelan Andes. Acta Oecol. 2009, 35, 610–613. [Google Scholar] [CrossRef] [Green Version]
- Marín, F.; Quiroz Dahik, C.; Mosquera, G.; Feyen, J.; Cisneros, P.; Crespo, P. Changes in Soil Hydro-Physical Properties and SOM Due to Pine Afforestation and Grazing in Andean Environments Cannot Be Generalized. Forests 2018, 10, 17. [Google Scholar] [CrossRef]
- Brockerhoff, E.G.; Ecroyd, C.E.; Leckie, A.C.; Kimberley, M.O. Diversity and succession of adventive and indigenous vascular understorey plants in Pinus radiata plantation forests in New Zealand. For. Ecol. Manag. 2003, 185, 307–326. [Google Scholar] [CrossRef]
- Lemenih, M.; Gidyelew, T.; Teketay, D. Effects of canopy cover and understory environment of tree plantations on richness, density and size of colonizing woody species in southern Ethiopia. For. Ecol. Manag. 2004, 194, 1–10. [Google Scholar] [CrossRef]
- Corredor-Velandia, S.; Vargas Ríos, O. Efectos de la creación de claros experimentales con diferentes densidades, sobre los patrones iniciales de sucesión vegetal en plantaciones de Pinus patula. In Restauración Ecológica del Bosque Altoandino. Estudios Diagnósticos y Experimentales en Los Alrededores del Embalse de Chisacá (Localidad de Usme, Bogotá D.C.); Vargas, O., Ed.; Universidad nacional de Colombia: Bogotá, Colombia, 2007; p. 517. [Google Scholar]
- Acosta Solís, M. Divisiones Fitogeográficas y Formaciones Geobotánicas del Ecuador; Casa de la Cultura Ecuatoriana: Quito, Ecuador, 1968. [Google Scholar]
- Ramsay, P.M.; Oxley, E.R.B. The growth form composition of plant communities in the ecuadorian páramos. Plant Ecol. 1997, 131, 173–192. [Google Scholar] [CrossRef]
- Hedberg, I.; Hedberg, O. Tropical-Alpine Life-Forms of Vascular Plants. Oikos 1979, 33, 297. [Google Scholar] [CrossRef]
- Chapin, F.S., III; van Cleve, K.; Chapin, M.C. Soil Temperature and Nutrient Cycling in the Tussock Growth Form of Eriophorum Vaginatum. J. Ecol. 1979, 67, 169–189. [Google Scholar] [CrossRef]
- González-Espinosa, M.; Quintana-Ascencio, P.F.; Ramírez-Marcial, N.; Gaytán-Guzmán, P. Secondary succession in disturbed Pinus-Quercus forests in the highlands of Chiapas, Mexico. J. Veg. Sci. 1991, 2, 351–360. [Google Scholar] [CrossRef]
- Fuentes-Moreno, H.; Trejo-Ortíz, A.; Cervantes, F.A. Los mamíferos del Área Reservada para la Recreación y Educación Ecológica San Juan del Monte, Las Vigas de Ramírez, Veracruz, México. Rev. Mex. Biodivers. 2017, 88, 978–984. [Google Scholar] [CrossRef]
- Minga Ochoa, D.; Verdugo Navas, A. Árboles y Arbustos de Los Ríos de Cuenca; Serie Textos Apoyo a la Docencia Universitaria del Azuay; Imprenta Don Bosco: Cuenca, Spain, 2016; ISBN 9978325425. [Google Scholar]
- Villate Suárez, C.A. Las Perchas Para aves como Estrategia de Restauración Ecológica, su Influencia Sobre la Dispersión de Semillas y Reclutamiento de Plántulas en la Microcuenca del río La Vega, Tunja—Boyacá; Universidad Pedagógica y Tecnológica de Colombia: Tunja, Colombia, 2017. [Google Scholar]
- Sandoya, V.; Pauchard, A.; Cavieres, L.A. Natives and non-natives plants show different responses to elevation and disturbance on the tropical high Andes of Ecuador. Ecol. Evol. 2017, 7, 7909–7919. [Google Scholar] [CrossRef]
- Pesántez, J.; Mosquera, G.M.; Crespo, P.; Breuer, L.; Windhorst, D. Effect of land cover and hydro-meteorological controls on soil water DOC concentrations in a high-elevation tropical environment. Hydrol. Process. 2018, 32, 2624–2635. [Google Scholar] [CrossRef]
- Riesch, F.; Stroh, H.G.; Tonn, B.; Isselstein, J. Soil pH and phosphorus drive species composition and richness in semi-natural heathlands and grasslands unaffected by twentieth-century agricultural intensification. Plant Ecol. Divers. 2018, 11, 239–253. [Google Scholar] [CrossRef]
