Distinct Growth and Nutrient Status Responses to Fertilization Regimes in Two Generations of Chinese Fir Seedlings
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Seedling Shoot Height and Root Collar Diameter
3.2. Dry Mass and Shoot:Root Ratio
3.3. Seedling N and P concentrations
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Timmer, V.R.; Armstrong, G.; Miller, B.D. Steady-state nutrient proconditionning and early outplanting performance of containerized black spruce seedlings. Can. J. For. Res. 1991, 21, 585–594. [Google Scholar] [CrossRef]
- Jonsson, A.; Ericsson, T.; Eriksson, G.; Kahr, M.; Lundkvist, K.; Norell, L. Interfamily variation in nitrogen productivity of Pinus sylvestris seedlings. Scand. J. For. Res. 1997, 12, 1–10. [Google Scholar] [CrossRef]
- Bian, L.; Shi, J.; Zheng, R.; Chen, J.; Xu, H.X. Genetic parameters and genotype-environment interactions of Chinese fir (Cummnighamia lanceolate) in Fujian Province. Can. J. For. Res. 2014, 44, 582–592. [Google Scholar] [CrossRef]
- McAlister, J.A.; Timmer, V.R. Nutrient enrichment of white spruce seedlings during nursery culture and initial plantation establishment. Tree Physiol. 1998, 18, 195–202. [Google Scholar] [CrossRef]
- Zvomuya, F.; Rosen, C.J.; Miller, J.C. Response of Russet Norkotah clonal selections to nitrogen fertilization. Am. J. Potato Res. 2002, 79, 231–239. [Google Scholar] [CrossRef]
- Zas, R.; Pichel, F.; Martíns, P.; Fernández-López, J. Fertilization × genotype interaction in Pinus radiata open pollinated families planted in three locations in Galicia (NW Spain). New For. 2006, 32, 253–263. [Google Scholar] [CrossRef][Green Version]
- Wu, P.; Tigabu, M.; Ma, X.; Odén, P.C.; He, Y.; Yu, X.; He, Z. Variations in biomass, nutrition contents and nutrition use efficiency among Chinese fir provenances. Silvae Genet. 2011, 60, 95–105. [Google Scholar] [CrossRef]
- Timmer, V.R. Exponential nutrient loading: A new fertilization technique to improve seedling performance on competitive sites. New For. 1996, 13, 275–295. [Google Scholar]
- Salifu, K.F.; Timmer, V.R. Optimizing nitrogen loading of Picea mariana seedlings during nursery culture. Can. J. For. Res. 2003, 33, 1287–1294. [Google Scholar] [CrossRef]
- Miller, B.D.; Timmer, V.R. Steady-state nutrition of Pinus resinosa seedlings: Response to nutrition loading, irrigation and hardening regimes. Tree Physiol. 1994, 14, 1327–1338. [Google Scholar] [CrossRef]
- Xu, X.; Timmer, V.R. Biomass and nutrition dynamics of Chinese fir seedlings under conventional and exponential fertilization regimes. Plant Soil 1998, 203, 313–322. [Google Scholar] [CrossRef]
- Oliet, J.A.; Tejada, M.; Salifu, K.F.; Collazos, A.; Jacobs, D.F. Performance and nutrition dynamics of holm oak (Quercus ilex L.) seedlings in relation to nursery nutrition loading and post-transplant fertility. Eur. J. For. Res. 2009, 128, 253–263. [Google Scholar] [CrossRef]
