Distinct Growth and Nutrient Status Responses to Fertilization Regimes in Two Generations of Chinese Fir Seedlings
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Seedling Shoot Height and Root Collar Diameter
3.2. Dry Mass and Shoot:Root Ratio
3.3. Seedling N and P concentrations
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Timmer, V.R.; Armstrong, G.; Miller, B.D. Steady-state nutrient proconditionning and early outplanting performance of containerized black spruce seedlings. Can. J. For. Res. 1991, 21, 585–594. [Google Scholar] [CrossRef]
- Jonsson, A.; Ericsson, T.; Eriksson, G.; Kahr, M.; Lundkvist, K.; Norell, L. Interfamily variation in nitrogen productivity of Pinus sylvestris seedlings. Scand. J. For. Res. 1997, 12, 1–10. [Google Scholar] [CrossRef]
- Bian, L.; Shi, J.; Zheng, R.; Chen, J.; Xu, H.X. Genetic parameters and genotype-environment interactions of Chinese fir (Cummnighamia lanceolate) in Fujian Province. Can. J. For. Res. 2014, 44, 582–592. [Google Scholar] [CrossRef]
- McAlister, J.A.; Timmer, V.R. Nutrient enrichment of white spruce seedlings during nursery culture and initial plantation establishment. Tree Physiol. 1998, 18, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Zvomuya, F.; Rosen, C.J.; Miller, J.C. Response of Russet Norkotah clonal selections to nitrogen fertilization. Am. J. Potato Res. 2002, 79, 231–239. [Google Scholar] [CrossRef]
- Zas, R.; Pichel, F.; Martíns, P.; Fernández-López, J. Fertilization × genotype interaction in Pinus radiata open pollinated families planted in three locations in Galicia (NW Spain). New For. 2006, 32, 253–263. [Google Scholar] [CrossRef]
- Wu, P.; Tigabu, M.; Ma, X.; Odén, P.C.; He, Y.; Yu, X.; He, Z. Variations in biomass, nutrition contents and nutrition use efficiency among Chinese fir provenances. Silvae Genet. 2011, 60, 95–105. [Google Scholar] [CrossRef]
- Timmer, V.R. Exponential nutrient loading: A new fertilization technique to improve seedling performance on competitive sites. New For. 1996, 13, 275–295. [Google Scholar]
- Salifu, K.F.; Timmer, V.R. Optimizing nitrogen loading of Picea mariana seedlings during nursery culture. Can. J. For. Res. 2003, 33, 1287–1294. [Google Scholar] [CrossRef]
- Miller, B.D.; Timmer, V.R. Steady-state nutrition of Pinus resinosa seedlings: Response to nutrition loading, irrigation and hardening regimes. Tree Physiol. 1994, 14, 1327–1338. [Google Scholar] [CrossRef]
- Xu, X.; Timmer, V.R. Biomass and nutrition dynamics of Chinese fir seedlings under conventional and exponential fertilization regimes. Plant Soil 1998, 203, 313–322. [Google Scholar] [CrossRef]
- Oliet, J.A.; Tejada, M.; Salifu, K.F.; Collazos, A.; Jacobs, D.F. Performance and nutrition dynamics of holm oak (Quercus ilex L.) seedlings in relation to nursery nutrition loading and post-transplant fertility. Eur. J. For. Res. 2009, 128, 253–263. [Google Scholar] [CrossRef]