- Roem, W.; Berendse, F. Soil acidity and nutrient supply ratio as possible factors determining changes in plant species diversity in grassland and heathland communities. Biol. Conserv. 2000, 92, 151–161. [Google Scholar] [CrossRef]
- Van den Berg, L.; Dorland, E.; Vergeer, P.; Hart, M.A.; Bobbink, R.; Roelofs, J. Decline of acid-sensitive plant species in heathland can be attributed to ammonium toxicity in combination with low pH. New Phytol. 2005, 166, 551–564. [Google Scholar] [CrossRef] [PubMed]
- Jobbágy, E.; Vasallo, M.; Farley, K.; Piñeiro, G.; Garbulsky, M.; Nosetto, M.; B Jackson, R.; Paruelo, J. Forestación en pastizales: Hacia una visión integral de sus oportunidades y costos ecológicos. Agrociencia 2006, 10, 109–124. [Google Scholar]
- Marschner, H.; Marschner, P. Marschner’s Mineral Nutrition of Higher Plants; Academic Press: Cambridge, MA, USA, 2012; ISBN 9780123849052. [Google Scholar]
- Rodríguez-Sánchez, C.A.; Vargas Ríos, O. Sucesiones experimentales en claros de plantaciones de Pinus patula y Cupressus lusitanica en los alrededores del embalse de Chisacá. In Restauración Ecológica en Zonas Invadidas por Retamo Espinoso y Plantaciones Forestales de Especies Exóticas; Vargas, O., Léon, O., Díaz Espinosa, A., Eds.; Universidad Nacional de Colombia: Bogotá, Colombia, 2009; ISBN 978-958-719-314-5. [Google Scholar]
- Cantillo Higuera, E.E.; Lozada Silva, A.; Pinzon Gonzalez, J. Successional study for the restoration at Carpatos forest reserve in Guasca, Cundinamarca. Colomb. For. 2009, 12, 103–118. [Google Scholar] [CrossRef]
- Albuquerque, L.B.; Aquino, F.G.; Costa, L.C.; Miranda, Z.J.G.; Sousa, S.R. Especies de Melastomataceae Juss. con potencial para la restauración ecológica de la vegetación riparia del cerrado/savana. Polibotánica 2013, 35, 1–19. [Google Scholar]
- Gómez-Ruiz, P.A.; Lindig-Cisneros, R.; Vargas-Ríos, O. Facilitation among plants: A strategy for the ecological restoration of the high-andean forest (Bogotá, D.C.—Colombia). Ecol. Eng. 2013, 57, 267–275. [Google Scholar] [CrossRef]
- Mora, J.; Figueroa, Y.; Vivas, T. Análisis multi-escala de la vegetación de los alrededores del embalse de Chisacá (Cundinamarca, Colombia). Implicaciones para la formulación de proyectos de restauración ecológica a nivel local. In Restauración Ecológica del Bosque Altoandino. Estudios Diagnósticos y Experimentales en Los Alrededores del Embalse de Chisacá (Localidad de Usme, Bogotá D.C.); Vargas, O., Grupo de Restauración, E., Eds.; Universidad Nacional de Colombia: Bogotá, Colombia, 2007; pp. 16–103. ISBN 978-958-701-848-6. [Google Scholar]
- Gayoso, J. Costos ambientales en plantaciones de Pinus radiata D. Don. Bosque (Valdivia) 1996, 17, 15–26. [Google Scholar] [CrossRef]
- Hofstede, R.G. Aspectos técnicos ambientales de la forestación en los Páramos. In Forestación en los Páramos. Serie Páramo 6; Abya, Y., Ed.; GTP/Abya Yala: Quito, Ecuador, 2000; ISBN 9978-04-632-1. [Google Scholar]
- Keenan, R.J.; (Hamish) Kimmins, J.P. The ecological effects of clear-cutting. Environ. Rev. 1993, 1, 121–144. [Google Scholar] [CrossRef]
Elevational Range (m a.s.l.) | 3200–3400 | 3400–3600 | 3600–3800 | |||
---|---|---|---|---|---|---|
Plantation | Nero | La Paz | Tutupali Chico | Tutupali Grande | Quimsacocha | Soldados |
Mean annual temperature (minimum–maximum in °C) a | 5–15 | 4–13 | 1–12 | |||
Mean annual precipitation (mm) b | 1100 | 1200 | 1250 | |||
Slope (%) | 20(15–25) | 12(11–16) | 16(12–28) | 30(27–43) | 22(22–26) | 20(18–20) |
Age (years) | 18(18–18) | 17(17–17) | 16(16–16) | 22(20–22) | 19(19–19) | 16(16–19) |
Bi (t/ha) c | 105.7(88.1–134.4) | 107.8(77–5–162.0) | 103.6(76.8–138.7) | 90.7(70.8–93.6) | 19.9(14.8–58.0) | 22.2(14.6–46.4) |
TD (trees/ha) | 694.4(677.1–729.4) | 850.3(833.3–920.0) | 711.7(677.2–781.3) | 781.3(711.7–955.1) | 573.1(486.2–573.1) | 555.6(486.2–607.5) |