- Isaac, M.E.; Harmand, J.M.; Drevon, J.J. Growth and nitrogen acquisition strategies of Acacia senegal seedlings under exponential phosphorus additions. J. Plant Physiol. 2011, 168, 776–781. [Google Scholar] [CrossRef]
- Schott, K.M.; Pinno, B.D.; Landhäusser, S.M. Premature shoot growth termination allows nutrition loading of seedlings with an indeterminate growth strategy. New For. 2013, 44, 635–647. [Google Scholar] [CrossRef]
- Hawkins, B.J.; Burgess, D.; Mitchell, A.K. Growth and nutrition dynamics of western hemlock with conventional or exponential greenhouse fertilization and planting in different fertility conditions. Can. J. For. Res. 2005, 35, 1002–1016. [Google Scholar] [CrossRef]
- Quoreshi, A.M.; Timmer, V.R. Early outplanting performance of nutrition-loaded containerized black spruce seedlings inoculated with Laccaria bicolor: A bioassay study. Can. J. For. Res. 2000, 30, 744–752. [Google Scholar] [CrossRef]
- Miller, B.D.; Hawkins, B.J. Nitrogen uptake and utilization by slow- and fast-growing families of interior spruce under contrasting fertility regimes. Can. J. For. Res. 2003, 33, 959–966. [Google Scholar] [CrossRef]
- Martins, P.; Sampdro, L.; Moreira, X.; Zas, R. Nutritional status and genetic variation in the response to nutrient availability in Pinus pinaster. A multi site field study in Northwest Spain. For. Ecol. Manag. 2009, 258, 1429–1436. [Google Scholar] [CrossRef]
- Wanyancha, J.M.; Morgenstern, E.K. Genetic variation in response to nitrogen fertilizer levels in tamarack families. Can. J. For. Res. 1987, 17, 1246–1250. [Google Scholar] [CrossRef]
- DeBell, D.S.; Silen, R.R.; Radwan, M.A.; Mandel, N.L. Effect of family and nitrogen fertilizer on growth and foliar nutrients of Douglas-fir seedlings. For. Sci. 1986, 32, 643–652. [Google Scholar]
- Gwaze, D.P.; Wolliams, J.A.; Kanowski, P.J.; Bridgwater, F.E. Interactions of genotype with site for height and stem straightness in Pinus taeda in Zimbabwe. Silvae Genet. 2001, 50, 3–4. [Google Scholar]
- Zabek, L.M.; Prescott, C.E. Steady-state nutrition of hybrid poplar grownfrom un-rooted cuttings. New For. 2007, 34, 13–23. [Google Scholar] [CrossRef]
- Zhang, S. Nonlinear Mixed-Effects Modeling of Variable Exponent Taper Equations with Density for Chinese Fir. Master’s Thesis, Chinese Academy of Forestry, Beijing, China, June 2017. [Google Scholar]
- Fan, H.; Lai, W.; Huang, Q.; Huang, Y.; Yang, F. Contrast between different superior varieties of Cunninghamia lanceolata at seedling stage. Hubei For. Sci. Technol. 2017, 46, 24–27. [Google Scholar]
- Huang, J.C. Early growth of secondary- and third-generation Chinese firin Tongle forestry centre. Chin. Agric. 2017, 11, 50–51. [Google Scholar]
- Xu, X.; Timme, V.R. Growth and nitrogen nutrition of Chinese fir seedlings exposed to nutrition loading and fertilization. Plant Soil 1999, 216, 83–91. [Google Scholar] [CrossRef]