- Isaac, M.E.; Harmand, J.M.; Drevon, J.J. Growth and nitrogen acquisition strategies of Acacia senegal seedlings under exponential phosphorus additions. J. Plant Physiol. 2011, 168, 776–781. [Google Scholar] [CrossRef]
- Schott, K.M.; Pinno, B.D.; Landhäusser, S.M. Premature shoot growth termination allows nutrition loading of seedlings with an indeterminate growth strategy. New For. 2013, 44, 635–647. [Google Scholar] [CrossRef]
- Hawkins, B.J.; Burgess, D.; Mitchell, A.K. Growth and nutrition dynamics of western hemlock with conventional or exponential greenhouse fertilization and planting in different fertility conditions. Can. J. For. Res. 2005, 35, 1002–1016. [Google Scholar] [CrossRef]
- Quoreshi, A.M.; Timmer, V.R. Early outplanting performance of nutrition-loaded containerized black spruce seedlings inoculated with Laccaria bicolor: A bioassay study. Can. J. For. Res. 2000, 30, 744–752. [Google Scholar] [CrossRef]
- Miller, B.D.; Hawkins, B.J. Nitrogen uptake and utilization by slow- and fast-growing families of interior spruce under contrasting fertility regimes. Can. J. For. Res. 2003, 33, 959–966. [Google Scholar] [CrossRef]
- Martins, P.; Sampdro, L.; Moreira, X.; Zas, R. Nutritional status and genetic variation in the response to nutrient availability in Pinus pinaster. A multi site field study in Northwest Spain. For. Ecol. Manag. 2009, 258, 1429–1436. [Google Scholar] [CrossRef]
- Wanyancha, J.M.; Morgenstern, E.K. Genetic variation in response to nitrogen fertilizer levels in tamarack families. Can. J. For. Res. 1987, 17, 1246–1250. [Google Scholar] [CrossRef]
- DeBell, D.S.; Silen, R.R.; Radwan, M.A.; Mandel, N.L. Effect of family and nitrogen fertilizer on growth and foliar nutrients of Douglas-fir seedlings. For. Sci. 1986, 32, 643–652. [Google Scholar]
- Gwaze, D.P.; Wolliams, J.A.; Kanowski, P.J.; Bridgwater, F.E. Interactions of genotype with site for height and stem straightness in Pinus taeda in Zimbabwe. Silvae Genet. 2001, 50, 3–4. [Google Scholar]
- Zabek, L.M.; Prescott, C.E. Steady-state nutrition of hybrid poplar grownfrom un-rooted cuttings. New For. 2007, 34, 13–23. [Google Scholar] [CrossRef]
- Zhang, S. Nonlinear Mixed-Effects Modeling of Variable Exponent Taper Equations with Density for Chinese Fir. Master’s Thesis, Chinese Academy of Forestry, Beijing, China, June 2017. [Google Scholar]
- Fan, H.; Lai, W.; Huang, Q.; Huang, Y.; Yang, F. Contrast between different superior varieties of Cunninghamia lanceolata at seedling stage. Hubei For. Sci. Technol. 2017, 46, 24–27. [Google Scholar]
- Huang, J.C. Early growth of secondary- and third-generation Chinese firin Tongle forestry centre. Chin. Agric. 2017, 11, 50–51. [Google Scholar]
- Xu, X.; Timme, V.R. Growth and nitrogen nutrition of Chinese fir seedlings exposed to nutrition loading and fertilization. Plant Soil 1999, 216, 83–91. [Google Scholar] [CrossRef]