DBH (cm) | 20.2(18.4–23.2) | 19.7(17.3–26.0) | 24.2(18.6–24.5) | 16.5(15.6–18.9) | 9.0(8.0–11.5) | 10.5(9.8–11.9) |
TH (m) | 11.1(10.5–12.0) | 8.8(8.5–10.2) | 10.4(7.9–12.1) | 7.3(7.3–8.0) | 4.9(4.5–5.0) | 4.6(4.5–5.1) |
BA (m2/ha) | 19.9(16.7–22.1) | 22.9(17.3–30.9) | 26.6(24.0–28.4) | 18.6(18.3–20.5) | 3.7(3.0–4.8) | 4.7(4.7–8.0) |
CD (%) | 82.7(75.7–87.7) | 92.3(89.0–94.3) | 97.3(97.0–97.3) | 81.0(78.0–91.0) | 19.3(12.7–24.0) | 64.8(63.8–66.1) |
Factor | DF | F Value | p Value |
---|---|---|---|
Herbaceous species richness | |||
Intercept | 1 | 1219.2021 | <0.0001 |
Type of vegetation | 1 | 75.6021 | <0.0001 |
Elevational range | 2 | 98.7806 | <0.0001 |
Type of vegetation: Elevational range | 2 | 1.5084 | 0.2304 |
Herbaceous plant cover | |||
Intercept | 1 | 564.1922 | <0.0001 |
Type of vegetation | 1 | 63.1343 | <0.0001 |
Elevational range | 2 | 24.4648 | <0.0001 |
Type of vegetation: Elevational range | 2 | 16.6442 | <0.0001 |
Factor | DF | F Value | p Value |
---|---|---|---|
Woody species richness | |||
Intercept | 1 | 54.4736 | <0.0001 |
Type of vegetation | 1 | 77.7789 | <0.0001 |
Elevational range | 1 | 3.2464 | 0.3226 |
Type of vegetation: Elevational range | 1 | 17.30 | 0.0002 |
Woody plant cover | |||
Intercept | 1 | 48.5569 | <0.0001 |
Type of vegetation | 1 | 64.7345 | <0.0001 |
Elevational range | 1 | 1.3268 | 0.4551 |
Type of vegetation: Elevational range | 1 | 4.9888 | 0.032 |
Family | Endemic species | Lf | Cs | NG | Pi | NG | Pi | NG | Pi |
---|---|---|---|---|---|---|---|---|---|
3200–3400 | 3400–3600 | 3600–3800 | |||||||
ARALIACEAE | Oreopanax andreanus Marchal | W | LC a | 50 | |||||
ARALIACEAE | Oreopanax avicenniifolius (Kunth) Decne. & Planch. | W | NT b | 50 | 40 | 10 | 30 | ||
ASTERACEAE | Aphanactis jamesoniana Wedd. | H | LC c | 10 | 60 | 20 | |||
ASTERACEAE | Gynoxys miniphylla Cuatrec. | W | VU d | 10 | |||||
ASTERACEAE | Lasiocephalus lingulatus Schltdl. | H | Ni | 10 | 30 | ||||
CAMPANULACEAE | Lysipomia vitreola McVaugh | H | EN e | 10 | |||||
DIOSCOREACEAE | Dioscorea cf choriandra Uline ex R. Knuth | H | Ni | 20 | 10 | ||||
GENTIANACEAE | Halenia taruga-gasso Gilg | H | NT f | 50 | 80 | 80 | 60 | ||
GROSSULARIACEAE | Ribes lehmannii Jancz. | W | VU g | 40 | 20 | ||||
HYPERICACEAE | Hypericum quitense R. Keller | W | LC h | 10 | |||||
MELASTOMATACEAE | Miconia pernettifolia Triana | H | VU i | 10 | |||||
MELASTOMATACEAE | Brachyotum confertum (Bonpl.) Triana | W | LC j | 60 | 40 | 90 | 60 | ||
MELASTOMATACEAE | Brachyotum jamesonii Triana | W | VU k | 20 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quiroz Dahik, C.; Marín, F.; Arias, R.; Crespo, P.; Weber, M.; Palomeque, X. Comparison of Natural Regeneration in Natural Grassland and Pine Plantations across an Elevational Gradient in the Páramo Ecosystem of Southern Ecuador. Forests 2019, 10, 745. https://doi.org/10.3390/f10090745
Quiroz Dahik C, Marín F, Arias R, Crespo P, Weber M, Palomeque X. Comparison of Natural Regeneration in Natural Grassland and Pine Plantations across an Elevational Gradient in the Páramo Ecosystem of Southern Ecuador. Forests. 2019; 10(9):745. https://doi.org/10.3390/f10090745
Chicago/Turabian StyleQuiroz Dahik, Carlos, Franklin Marín, Ruth Arias, Patricio Crespo, Michael Weber, and Ximena Palomeque. 2019. "Comparison of Natural Regeneration in Natural Grassland and Pine Plantations across an Elevational Gradient in the Páramo Ecosystem of Southern Ecuador" Forests 10, no. 9: 745. https://doi.org/10.3390/f10090745
APA StyleQuiroz Dahik, C., Marín, F., Arias, R., Crespo, P., Weber, M., & Palomeque, X. (2019). Comparison of Natural Regeneration in Natural Grassland and Pine Plantations across an Elevational Gradient in the Páramo Ecosystem of Southern Ecuador. Forests, 10(9), 745. https://doi.org/10.3390/f10090745