- Liu, H.; Wang, C.; Wu, J.; Guo, L. Effects of exponential N fertilization on the growth and nutrient content in clonal Cunninghamia lanceolata seedlings. Chin. J. Appl. Ecol. 2016, 27, 3123–3128. [Google Scholar]
- Ingestad, T.; Lund, A.B. Nitrogen stress in birch seedlings I. growth technique and growth. Physiol. Plant. 1979, 45, 137–148. [Google Scholar] [CrossRef]
- Rose, R.; Ketchum, J.S. Interaction of initial seedling diameter, fertilization and weed control on Douglas-fir growth over the first four years after planting. Ann. For. Sci. 2003, 60, 625–635. [Google Scholar] [CrossRef]
- Burdett, A.N.; Herring, L.J.; Thompson, C.F. Early growth of planted spruce. Can. J. For. Res. 1984, 14, 644–651. [Google Scholar] [CrossRef]
- Grossnickle, S.C. Ecophysiology of Northern Spruce Species: The Performance of Planted Seedlings; NRC Research Press: Ottawa, ON, Canada, 2000; p. 409. [Google Scholar]
- Rytter, L.; Ericsson, T.; Rytter, R.M. Effects of demand-driven fertilization on nutrient use, root: Plant ratio and field performance of Betula pendula and Picea abies. Scand. J. For. Res. 2003, 18, 401–415. [Google Scholar] [CrossRef]
- Ingestad, T.; Ågren, G.I. The influence of plant nutrition on biomass allocation. Ecol. Appl. 1991, 1, 168–174. [Google Scholar] [CrossRef]
- Huang, H.J.; Peng, R.S.; Liu, Y.; Jiang, J. Growth traits variation analysis and family selection of 3-year-old various ploidy Betula platyphylla. Bull. Bot. Res. 2017, 37, 274–280. [Google Scholar]
- Neophytou, C.; Weisser, A.M.; Landwehr, D.; Seho, M.; Kohnle, U.; Ensminger, I.; Wildhagen, H. Assessing the relationship between height growth and molecular genetic variation in Douglas-fir (Pseudotsuga menziesii. provenances. Eur. J. For. Res. 2016, 135, 465–481. [Google Scholar] [CrossRef]
- He, P.; Xu, J.; Xu, Y.; Chen, Y.; Shen, F.; Xu, L. Growth differences and selection of Chinese fir families in young plantations with different site conditions. J. Zhejiang A F Univ. 2018, 35, 453–458. [Google Scholar]
- Gong, S. The comparison of early growth in the afforestation of different provenance for Chinese fir. Anhui Agric. Sci. Bull. 2015, 21, 85–87. [Google Scholar]
- Schmal, J.L.; Jacobs, D.F.; O’Reilly, C. Nitrogen budgeting and quality of exponentially fertilized Quercus robur seedlings in Ireland. Eur. J. For. Res. 2011, 130, 557–567. [Google Scholar] [CrossRef]
Source of Variation | Level of Significance (p value) | ||||||
---|---|---|---|---|---|---|---|
df | Height | RCD † | Dry Mass | S/R ‡ | Seedling N | Seedling P | |
Regime (R) | 1 | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | 0.008 ** | 0.154 ns |
Generation (G) | 1 | <0.001 *** | <0.001 *** | <0.001 *** | 0.436 ns | 0.040 * | 0.003 ** |
Level (L) | 2 | 0.406 ns | 0.013 * | 0.036 * | 0.389 ns | <0.001 *** | <0.001 *** |
Time (T) | 3 | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** |
R × G | 1 | 0.084 ns | 0.744 ns | 0.996 ns | 0.045 * | 0.042 * | 0.175 ns |