- Liu, H.; Wang, C.; Wu, J.; Guo, L. Effects of exponential N fertilization on the growth and nutrient content in clonal Cunninghamia lanceolata seedlings. Chin. J. Appl. Ecol. 2016, 27, 3123–3128. [Google Scholar]
- Ingestad, T.; Lund, A.B. Nitrogen stress in birch seedlings I. growth technique and growth. Physiol. Plant. 1979, 45, 137–148. [Google Scholar] [CrossRef]
- Rose, R.; Ketchum, J.S. Interaction of initial seedling diameter, fertilization and weed control on Douglas-fir growth over the first four years after planting. Ann. For. Sci. 2003, 60, 625–635. [Google Scholar] [CrossRef]
- Burdett, A.N.; Herring, L.J.; Thompson, C.F. Early growth of planted spruce. Can. J. For. Res. 1984, 14, 644–651. [Google Scholar] [CrossRef]
- Grossnickle, S.C. Ecophysiology of Northern Spruce Species: The Performance of Planted Seedlings; NRC Research Press: Ottawa, ON, Canada, 2000; p. 409. [Google Scholar]
- Rytter, L.; Ericsson, T.; Rytter, R.M. Effects of demand-driven fertilization on nutrient use, root: Plant ratio and field performance of Betula pendula and Picea abies. Scand. J. For. Res. 2003, 18, 401–415. [Google Scholar] [CrossRef]
- Ingestad, T.; Ågren, G.I. The influence of plant nutrition on biomass allocation. Ecol. Appl. 1991, 1, 168–174. [Google Scholar] [CrossRef]
- Huang, H.J.; Peng, R.S.; Liu, Y.; Jiang, J. Growth traits variation analysis and family selection of 3-year-old various ploidy Betula platyphylla. Bull. Bot. Res. 2017, 37, 274–280. [Google Scholar]
- Neophytou, C.; Weisser, A.M.; Landwehr, D.; Seho, M.; Kohnle, U.; Ensminger, I.; Wildhagen, H. Assessing the relationship between height growth and molecular genetic variation in Douglas-fir (Pseudotsuga menziesii. provenances. Eur. J. For. Res. 2016, 135, 465–481. [Google Scholar] [CrossRef]
- He, P.; Xu, J.; Xu, Y.; Chen, Y.; Shen, F.; Xu, L. Growth differences and selection of Chinese fir families in young plantations with different site conditions. J. Zhejiang A F Univ. 2018, 35, 453–458. [Google Scholar]
- Gong, S. The comparison of early growth in the afforestation of different provenance for Chinese fir. Anhui Agric. Sci. Bull. 2015, 21, 85–87. [Google Scholar]
- Schmal, J.L.; Jacobs, D.F.; O’Reilly, C. Nitrogen budgeting and quality of exponentially fertilized Quercus robur seedlings in Ireland. Eur. J. For. Res. 2011, 130, 557–567. [Google Scholar] [CrossRef]
Source of Variation | Level of Significance (p value) | ||||||
---|---|---|---|---|---|---|---|
df | Height | RCD † | Dry Mass | S/R ‡ | Seedling N | Seedling P | |
Regime (R) | 1 | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | 0.008 ** | 0.154 ns |
Generation (G) | 1 | <0.001 *** | <0.001 *** | <0.001 *** | 0.436 ns | 0.040 * | 0.003 ** |
Level (L) | 2 | 0.406 ns | 0.013 * | 0.036 * | 0.389 ns | <0.001 *** | <0.001 *** |
Time (T) | 3 | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** |
R × G | 1 | 0.084 ns | 0.744 ns | 0.996 ns | 0.045 * | 0.042 * | 0.175 ns |
R × L | 2 | 0.001 *** | 0.271 ns | <0.001 *** | 0.035 * | 0.016 * | <0.001 *** |
R × T | 3 | <0.001 *** | <0.001 *** | <0.001 *** | 0.055 ns | <0.001 *** | <0.001 *** |
Treatment | Seedling N Concentration (mg g−1) | Seedling P Concentration (mg g−1) | ||||||
---|---|---|---|---|---|---|---|---|
Week 6 | Week 16 | Week 20 | Week 24 | Week 6 | Week 16 | Week 20 | Week 24 | |
2-generation seedlings | ||||||||
E50 | 1.87 ± 0.12 | 18.94 ± 0.28 | 20.76 ± 0.66 | 23.11 ± 1.17 | 0.35 ± 0.05 | 0.85 ± 0.02 | 2.74 ± 0.14 | 2.87 ± 0.19 |
C50 | 3.53 ± 0.07 | 19.14 ± 0.79 | 17.78 ± 0.33 | 19.43 ± 0.57 | 0.51 ± 0.05 | 0.63 ± 0.04 | 2.08 ± 0.11 | 2.68 ± 0.14 |
E100 | 2.08 ± 0.07 | 20.81 ± 0.73 | 23.27 ± 0.72 | 27.69 ± 1.03 | 0.34 ± 0.01 | 0.78 ± 0.03 | 3.35 ± 0.10 | 3.72 ± 0.23 |
C100 | 3.63 ± 0.05 | 25.77 ± 1.30 | 21.60 ± 0.60 | 26.93 ± 0.68 | 0.56 ± 0.02 | 0.74 ± 0.03 | 2.62 ± 0.07 | 3.61 ± 0.15 |
E200 | 3.27 ± 0.72 | 23.54 ± 0.76 | 26.38 ± 0.42 | 36.95 ± 2.86 | 0.35 ± 0.04 | 0.82 ± 0.02 | 3.40 ± 0.13 | 5.45 ± 0.12 |
C200 | 3.98 ± 0.17 | 26.25 ± 1.28 | 26.13 ± 0.72 | 32.31 ± 1.34 | 0.61 ± 0.08 | 0.98 ± 0.06 | 4.20 ± 0.27 | 5.80 ± 0.82 |
3-generation seedlings | ||||||||
E50 | 1.94 ± 0.10 | 18.96 ± 0.74 | 22.75 ± 0.62 | 27.47 ± 0.61 | 0.34 ± 0.04 | 0.84 ± 0.06 | 3.44 ± 0.16 | 4.31 ± 0.14 |
C50 | 3.87 ± 0.12 | 20.44 ± 0.55 | 15.13 ± 0.52 | 21.26 ± 0.93 | 0.53 ± 0.04 | 0.72 ± 0.05 | 2.07 ± 0.10 | 3.26 ± 0.20 |
E100 | 2.48 ± 0.19 | 18.63 ± 1.07 | 22.67 ± 0.84 | 29.33 ± 1.51 | 0.37 ± 0.03 | 0.76 ± 0.11 | 3.55 ± 0.42 | 4.51 ± 0.24 |
C100 | 3.87 ± 0.12 | 23.65 ± 1.01 | 17.79 ± 1.08 | 23.84 ± 0.32 | 0.65 ± 0.04 | 0.81 ± 0.02 | 2.74 ± 0.25 | 4.33 ± 0.09 |
E200 | 1.96 ± 0.14 | 23.98 ± 1.53 | 27.03 ± 0.31 | 30.70 ± 1.05 | 0.30 ± 0.01 | 0.73 ± 0.09 | 3.73 ± 0.23 | 5.05 ± 0.23 |
C200 | 4.34 ± 0.10 | 23.02 ± 0.81 | 23.76 ± 0.69 | 30.97 ± 1.17 | 0.71 ± 0.07 | 0.74 ± 0.08 | 4.06 ± 0.14 | 5.42 ± 0.20 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.-L.; Fan, H.-H.; Xuan, H.-F.; Mgelwa, A.S.; Chen, S.-P. Distinct Growth and Nutrient Status Responses to Fertilization Regimes in Two Generations of Chinese Fir Seedlings. Forests 2019, 10, 719. https://doi.org/10.3390/f10090719
Hu Y-L, Fan H-H, Xuan H-F, Mgelwa AS, Chen S-P. Distinct Growth and Nutrient Status Responses to Fertilization Regimes in Two Generations of Chinese Fir Seedlings. Forests. 2019; 10(9):719. https://doi.org/10.3390/f10090719
Chicago/Turabian StyleHu, Ya-Lin, Hui-Hua Fan, Han-Feng Xuan, Abubakari Said Mgelwa, and Shi-Pin Chen. 2019. "Distinct Growth and Nutrient Status Responses to Fertilization Regimes in Two Generations of Chinese Fir Seedlings" Forests 10, no. 9: 719. https://doi.org/10.3390/f10090719
APA StyleHu, Y.-L., Fan, H.-H., Xuan, H.-F., Mgelwa, A. S., & Chen, S.-P. (2019). Distinct Growth and Nutrient Status Responses to Fertilization Regimes in Two Generations of Chinese Fir Seedlings. Forests, 10(9), 719. https://doi.org/10.3390/f10090719