R × L | 2 | 0.001 *** | 0.271 ns | <0.001 *** | 0.035 * | 0.016 * | <0.001 *** |
R × T | 3 | <0.001 *** | <0.001 *** | <0.001 *** | 0.055 ns | <0.001 *** | <0.001 *** |
Treatment | Seedling N Concentration (mg g−1) | Seedling P Concentration (mg g−1) | ||||||
---|---|---|---|---|---|---|---|---|
Week 6 | Week 16 | Week 20 | Week 24 | Week 6 | Week 16 | Week 20 | Week 24 | |
2-generation seedlings | ||||||||
E50 | 1.87 ± 0.12 | 18.94 ± 0.28 | 20.76 ± 0.66 | 23.11 ± 1.17 | 0.35 ± 0.05 | 0.85 ± 0.02 | 2.74 ± 0.14 | 2.87 ± 0.19 |
C50 | 3.53 ± 0.07 | 19.14 ± 0.79 | 17.78 ± 0.33 | 19.43 ± 0.57 | 0.51 ± 0.05 | 0.63 ± 0.04 | 2.08 ± 0.11 | 2.68 ± 0.14 |
E100 | 2.08 ± 0.07 | 20.81 ± 0.73 | 23.27 ± 0.72 | 27.69 ± 1.03 | 0.34 ± 0.01 | 0.78 ± 0.03 | 3.35 ± 0.10 | 3.72 ± 0.23 |
C100 | 3.63 ± 0.05 | 25.77 ± 1.30 | 21.60 ± 0.60 | 26.93 ± 0.68 | 0.56 ± 0.02 | 0.74 ± 0.03 | 2.62 ± 0.07 | 3.61 ± 0.15 |
E200 | 3.27 ± 0.72 | 23.54 ± 0.76 | 26.38 ± 0.42 | 36.95 ± 2.86 | 0.35 ± 0.04 | 0.82 ± 0.02 | 3.40 ± 0.13 | 5.45 ± 0.12 |
C200 | 3.98 ± 0.17 | 26.25 ± 1.28 | 26.13 ± 0.72 | 32.31 ± 1.34 | 0.61 ± 0.08 | 0.98 ± 0.06 | 4.20 ± 0.27 | 5.80 ± 0.82 |
3-generation seedlings | ||||||||
E50 | 1.94 ± 0.10 | 18.96 ± 0.74 | 22.75 ± 0.62 | 27.47 ± 0.61 | 0.34 ± 0.04 | 0.84 ± 0.06 | 3.44 ± 0.16 | 4.31 ± 0.14 |
C50 | 3.87 ± 0.12 | 20.44 ± 0.55 | 15.13 ± 0.52 | 21.26 ± 0.93 | 0.53 ± 0.04 | 0.72 ± 0.05 | 2.07 ± 0.10 | 3.26 ± 0.20 |
E100 | 2.48 ± 0.19 | 18.63 ± 1.07 | 22.67 ± 0.84 | 29.33 ± 1.51 | 0.37 ± 0.03 | 0.76 ± 0.11 | 3.55 ± 0.42 | 4.51 ± 0.24 |
C100 | 3.87 ± 0.12 | 23.65 ± 1.01 | 17.79 ± 1.08 | 23.84 ± 0.32 | 0.65 ± 0.04 | 0.81 ± 0.02 | 2.74 ± 0.25 | 4.33 ± 0.09 |
E200 | 1.96 ± 0.14 | 23.98 ± 1.53 | 27.03 ± 0.31 | 30.70 ± 1.05 | 0.30 ± 0.01 | 0.73 ± 0.09 | 3.73 ± 0.23 | 5.05 ± 0.23 |
C200 | 4.34 ± 0.10 | 23.02 ± 0.81 | 23.76 ± 0.69 | 30.97 ± 1.17 | 0.71 ± 0.07 | 0.74 ± 0.08 | 4.06 ± 0.14 | 5.42 ± 0.20 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.-L.; Fan, H.-H.; Xuan, H.-F.; Mgelwa, A.S.; Chen, S.-P. Distinct Growth and Nutrient Status Responses to Fertilization Regimes in Two Generations of Chinese Fir Seedlings. Forests 2019, 10, 719. https://doi.org/10.3390/f10090719
Hu Y-L, Fan H-H, Xuan H-F, Mgelwa AS, Chen S-P. Distinct Growth and Nutrient Status Responses to Fertilization Regimes in Two Generations of Chinese Fir Seedlings. Forests. 2019; 10(9):719. https://doi.org/10.3390/f10090719
Chicago/Turabian StyleHu, Ya-Lin, Hui-Hua Fan, Han-Feng Xuan, Abubakari Said Mgelwa, and Shi-Pin Chen. 2019. "Distinct Growth and Nutrient Status Responses to Fertilization Regimes in Two Generations of Chinese Fir Seedlings" Forests 10, no. 9: 719. https://doi.org/10.3390/f10090719
APA StyleHu, Y.-L., Fan, H.-H., Xuan, H.-F., Mgelwa, A. S., & Chen, S.-P. (2019). Distinct Growth and Nutrient Status Responses to Fertilization Regimes in Two Generations of Chinese Fir Seedlings. Forests, 10(9), 719. https://doi.org/10.3390/f10090719